

Lecture Notes in Computer Science 3296
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luc Bougé Viktor K. Prasanna (Eds.)

High Performance
Computing –
HiPC 2004

11th International Conference
Bangalore, India, December 19-22, 2004
Proceedings

13

Volume Editors

Luc Bougé
IRISA/ENS Cachan, Campus Ker Lann
35170 Bruz Rennes, France
E-mail: luc.bouge@bretagne.ens-cachan.fr

Viktor K. Prasanna
University of Southern California, Department of Electrical Engineering
Los Angeles, CA, 90089-2562, USA
E-mail: prasanna@usc.edu

Library of Congress Control Number: 2004116658

CR Subject Classification (1998): D.1-4, C.1-4, F.1-2, G.1-2

ISSN 0302-9743
ISBN 3-540-24129-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11369158 06/3142 5 4 3 2 1 0

Message from the Program Chair

Welcome to the proceedings of the 11th International Conference on High Performance
Computing, HiPC 2004!

This year, we were delighted to receive 253 submissions to this conference from more
than 25 different countries, including (besides India!) countries in North and SouthAmer-
ica, Europe, Asia, and Australia. This is a major increase on last year (169 submissions
from 20 countries). Eventually, 48 submissions (the same number as last year) from
13 different countries were selected for presentation at the conference and publication
in the conference proceedings.

This sharp increase in the number of submissions required adapting the regular
selection process used in the previous years. First, all submitted papers were carefully
considered by the Program Chair and Vice-Chairs to check their consistency with the
minimal syntactic requirements for acceptance. At the end of this first stage, we were
left with 214 submissions, which were further considered by the Program Committee.
Each of these papers was reviewed by three Program Committee members. As many as
632 reviews were collected (2.95 per paper on average) and each paper was discussed at
the online Program Committee meeting. Finally, 48 out of 214 (22%) were accepted for
presentation and publication in the proceedings. Among them, two outstanding papers
were selected as “Best Papers”; one in the algorithms and applications area and the other
in the systems area. They will be presented in a separate plenary session and each paper
will be awarded a prize sponsored by InfoSys. Here is a general summary of the results
with respect to the origins of the submissions:

Submission origin Reviewed Accepted Acceptance rate

Overall 214 48 22%

India 43% 31% 16%
Asia except India 17% 15% 19%
North America (mainly USA) 20% 42% 46%
Elsewhere (mainly Europe) 20% 12% 13%
Total 100% 100%

These figures show that the selection process was highly competitive. We were pleased to
accommodate eight (parallel) technical sessions of high-quality contributed papers, plus
the special plenary “Best Papers” session. In addition, this year’s conference also featured
a Poster Session, an Industrial Track Session, six Keynote Addresses, six Tutorials and
six Workshops.

It was a pleasure putting together this program with the help of five excellent Pro-
gram Vice-Chairs and their 73 Program Committee members. The hard work of all the
Program Committee members is deeply appreciated, and I especially wish to acknowl-
edge the dedicated effort put in by the Vice-Chairs: Frédéric Desprez (Algorithms),
Ramesh Govindan (Communication Networks), Thilo Kielmann (System Software),
Frank Mueller (Applications), and Per Stenström (Architecture). Without their help and

VI Preface

timely work, the quality of this program would not be as high nor would the process
have run so smoothly.

I also wish to thank the other supporting cast members who helped in putting together
this program, including those who organized the keynotes, tutorials, workshops, awards,
poster session, industrial track session, and those who performed the administrative
functions that are essential to the success of this conference. The work of Sushil K.
Prasad in putting together the conference proceedings is also acknowledged, as well as
the support provided by Mathieu Jan and Sébastien Monnet, PhD students at IRISA, in
maintaining the CyberChair online paper submission and evaluation software. Last, but
certainly not least, I express heartfelt thanks to our General Co-chairs, Viktor Prasanna
and Uday Shukla, and to the Vice-General Chair, David A. Bader, for all their useful
advice.

The preparation of this conference was unfortunately marked by a very sad and
unexpected event: the sudden demise of Dr. Uday Shukla, who was a strong supporter of
HiPC over the past ten years. He passed away on July 20, 2004 after a very brief illness.
Dr. Shukla had been involved in organizing HiPC since the beginning. In addition to
his encouragement in organizing HiPC, Dr. Shukla was a strong supporter of research
activities in computer science and information technology in India. We will miss a friend
of HiPC.

I would like to end this message by thanking the Conference General Co-chairs for
giving me the opportunity to serve as the Program Chair of this conference. This truly
was a very rewarding experience for me. I trust the attendees found this year’s program
to be as informative and stimulating as we endeavored to make it. I hope they enjoyed
their HiPC 2004 experience, and I hope they also found time to enjoy the rich cultural
experience provided by the fascinating city of Bangalore, India!

December 2004 Luc Bougé

Message from the Steering Chair

It is my pleasure to welcome you to the proceedings of the 11th International Conference
on High Performance Computing, held in Bangalore, the IT capital of India.

I would like to single out the contributions of Luc Bougé, Program Chair, for or-
ganizing an excellent technical program. We received a record number of submissions
this year, surpassing our previous high set last year. Also, the submissions were from a
record number of countries. I am grateful to him for his efforts and thoughtful inputs in
putting together the meeting program.

Many volunteers continued their efforts in organizing the meeting. While I thank
them for their invaluable efforts, I would like to welcome R. Badrinath, India Publicity
Chair, Susamma Barua, Registration Chair, and Sally Jelinek, Local Arrangements Co-
chair, to the “HiPC family.” Bertil Schmidt acted as our Cyber Chair. Rajeev Muralidhar
of Intel India, though not listed in our announcements, was a great asset to us in handling
meeting arrangements and interfacing with local institutions. I would like to thank all our
volunteers for their tireless efforts. The meeting would not have been possible without
the enthusiastic commitment of these individuals.

Major financial support for the meeting was provided by several leading IT companies
in India. I would like to acknowledge the following individuals for their support: N.R.
Narayana Murthy, Infosys; Venkat Ramana, Hinditron Infosystems; Uday Shukla, IBM
India; Dinakar Sitaram, HP India; and V. Sridhar, Satyam.

Finally, I would like to thank Animesh Pathak at USC for his continued assistance
and enthusiasm in organizing the meeting. He, along with the volunteers listed earlier,
pulled together as a team to meet the several challenges presented this year.

This message would not be complete without the posthumous acknowledgement of
our debt to Uday Shukla whose contributions remain pivotal to this event as a “home-
grown” undertaking to showcase India’s IT accomplishments. We honor his spirit by
carrying forward the organization and presentation of this program.

December 2004 Viktor K. Prasanna

Message from the Vice-General Chair

to the proceedings of the 11th International Conference on High Performance
Computing, held in Bangalore. It was an honor and a pleasure to be able to serve the
international community by bringing together researchers, scientists, and students, from
academia and industry, to this meeting in the technology capital of India.

First let me recognize Manish Parashar for his help publicizing this conference, and
Sushil K. Prasad for serving as the publications chair. Srinivas Aluru did an excellent job
organizing tutorials presented by leading experts. HiPC 2004 included six tutorials in
areas likely to be at the forefront of high-performance computing in the next decade, such
as storage and file systems with InfiniBand, pervasive computing, grid computing for e-
science and e-business, new networking technologies, network security, and embedded
system design.

I wish to thank all of the conference organizers and volunteers for their contributions
in making HiPC 2004 a great success. I would especially like to thank the general co-
chairs, Viktor K. Prasanna and Uday Shukla, for their enormous contributions steering
and organizing this meeting. It is to their credit that this meeting has become the premier
international conference for high-performance computing. With deep sorrow, we will
miss Dr. Uday Shukla, whose leadership and strong support of research activities in
computer science and information technology in India was remarkable. Special thanks
are also due to the program chair, Luc Bougé, for his hard work assembling a high-
quality technical program that included contributed and invited papers, an industrial
track, keynote addresses, tutorials, and several workshops.

December 2004 David A. Bader

Welcome

A Tribute to Dr. Uday Shukla

Dr. Uday Shukla
1951–2004

In tribute to his pioneering
leadership and contributions to India’s

advanced computing technology

Uday Shukla passed away on July 20, 2004 at the age of 53. He leaves behind his wife
Rekha, son Nitish and daughter Vinita, and we extend to them our deepest sympathy and
condolences.

In his passing, the information technology industry has lost not only a visionary
but also a rare individual with a capacity to inspire a technology-savvy generation to
innovate. For HiPC, his loss has been profound, with our organization having come to
rely on his leadership in India and on the world-wide recognition and alliances that he
brought to the event. Here we pay tribute to his many accomplishments, as highlighted
in a brief resume of his professional associations and undertakings.

Dr. Shukla joined IBM India (then Tata Information Systems Ltd., a joint venture
between IBM and Tata) in 1994 as the head of the Systems Group. He was the director of
IBM Software Labs, India and IBM Engineering & Technology Services, India when he
passed away. Prior to joining IBM, he was the head of R&D at Tata Elxsi following his
tenure as the location head of the Cent er for the Development of Advanced Computing,
Bangalore. He received his PhD in aerospace engineering from the Indian Institute of
Science, Bangalore. He was a fellow of the Institution of Engineers (India), and a senior
member of IEEE.

In the years following, Dr. Shukla took on the task of moving IBM’s Indian operations
to the cutting edge of technology. His focus was on creating a climate that would nurture
young talent and set them on the path of pursuing and implementing innovative ideas. His
efforts in this direction included the creation of an R&D group, a Technology Incubation
Centre, the Centre forAdvanced Studies, a University Relationships program, an affiliate
of the IBM Academy of Technology, and an in-house lecture series on science and
technology. The in-house lecture series covers topics like quantum computing, molecular
biology, formal mathematical systems, and algorithms.

Collectively these activities helped generate science-based intellectual property and
a research environment that is rather unique. A large number of patent applications
filed under his leadership have been in areas such as compiler optimization, molecular
biology, and operating systems. These initiatives were based on his faith in the unusual
problem-solving capabilities of the people he was leading in India. While the journey
to achieving technological excellence is long and tedious, Shukla was able to firmly
establish basic elements that motivate talented researchers to stay the course, through

X Preface

an awareness of the importance of basic science in the development of technology and
the importance of an ethical environment. He had the pleasure of seeing at least a dozen
of his colleagues well on the path to becoming prolific inventors and dozens more filing
their first patent application. In addition, his encouragement emboldened a few very
young engineers to make a mark as researchers in molecular biology.

His association with HiPC was an important part of his dream, and he was involved
in organizing HiPC from its beginning. As the co-chair of the Workshop on Cutting
Edge Computing since 2001, he sought to enhance the image of HiPC by inviting papers
from experts in new and emerging technologies. He was also active in bringing together
colleagues in India to form a National Advisory Committee for the event, often working
in the background with organizers to develop local participation and support. He gave
generously of his professional wisdom and and organizational energy, serving as the
general co-chair of HiPC in 2002 and then again signing on to co-chair HiPC 2004.
In addition to his encouragment for organizing HiPC, Dr. Shukla remained a strong
supporter of research activities in computer science and information technology in India.
We will miss this friend of HiPC.

October 2004 Viktor K. Prasanna

Conference Organization

General Co-chairs
Viktor K. Prasanna, University of Southern California, USA
Uday Shukla, IBM India, India

Vice-General Chair
David A. Bader, University of New Mexico, USA

Program Chair
Luc Bougé, IRISA/ENS Cachan, France

Program Vice-Chairs
Algorithms
Frédéric Desprez, INRIA Rhône-Alpes, France

Applications
Frank Mueller, North Carolina State University, USA

Architecture
Per Stenström, Chalmers University of Technology, Sweden

Communication Networks
Ramesh Govindan, University of Southern California, USA

Systems Software
Thilo Kielmann, Vrije Universiteit, The Netherlands

Steering Chair
Viktor K. Prasanna, University of Southern California, USA

Workshops Chair
C.P. Ravikumar, Texas Instruments, India

Poster/Presentation Chair
Rajkumar Buyya, University of Melbourne, Australia

Scholarships Chair
Atul Negi, University of Hyderabad, India

XII Organization

Finance Co-chairs
Ajay Gupta, Western Michigan University, USA
B.V. Ramachandran, Software Technology Park, Bangalore, India

Tutorials Chair
Srinivas Aluru, Iowa State University, USA

Awards Chair
Arvind, MIT, USA

Keynote Chair
Rajesh Gupta, University of California, San Diego, USA

Industry Liaison Chair
Sudheendra Hangal, Sun Microsystems, India

Publicity Chair
Manish Parashar, Rutgers, State University of New Jersey, USA

Publications Chair
Sushil K. Prasad, Georgia State University, USA

Cyber Chair
Bertil Schmidt, Nanyang Technological University, Singapore

Local Arrangements Chair
Sally Jelinek, Electronic Design Associates, Inc. USA

Local Arrangements Co-chair
Rajeev D. Muralidhar, Intel, India

Registration Chair
Susamma Barua, California State University, Fullerton, USA

,

Organization XIII

Steering Committee
R. Badrinath, HP, India
José Duato, Universidad Politecnica de Valencia, Spain
N.S. Nagaraj, Infosys, India
Viktor K. Prasanna, University of Southern California (Chair), USA
N. Radhakrishnan, US Army Research Lab, USA
Venkat Ramana, Cray-Hinditron, India
Shubhra Roy, Intel, India
Sartaj Sahni, University of Florida, USA
Dheeraj Sanghi, IIT, Kanpur, India
Assaf Schuster, Technion, Israel Institute of Technology, Israel
Uday Shukla, IBM, India
V. Sridhar, Satyam Computer Services Ltd., India

XIV Organization

Program Committee

Algorithms
Mikhail Atallah, Purdue University, USA
Michael A. Bender, State University of New York at Stony Brook, USA
Andrea Clematis, IMATI, CNR, Genoa, Italy
Jose Fortes, University of Florida, USA
Isabelle Guerin-Lassous, INRIA, INSA Lyon, France
Mahmut Kandemir, Pennsylvania State University, USA
George Karypis, University of Minnesota, Minneapolis, USA
Ran Libeskind-Hadas, Harvey Mudd College, USA
Muthucumaru Maheswaran, McGill University, Canada
Sato Mitushisa, University of Tsukuba, Japan
Sushil K. Prasad, Georgia State University, USA
Arnold A. Rosenberg, University of Massachussetts at Amherst, USA
Christian Scheideler, Johns Hopkins University, USA
Ramin Yahyapour, University of Dortmund, Germany
Albert Y. Zomaya, University of Sydney, Australia

Applications
Rupak Biswas, NASA Ames Research Center, USA
Franck Capello, INRIA, Orsay, France
Siddhartha Chatterjee, IBM T.J. Watson Research Center, USA
Chen Ding, University of Rochester, USA
Nikil Dutt, University of California, Irvine, USA
Rudi Eigenmanm, Purdue University, USA
Jesus Labarta, Technical University of Catalonia, Spain
Dave Lowenthal, University of Georgia, USA
Xiaosong Ma, North Carolina State University, USA
Manish Parashar, Rutgers, State University of New Jersey, USA
Keshav Pingali, Cornell University, USA
Jeff Vetter, Oak Ridge National Laboratory, USA
Xiaodong Zhang, William and Mary College, Williamsburg, USA

Architecture
Ricardo Bianchini, Rutgers, State University of New Jersey, USA
Mats Brorsson, KTH, Stockholm, Sweden
José Duato, University of Valencia, Spain
Michel Dubois, University of Southern California, USA
Rama Govindarajan, Indian Institute of Science, Bangalore, India
Wolfgang Karl, University of Karlsruhe, Germany
Josep Llosa, UPC Barcelona, Spain
Sang-Lyul Min, Seoul National University, Korea
Li Shuan Peh, Princeton University, USA
Partha Ranganathan, HP Western Research Laboratory, USA
Martin Schulz, Cornell University, USA

Organization XV

Olivier Temam, University of Paris Sud, France
Stamatis Vassiliadis, Delft University, The Netherlands

Communication Networks
Bengt Ahlgren, SICS, Kista, Sweden
Suman Banerjee, University of Maryland, USA
Erdal Cayirci, Istanbul Technical University, Turkey
Sonia Fahmy, Purdue University, USA
Paul Havinga, University of Twente, The Netherlands
Ahmed Helmy, University of Southern California, USA
Abhay Karandikar, IIT Bombay, India
Amit Kumar, IIT Delhi, India
Krishna Sivalingam, University of Maryland, Baltimore County, USA
C. Siva Ram Murthy, IIT Madras, India
Yoshito Tobe, Tokyo Denki University, Japan
Yu-Chee Tseng, National Taiwan University, Taiwan
Daniel Zappala, University of Oregon, USA

Systems Software
Olivier Aumage, INRIA, Bordeaux, France
Thomas Fahringer, University of Innsbruck, Austria
Phil Hatcher, University of New Hampshire, USA
Shantenu Jha, University College London, UK
Laxmikant V. Kale, University of Illinois at Urbana Champaign, USA
Anne-Marie Kermarrec, Microsoft Research, Cambridge, UK
Koen Langendoen, Technical University of Delft, The Netherlands
Shikharesh Majumdar, Carleton University, Ottawa, Canada
Ludek Matyska, Masaryk University, Brno, Czech Republic
Raju Pandey, University of California, Davis, USA
CongDuc Pham, LIP, ENS Lyon, France
Ana Ripoll, Universitat Autônoma de Barcelona, Spain
Martin Swany, University of Delaware, USA
Osamu Tatebe, AIST Tsukuba, Japan
Ramin Yahyapour, University of Dortmund, Germany

Workshop Organizers

Workshop on Cutting Edge Computing

Chair
Rajendra K. Bera, IBM Software Lab, India

Workshop on Dynamic Provisioning and Resource Management

Co-chairs
Sharad Garg, Intel Corp., USA
Jens Mache, Lewis & Clark College, USA

Trusted Internet Workshop

Co-chairs
G. Manimaran, Iowa State University, USA
Krishna Sivalingam, Univ. of Maryland Baltimore County, USA

Workshop on Performance Issues in Mobile Devices

Co-chairs
Rajat Moona, IIT Kanpur, India
Gopal Raghavan, Nokia, USA
Alexander Ran, Nokia, USA

Workshop on Software Architectures for Wireless

Co-chairs
S.H. Srinivasan, Satyam Computer Services Ltd., India
Srividya Gopalan, Satyam Computer Services Ltd., India

Workshop on New Horizons in Compiler Analysis and Optimizations

Co-chairs
R. Govindarajan, IISc, Bangalore, India
Uday Khedker, IIT, Bombay, India

List of Reviewers

Ahlgren, Bengt
Al-Ars, Zaid
Albertsson, Lars
Alessio, Bertone
Antoniu, Gabriel
Armstrong, Brian
Atallah, Mikhail
Aumage, Olivier
Bader, David A.
Bahn, Hyokyung
Bai, Liping
Banerjee, Suman
Basumallik, Ayon
Bavetta, Bayard
Baydal, Elvira
Bender, Michael A.
Bianchini, Ricardo
Bian, Fang
Biswas, Rupak
Bougé, Luc
Bourgeois, Anu
Bouteiller, Aurénn
Brezany, Peter
Brorsson, Mats
Capello, Franck
Cayirci, Erdal
Chadha, Vineet
Chakravorty, Sayantan
Chatterjee, Siddhartha
Chélius, Guillaume
Chen, Jianwei
Chen, Yu
Chintalapudi, Krishna
Choi, Woojin
Chung, Sung Woo
Clematis, Andrea
Corana, Angelo
Cores, Fernando
Crisu, Dan
Cuenca, Pedro
D’Agostino, Daniele

Dandamudi, Sivarama
Datta, Jayant
Davison, Brian
de Langen, Pepijn
Desprez, Frédéric
Dhoutaut, Dominique
Ding, Chen
Djilali, Samir
Drach, Nathalie
Duato, José
Dubois, Michel
Duranton, Marc
Dutt, Nikil
Eigenmann, Rudi
Ernemann, Carsten
Ersoz, Deniz
Fahmy, Sonia
Fahringer, Thomas
Fedak, Gilles
Ferreira, Renato
Flouris, Michail
Fortes, José
Fouad, Mohamed Raouf
Francis, Paul
Galizia, Antonella
Galuzzi, Carlo
Gelenbe, Erol
Gioachin, Filippo
Glossner, John
Gluck, Olivier
Gnawali, Omprakash
Goglin, Brice
Gore, Ashutosh
Govindan, Ramesh
Govindarajan, Rama
Graham, Peter
Guérin-Lassous, Isabelle
Gummadi, Ramakrishna
Guo, Minyi
Gustedt, Jens
Hainzer, Stefan

XVIII Organization

Harting, Jens
Harvey, Matt
Hatcher, Phil
Havinga, Paul
Helmy, Ahmed
Hérault, Thomas
Hernandez, Porfidio
Hoffman, Forrest
Hurfin, Michel
Jain, Mayank
Jajodia, Sushil
Jégou, Yvon
Jha, Shantenu
Jiao, Xiangmin
Johnson, Troy A.
Jorba, Josep
Joseph, Russell
Jugravu, Alexandru
Kale, Laxmikant V.
Kandemir, Mahmut
Karandikar, Abhay
Karl, Wolfgang
Karypis, George
Kavaldjiev, Nikolay
Kaxiras, Stefanos
Kermarrec, Anne-Marie
Keryell, Ronan
Kielmann, Thilo
Kim, Young Jin
Kommareddy, Christopher
Kothari, Nupur
Kumar, Amit
Kwon, Minseok
Labarta, Jesús
Lacour, Sébastien
Lai, An-Chow
Langendoen, Koen
Law, Y.W.
Lee, Sang-Ik
Lee, Seungjoon
Lee, Sheayun
Legrand, Arnaud
Lemarinier, Pierre
Lhuillier, Yves
Libeskind-Hadas, Ran

Lijding, Maria
Lim, Sung-Soo
Lin, Heshan
Li, Xiaolin
Li, Xin
Llosa, Josep
López, Pedro
Lowenthal, Dave
Madavan, Nateri
Maheswaran, Muthucumaru
Majumdar, Shikharesh
Maniymaran, Balasubramaneyam
Marchal, Loris
Margalef, Tomas
Matsuda, Motohiko
Matyska, Ludek
Ma, Xiaosong
Meinke, Jan
Min, Sang-Lyul
Mishra, Arunesh
Mishra, Minal
Mitton, Nathalie
Mitushisa, Sato
Mouchard, Gilles
Moure, Juan Carlos
Mueller, Frank
Naik, Piyush
Nam, Gi-Joon
Nandy, Biswajit
Nieberg, Tim
Oliker, Leonid
Panda, Preeti Ranjan
Pandey, Raju
Parashar, Manish
Peh, Li Shuan
Pérez, Christian
Pham, CongDuc
Pingali, Keshav
Porter, Andrew
Prakash, Rajat
Prasad, Sushil K.
Prasanna, Viktor K.
Preis, Robert
Pu, Calton
Ramamritham, Krithi

Organization XIX

Ranganathan, Partha
Ren, Xiaojuan
Riccardo, Albertoni
Ripoll, Ana
Robert, Yves
Rosenberg, Arnold A.
Sainrat, Pascal
Salodkar, Nitin
Sanyal, Soumya
Scheideler, Christian
Schulz, Martin
Senar, Miguel Angel
Shenai, Rama
Sherwood, Rob
Shi, Zhijie
Sips, H.J.
Sivakumar, Manoj
Sivalingam, Krishna
Siva Ram Murthy, C.
Stenström, Per
Subramani, Sundar
Sundaresan, Karthikeyan
Suppi, Remo
Swany, Martin
Tammineedi, Nandan
Tatebe, Osamu
Temam, Olivier
Thierry, Eric
Tobe, Yoshito
Trigoni, Niki
Trystram, Denis
Tseng, Yu-Chee

Utard, Gil
Vachharajani, Manish
Vadhiyar, Sathish S.
Vallée, Geoffroy
Van der Wijngaart, Rob F.
van Dijk, H.W.
van Gemund, A.J.C.
Vassiliadis, Stamatis
Vetter, Jeff
Villazon, Alex
Wang, Hangsheng
Welzl, Michael
Wieczorek, Marek
Wilmarth, Terry
Wu, Jian
Wu, Yan
Wu, Yunfei
Xu, Jing
Yahyapour, Ramin
Younis, Ossama
Yu, Ting
Yu, Yinlei
Zappala, Daniel
Zelikovsky, Alex
Zhang, Guangsen
Zhang, Hui
Zhang, Qingfu
Zhang, Xiangyu
Zhang, Xiaodong
Zhao, Ming
Zomaya, Albert Y.

Table of Contents

Keynote Addresses

Rethinking Computer Architecture Research
Arvind . 1

Event Servers for Crisis Management
K. Mani Chandy . 3

DIET: Building Problem Solving Environments for the Grid
Frédéric Desprez . 4

The Future Evolution of High-Performance Microprocessors
Norman P. Jouppi . 5

Low Power Robust Computing
Trevor Mudge . 6

Networks and Games
Christos Papadimitriou . 7

Plenary Session - Best Papers

An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P)
Networks

Rohit Gupta, Arun K. Somani . 8

A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks
S. Jayashree, B.S. Manoj, C. Siva Ram Murthy . 19

Session I - Wireless Network Management

Dynamic Topology Construction in Bluetooth Scatternets
Rajarshi Roy, Mukesh Kumar, Navin K. Sharma, Shamik Sural

Efficient Secure Aggregation in Sensor Networks
Pawan Jadia, Anish Mathuria . 40

Optimal Access Control for an Integrated Voice/Data CDMA System
Shruti Mahajan, Manish Singh, Abhay Karandikar . 50

30

XXII Table of Contents

Adaptive Load Balancing of a Cellular CDMA Systems Considering
Non-uniform Traffic Distributions

Kuo-Chung Chu, Frank Yeong-Sung Lin . 60

An Active Framework for a WLAN Access Point Using Intel’s IXP1200
Network Processor

R. Sharmila, M.V. LakshmiPriya, Ranjani Parthasarathi 71

MuSeQoR: Multi-path Failure-Tolerant Security-Aware QoS Routing in
Ad Hoc Wireless Networks

S. Sriram, T. Bheemarjuna Reddy, B.S. Manoj, C. Siva Ram Murthy 81

Session II - Compilers and Runtime Systems

A Tunable Coarse-Grained Parallel Algorithm for Irregular Dynamic
Programming Applications

Weiguo Liu, Bertil Schmidt . 91

A Feedback-Based Adaptive Algorithm for Combined Scheduling with
Fault-Tolerance in Real-Time Systems

Suzhen Lin, G. Manimaran . 101

A Shared Memory Dispatching Approach for Partially Clairvoyant Schedulers
K. Subramani, Kiran Yellajyosula . 111

Data Redistribution Algorithms for Homogeneous and Heterogeneous
Processor Rings

Hélène Renard, Yves Robert, Frédéric Vivien . 123

Effect of Optimizations on Performance of OpenMP Programs
Xinmin Tian, Milind Girkar . 133

Sparse Matrices in Matlab*P: Design and Implementation
Viral Shah, John R. Gilbert . 144

Session III - High-Performance Scientific Applications

Architecture and Early Performance of the New IBM HPS Fabric and Adapter
Rama K. Govindaraju, Peter Hochschild, Don Grice, Kevin Gildea,
Robert Blackmore, Carl A. Bender, Chulho Kim, Piyush Chaudhary,
Jason Goscinski, Jay Herring, Steven Martin, John Houston 156

Table of Contents XXIII

Scheduling Many-Body Short Range MD Simulations on a Cluster of
Workstations and Custom VLSI Hardware

J.V. Sumanth, David R. Swanson, Hong Jiang . 166

Performance Characteristics of a Cosmology Package on Leading HPC
Architectures

Jonathan Carter, Julian Borrill, Leonid Oliker . 176

A Dynamic Geometry-Based Shared Space Interaction Framework for Parallel
Scientific Applications

Li Zhang, Manish Parashar . 189

Earthquake Engineering Problems in Parallel Neuro Environment
Sanjay Singh, S.V. Barai . 200

Parallel Simulation of Carbon Nanotube Based Composites
Jyoti Kolhe, Usha Chandra, Sirish Namilae, Ashok Srinivasan,
Namas Chandra . 211

Session IV - Peer-to-Peer and Storage Systems

Design of a Robust Search Algorithm for P2P Networks
Niloy Ganguly, Geoff Canright, Andreas Deutsch . 222

Efficient Immunization Algorithm for Peer-to-Peer Networks
Hao Chen, Hai Jin, Jianhua Sun, Zongfen Han . 232

Leveraging Public Resource Pools to Improve the Service Compliances of
Computing Utilities

Shah Asaduzzaman, Muthucumaru Maheswaran . 242

Plethora: An Efficient Wide-Area Storage System
Ronaldo A. Ferreira, Ananth Grama, Suresh Jagannathan 252

iSAN - An Intelligent Storage Area Network Architecture
Ganesh Narayan, K. Gopinath . 262

Session V - High-Performance Processors and Routers

Static Techniques to Improve Power Efficiency of Branch Predictors
Tao Zhang, Weidong Shi, Santosh Pande . 274

XXIV Table of Contents

Realistic Workload Scheduling Policies for Taming the Memory Bandwidth
Bottleneck of SMPs

Christos D. Antonopoulos, Dimitrios S. Nikolopoulos,
Theodore S. Papatheodorou . 286

A Parallel State Assignment Algorithm for Finite State Machines
David A. Bader, Kamesh Madduri . 297

A Novel Scheme to Reduce Burst-Loss and Provide QoS in Optical Burst
Switching Networks

Ashok K. Turuk, Rajeev Kumar . 309

Single FU Bypass Networks for High Clock Rate Superscalar Processors
Aneesh Aggarwal . 319

DSP Implementation of Real-time JPEG2000 Encoder Using Overlapped
Block Transferring and Pipelined Processing

Byeong-Doo Choi, Min-Cheol Hwang, Ju-Hun Nam, Kyung-Hoon Lee,
Sung-Jea Ko . 333

Session VI - Grids and Storage Systems

Dynamic Load Balancing for a Grid Application
Menno Dobber, Ger Koole, Rob van der Mei . 342

Load Balancing for Hierarchical Grid Computing: A Case Study
Chunxi Chen, Bertil Schmidt . 353

A-FAST: Autonomous Flow Approach to Scheduling Tasks
Sagnik Nandy, Larry Carter, Jeanne Ferrante . 363

Integration of Scheduling and Replication in Data Grids
Anirban Chakrabarti, R. A. Dheepak, Shubhashis Sengupta 375

Efficient Layout Transformation for Disk-Based Multidimensional Arrays
Sriram Krishnamoorthy, Gerald Baumgartner, Chi-Chung Lam,
Jarek Nieplocha, P. Sadayappan . 386

Autonomic Storage System Based on Automatic Learning
Francisco Hidrobo, Toni Cortes . 399

Table of Contents XXV

Session VII - Energy-Aware and High-Performance
Networking

Broadcast Based Cache Invalidation and Prefetching in Mobile Environment
Narottam Chand, Ramesh Joshi, Manoj Misra . 410

Efficient Algorithm for Energy Efficient Broadcasting in Linear Radio Networks
Gautam K. Das, Sandip Das, Subhas C. Nandy . 420

Characterization of OpenMP Applications on the InfiniBand-Based Distributed
Virtual Shared Memory System

Inho Park, Seon Wook Kim, Kyung Park . 430

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters
Weikuan Yu, Jiesheng Wu, Dhabaleswar K. Panda . 440

Parallel Performance of Hierarchical Multipole Algorithms for Inductance
Extraction

Hemant Mahawar, Vivek Sarin, Ananth Grama . 450

Session VIII - Distributed Algorithms

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks
M.E. Gómez, J. Duato, J. Flich, P. López, A. Robles, N.A. Nordbotten,
T. Skeie, O. Lysne . 462

Fast and Efficient Submesh Determination in Faulty Tori
R. Pranav, Lawrence Jenkins . 474

High Performance Cycle Detection Scheme for Multiprocessing Systems
Ju Gyun Kim . 484

Improved Quality of Solutions for Multiobjective Spanning Tree Problem
Using Distributed Evolutionary Algorithm

Rajeev Kumar, P. K. Singh, P. P. Chakrabarti . 494

Simple Deadlock-Free Dynamic Network Reconfiguration
Olav Lysne, José Miguel Montañana, Timothy Mark Pinkston, José Duato,
Tor Skeie, José Flich . 504

Lock-Free Parallel Algorithms: An Experimental Study
Guojing Cong, David Bader . 516

Author Index . 529

Rethinking Computer Architecture Research

Arvind

Computer Science and Artificial Intelligence Laboratory (CSAIL),
Massachusetts Institute of Technology

arvind@mit.edu

Abstract. The prevailing methodology in architecture research is to
propose a mechanism, incorporate it in some existing execution-driven
software simulator and collect statistics related to some standard bench-
marks to determine the merits of the architectural proposal. In recent
architecture conferences as many as ninety five percent of the papers
have followed this methodology.

Some of the pitfalls of this approach are well known: frequent omis-
sions (either deliberately or inadvertently) of important aspects of the
system, total disregard for implementation complexity, inability to model
time accurately in situations where interactions are nondeterministic and
thus, potentially deeply affected by timing assumptions, and inability to
run realistic applications with large enough data sets, especially in par-
allel systems. Architects of real systems have generally ignored such sim-
ulation studies because of aforementioned weaknesses. They are driven
primarily by constraints such as power and clock speeds, and by com-
patibility with their own older systems. The relative importance of these
constraints changes from time to time and sometimes that can affect the
microarchitecture under consideration. For example, the next generation
technology will offer so much variability in power and speed that it may
require us to reconsider the whole notion of “timing closure”.

There are two new developments that together enables a more “im-
plementation aware” study of microarchitectures. Availability of FPGA’s
with as many as 6-million gates, multiple RISC cores and 256K bytes of
memory make it possible to implement very complex devices (e.g., a com-
plex 64-bit processor) on a single FPGA. Furthermore, high-level synthe-
sis tools, such as Bluespec, make it possible for a small team to generate
RTL for complex devices within a matter of weeks, if not days. A proper
setup with FPGA’s and high-level synthesis tools can enable universities
to architectural studies that are much more rewarding and useful than
pure software simulations. The same high-level synthesis techniques can
also be directed toward ASICs and custom circuits where physical layout
and other backend issues can be considered.

We will illustrate this new style of “implementation aware” research
through several ongoing projects at MIT and CMU.

Biography: Arvind is the Johnson Professor of Computer Science and
Engineering at the Massachusetts Institute of Technology. As the Founder
and President of Sandburst, a fabless semiconductor company, Arvind
led the Company from its inception in June 2000 until his return to

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 1–2, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Arvind

MIT in August 2002. His work at MIT on high-level specification and
description of architectures and protocols using Term Rewriting Systems
(TRSs), encompassing hardware synthesis as well as verification, laid the
foundations for Sandburst and more recently Bluespec Inc. Previously,
he contributed to the development of dynamic dataflow architectures,
and together with Dr R.S.Nikhil published the book “Implicit Parallel
Programming in pH”.

Event Servers for Crisis Management

K. Mani Chandy

California Institute of Technology
mani@cs.caltech.edu

Abstract. Organizations need to respond rapidly to threats and oppor-
tunities in the extended environment. Examples of threats are terrorism,
chemical spills, intrusion into networks, and delayed arrivals of compo-
nents. Opportunities include arbitrage and control of distributed systems
such as the electrical power grid and logistics networks. The increasing
prevalence of sensors such as RFID (radio frequency ID) and Web sites
that offer measured information, coupled with information in databases
and applications allows organizations to sense critical conditions in the
extended environment. A response to a critical condition is to send an
alert to appropriate people or send a message that initiates an applica-
tion. A critical condition is a predicate on the history of global states
of a system. An event server is a software component with sensors, re-
sponders, and computational elements. Computations are incremental
in the sense that computations incorporate each new event in an online
algorithm as opposed to repeatedly computing predicates over the en-
tire history. This talk discusses the problem space, proposes an abstract
mathematical model of the problem, suggests approaches to solutions,
describes an implementation, and relates this work to research in data
stream management systems and rules engines.

Biography: Mani Chandy received his B.Tech from IIT Madras in 1965
and his PhD from MIT in 1969 in Electrical Engineering. He worked in
industry and taught at the University of Texas at Austin and is now
at the California Institute of Technology. He has published papers in
computer performance modeling, distributed systems, program correct-
ness and event systems. He received the IEEE Koji Kobayashi Award
and the CMG Michelson Award for contributions to computer perfor-
mance modeling, and he is a member of the US National Academy of
Engineering.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, p. 3, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

DIET: Building Problem Solving Environments
for the Grid

Frédéric Desprez

LIP Laboratory / GRAAL Project,
CNRS, ENS Lyon, INRIA, Univ. Claude Bernard Lyon, France

Frederic.Desprez@ens-lyon.fr

Abstract. DIET (Distributed Interactive Engineering Toolbox) is a
set of hierarchical components to design Network Enabled Server sys-
tems. These systems are built upon servers managed through distributed
scheduling agents for a better scalability. Clients ask to these scheduling
components to find servers available (using some performance metrics
and information about the location of data already on the network).
Our target architecture is the grid which is highly heterogeneous and
dynamic. Clients, servers, and schedulers are better connected in a dy-
namic (or peer-to-peer) fashion.

In this keynote talk, we will discuss the different issues to be solved
for the efficient deployment of Network Enabled Servers systems on the
grid. These issues include the automatic deployment of components, per-
formance evaluation, resource localization, scheduling of requests, and
data management. See http://graal.ens-lyon.fr/DIET/ for further infor-
mation.

Biography: Frédéric Desprez is a director of research at INRIA and
holds a position at LIP laboratory (ENS Lyon, France). He received is
PhD in C.S. from the Institut National Polytechnique de Grenoble in
1994, his MS in C.S. from the ENS Lyon in 1990, and his habilitation in
2001. His research interests include parallel libraries for scientific com-
puting on parallel distributed memory machines, problem solving envi-
ronments, and grid computing. See http://graal.ens-lyon.fr/∼desprez for
further information.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, p. 4, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Future Evolution of High-Performance
Microprocessors

Norman P. Jouppi

Hewlett Packard,
Palo Alto, USA

norm.jouppi@hp.com

Abstract. The evolution of high-performance microprocessors is fast
approaching several significant inflection points. First, the marginal
utility of additional single-core complexity is now rapidly diminishing
due to a number of factors. The increase in instructions per cycle from
increases in sizes and numbers of functional units has plateaued. Mean-
while the increasing sizes of functional units and cores are beginning to
have significant negative impacts on pipeline depths and the scalability
of processor clock cycle times.

Second, the power of high performance microprocessors has increased
rapidly over the last two decades, even as device switching energies have
been significantly reduced by supply voltage scaling. However future volt-
age scaling will be limited by minimum practical threshold voltages. Cur-
rent high-performance microprocessors are already near market limits of
acceptable power dissipation. Thus scaling microprocessor performance
while maintaining or even reducing overall power dissipation benefit of
appreciable further voltage scaling will prove especially challenging.

In this keynote talk we will discuss these issues and propose likely
scenarios for the future evolution of high-performance microprocessors.

Biography: Norman P. Jouppi is a Fellow at HP Labs in Palo Alto, Cal-
ifornia. From 1984 through 1996 he was also a consulting assistant/assoc-
iate professor in the department of Electrical Engineering at Stanford
University. He received his PhD in Electrical Engineering from Stanford
University in 1984.

He started his contributions to high-performance microprocessors as
one of the principal architects and the lead designer of the Stanford
MIPS microprocessor. While at Digital Equipment Corporation’s West-
ern Research Lab he was the principal architect and lead designer of the
MultiTitan and BIPS microprocessors. He has also contributed to the
architecture and implementation of graphics accelerators, and has con-
ducted extensive research in telepresence. He holds more than 25 U.S.
patents and has published over 100 technical papers. He currently serves
as ACM SIGARCH Chair and is a Fellow of the IEEE.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, p. 5, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Low Power Robust Computing

Trevor Mudge

University of Michigan, Ann Arbor
tnm@eecs.umich.edu

Abstract. In a recent speech Intel founder Andrew Grove argued that
Moore’s law will not slow down for at least a decade. By that time, in-
tegrated circuits will have feature sizes of 30 nanometers, allowing for
integration of billions of devices on a single die and enabling unforeseen
computational capabilities. However, with growing levels of integration,
power densities will also skyrocket to hundreds of Watts. In fact, Grove
cites power consumption as a major show stopper with off-state current
leakage “a limiter of integration.”

In addition to the power consumption crisis, aggressively scaled fea-
ture sizes also result in increased process variability and poor reliability.
Hence, Grove mentions that at 30nm design will enter an era of “prob-
ablisitic computing,” with the behavior of logic gates no longer being
deterministic. To take advantage of scaling, it will be necessary to com-
pute in the presence of various types of errors.

Our talk will present recent results in robust low power computing.
The perspective will be microarchitectural: what can the microarchitect
do to reduce the dependency on power and improve robustness. We will
discuss recent academic and commercial proposals to limit power con-
sumption. Finally, we will review some techniques to improve robustness
based on recent ideas in timing speculation exemplified by our Razor
research.

Biography: Trevor Mudge is the Bredt Family Professor of Electri-
cal Engineering and Computer Science at the University of Michigan.
He received a Ph.D. in computer science from the University of Illinois,
Urbana-Champaign. His research interests include computer architec-
ture, CAD, and compilers. He has chaired over 30 theses and authored
over 250 articles in these research areas. In addition, he is the founder of
Idiot Savants, a chip-design consultancy. He is a Fellow of the IEEE and
a member of the ACM, the IEE, and the British Computer Society.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, p. 6, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Networks and Games

Christos Papadimitriou

University of California, Berkeley
christos@cs.berkeley.edu

Abstract. The Internet is the first computational artifact that was not
designed by a single entity, but emerged from the complex interaction of
many. As a result, it must be approached as a mysterious object, akin
to the universe, the brain, the market, and the cell, to be understood
by observation and falsifiable theories. The theory of games promises to
play an important role in this endeavor, since the entities involved in the
Internet are interacting selfish agents in various and varying degrees of
collaboration and competition.

We survey recent work by the speaker and collaborators considering
networks and protocols as equilibria in appropriate games, and trying to
explain phenomena such as the power law distributions of the degrees
of the Internet topology in terms of the complex optimization problems
faced by each node.

Biography: Christos H. Papadimitriou is C. Lester Hogan Professor
of Computer Science at UC Berkeley. Before Berkeley he taught at Har-
vard, MIT, Athens Polytechnic, Stanford, and UCSD. He has written
four textbooks and many articles on algorithms, complexity, and their
applications to optimization, databases, AI, economics, and the Internet.
He holds a PhD from Princeton, and honorary doctorates from ETH
(Zurich) and the University of Macedonia (Thessaloniki). He is a mem-
ber of the American Academy of Arts and Sciences and of the National
Academy of Engineering, and a fellow of the ACM. His novel Turing (a
novel about computation), was published by MIT Press in 2003.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, p. 7, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Incentive Driven Lookup Protocol for
Chord-Based Peer-to-Peer (P2P) Networks�

Rohit Gupta and Arun K. Somani

Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011, USA

{rohit, arun}@iastate.edu

Abstract. In this paper we describe a novel strategy for carrying out lookups in
Chord-based peer-to-peer (P2P) networks, wherein nodes are assumed to behave
selfishly. This is in contrast to the traditional lookup schemes, which assume that
nodes cooperate with each other and truthfully follow a given protocol in carrying
out resource lookups. The proposed scheme also provides efficient and natural
means for preventing free-riding problem in Chord without requiring prior trust
relationships among nodes. In addition, we evaluate the performance of Chord for
providing routing service in a network of selfish nodes and prove that it has good
structural properties to be used in uncooperative P2P networks.

1 Introduction

Almost all the current research in P2P systems is based on a cooperative network model.
It is generally assumed that although there can be rogue nodes in a system, most of the
nodes are trustworthy and follow some specific protocol as suggested by the network
designer. We believe that such assumptions do not always hold good in large-scale open
systems and have to be done away with in order to make P2P systems reliable, robust, and
realize their true commercial potential. Moreover, it has been pointed out that free-riding
is one of the most significant problems being faced by today’s P2P networks [2].

We consider a Chord [1] based P2P network and describe a novel strategy for car-
rying out lookups in such networks. Our proposed scheme provides an efficient and
natural means for preventing free-riding problem in Chord without requiring prior trust
relationships among nodes. Therefore, it incurs low overhead and is highly robust, and
unlike other schemes it does not rely on any centralized entity or require specialized
trusted hardware at each node. The protocol proposed here is essentially an incentive
driven lookup protocol that ensures that reward received by intermediate nodes and re-
source provider is maximized by following the protocol steps. It is in contrast to other
lookup schemes, which assume that nodes cooperate with each other in finding data
and faithfully follow a given protocol for carrying out resource lookups irrespective of
whether they are currently overloaded or not, for example.

� The research reported in this paper is funded in part by Jerry R. Junkins Chair position at Iowa
State University.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 8–18, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks 9

We evaluate the performance of Chord for providing routing service in a network of
selfish nodes. We show that in a large network, unless nodes have privilege information
about the location of network resources, following Chord is a good strategy provided
that everyone else also follow the Chord protocol.

The paper is structured as follows. Section 2 is on related work, Section 3 describes the
network model. Section 4 gives a detailed description of the proposed lookup protocol.
Section 5 presents a resource index replication strategy that is useful in dealing with
selfish nodes in Chord. Section 6 explains why Chord is a good protocol to be used in a
network with selfish nods. We conclude the paper in Section 7.

2 Related Work

The need for developing protocols for selfish agents (nodes) in P2P systems has often
been stressed before (see [3, 4]). The research in [5, 6] provides solution to avoid free-
riding problem in P2P networks. The basic approach in all of these is to make sure that
nodes indeed share their resources before they themselves can obtain services from a
network. Also, most of these solutions rely on self-less participation of groups of trusted
nodes to monitor/police the activities of individual nodes, and ensure that everyone
contributes to the system.

To the best of our knowledge, none of the existing solutions that deal with the problem
of free-riding in P2P networks also address the more basic question of why nodes would
route messages for others. Since these nodes belong to end users, they may in order to
conserve their bandwidth and other resources, such as buffer space, memory etc., may
drop messages received for forwarding.

The problem of selfish routing has been encountered and addressed in the context of
mobile ad-hoc networks (see [7, 8]). Some of these proposals can also find application
in P2P networks.

3 Network Model

The model of network assumed here is a Chord [1] based P2P network. The nodes
are assumed to be selfish. By selfish we mean that nodes try to maximize their profits
given any possible opportunity. The profit from a transaction (or an activity) is equal
to the difference between the reward that a node earns and the cost that it incurs by
participating in the transaction. The reward can be anything that is deemed to have
value, the possession of which adds to a node’s utility.

An example of a transaction is a lookup process, i.e. the process of searching for and
downloading a desired resource object. The cost in the form of bandwidth, memory etc.
that a node x incurs by participating in a transaction is referred to as its marginal cost
(MCx). The cost incurred by server S (and also the intermediate nodes) increases in
proportion to the amount of traffic it is handling and any request offering less than its
current MCS value is not fulfilled.

We assume that for each resource there is a single server, i.e. caching and replication
of data does not take place. Nodes that store the index of a resource are called the terminal
nodes for that resource. For resource R these nodes are denoted by TRi ∀i ∈ {1, . . . , k},

10 R. Gupta and A.K. Somani

where k is the index replication factor. The terminal nodes maintain a mapping (i.e. an
index) from the resource name, represented by R, to the IP address of the server that
provides the resource. The terminal nodes are the Chord successors of the mappings of a
resource onto the Chord network. The method by which these mappings are determined
is explained in Section 5.

Unless otherwise specified, all message communication is assumed to provide mes-
sage non-repudiation. Our protocol relies on message non-repudiation to ensure that
nodes do not go back on their commitment as suggested by the content of the messages
sent by them. We assume that there is a mechanism in place to punish nodes if it can be
proven that they did not fulfill their commitments.1

4 Incentive Driven Lookup Protocol

We now describe how routing of lookup messages is performed when nodes behave
selfishly and how prices for resources are set with minimum additional overhead on the
system. To simplify our discussion, we take an example of a lookup process and see how
it is carried out under the given protocol.

4.1 Parallel Lookup Towards the Terminal Nodes

The client (C) before initiating the lookup process estimates its utility (UC
R) of the

resource (R) to calculate the maximum price that it can offer for the resource. Since
the locations of the resource indices can be calculated by using the same mechanism as
used by the server (S) to store them, C sends a separate lookup message towards each
of them. Together these parallel lookup messages can be considered as constituting a
single lookup process and the routing of an individual lookup message is done using the
Chord routing protocol.

Each lookup message Msglookup contains the following information, as included
by the client - address of one of the k terminal nodes (TRi), the resource ID (R), the
maximum price offered (PC), the marginal cost (MCtotal), the request IDs (Reqidprivate

and Reqidpublic).
Reqidpublic identifies the lookup process such that S (and intermediate nodes) on

receiving multiple lookup messages knows that the messages pertain to the same lookup
process. Thus, the same value of Reqidpublic is included in all the lookup messages.
On the other hand, a unique value of Reqidprivate is included in each of the lookup
message. In Section 4.3, we illustrate the significance of Reqidprivate. MCtotal value is
the sum of C’s marginal cost MCC and the marginal cost of the next hop neighbor (also
called the successor) to which the message is forwarded.2 C before sending the lookup

1 In an enterprise computing environment there might be a central authority one can report to
in order to identify and punish the cheating node. For large-scale open systems one can use
reputation mechanisms to ensure that cheating nodes are accurately identified and isolated from
receiving services.

2 The term "successor" as used here is the same as used in the description of the Chord protocol,
where it referred to the node which immediately succeeds an ID value in a Chord ring or
network. Also, the term "predecessor" refers here to a previous hop node along the lookup path.

An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks 11

message inquires its successor about its marginal cost. The received value is added by
C to its own marginal cost and stored in MCtotal. Likewise, each intermediate node on
receiving the lookup message updates the MCtotal value by adding to it the marginal
cost of its successor.

Intermediate nodes for all the lookup requests route the received lookup messages
to the next hop neighbors and this process continues till the messages reach the desired
terminal nodes. Since the terminal nodes store the IP address of S, they contact S in order
to obtain the resource. S receive k such requests and from the Reqidpublic values knows
that all the requests pertain to the same lookup process. S then holds a second price
sealed-bid auction (also called Vickrey auction [9, 3]) with all the terminal nodes as the
bidders. S provides the resource to the terminal node that offers it the highest price.

4.2 Bidding for the Resource by the Terminal Nodes

In Vickrey auction, the highest bidder wins the auction, but the price that it has to pay is
equal to the second highest bid. Vickrey auction has several desirable properties, such
as existence of truth revelation as a dominant strategy, efficiency, low cost etc. Vickrey
auction in its most basic form is designed to be used by altruistic auctioneers, which
are concerned with overall system efficiency or social good as opposed to self-gains.
Self-interested auctioneer is one of the main reasons why Vickrey auction did not find
widespread popularity in human societies [10].

Since S behaves selfishly and tries to maximize its own profit, the auction process
needs to ensure the following.

– Selecting the highest bidder is the best strategy for S.
– The price paid by the highest bidder is indeed equal to the second highest bid, i.e. S

should reveal true second highest bid to the highest bidder.
– Collusion among S and the bidders should not be possible.

In view of the above requirements, we provide a two-phase secure Vickrey auction
protocol.

1

1

1

2

2

23

3

3

T

T

T

T

Neighbors of the client node

Terminal nodes where the resource index (of resource R) is replicated

Resource index replication factor = k = 4

Size of Chord ID in number of bits = m (=5)

Client node

Server node (for resource R) R1

R2

R4

R3

C

S

Fig. 1. Lookup message propagation in the incentive driven lookup protocol

In summary, the incentive driven lookup strategy involves sending lookup messages
to all the terminal nodes of a resource, such that at most one message is sent out for

12 R. Gupta and A.K. Somani

all the terminal nodes that go through the same next hop neighbor (the terminal nodes
selected is one which is closest to that neighbor). For example, in Fig. 1, C sends a single
lookup request message towards TR3 instead of sending towards both TR3 and TR4 . Due
to the nature of the Chord routing protocol, with high probability, the number of hops
required to go from C to TR3 is less than or equal to that required for going to TR4 .
Therefore, the number of terminal nodes that are contacted during a lookup process may
be less than the total number of terminal nodes for a resource. However, for simplicity,
we assume that all the terminal nodes for a resource are contacted and participate in the
lookup process.

.......

.......

.....

Client node

Intermediate nodes along a request path

Server node
Terminal nodes that participate in the auction

C S

Fig. 2. Formation of request chains due to the propagation of lookup requests

Fig. 2 depicts an equivalent representation of Fig. 1 and shows different request
chains that are formed due to the parallel lookup process. The request chain containing
the highest bidder, i.e. the winning terminal node, is called the winning request chain
(WRC). In subsequent discussion, we denote the highest and second highest bids by M1
and M2, respectively. The price offered by a terminal node to S is equal to PC−MCtotal.
The amount of profit made by the WRC is equal to M1−M2. This profit is shared among
the nodes of theWRC in proportion to their marginal costs, i.e. nodes with higher marginal
costs get a higher proportion of the total profit, and vice versa.

4.3 Secure Vickrey Auction to Determine Resource Prices

S employs a two-phase Vickrey auction to select the highest bidder and determine the
price at which the resource is provided. In the first phase, the bidders send encrypted
copies (E(randKeyi; bi)) of their bids in message Msgbid to S. Here E(randKeyi; bi)
is the encryption of bid value bi of terminal node TRi using a randomly chosen secret key
randKeyi. Each message Msgbid also includes Reqidpublic value received by a terminal
node, so that S can determine that the bids pertain to the same lookup process. The
received encrypted bids are sent by S back to all the bidders in message Msgbid−reply .
Since after receiving Msgbid−reply , the bidders have encrypted copies of all the bids
(total k such bids), S is unable to (undetectedly) alter existing or add fake bids.

In the next and last phase of the auction, each bidder after receiving the message
Msgbid−reply , sends its secret key in message Msgkey to S. The received key values
are now sent by S back to all the bidders in message Msgkey−reply . At the end of this

An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks 13

phase, S and all the bidders are able to open the encrypted bids and find out about the
highest and second highest bids.

S then sends a message Msgcert to the winning terminal node, denoted by TRW RC
,

certifying that it has won the auction. The received certificate is forwarded along the
reverse path, i.e. opposite to that followed by the lookup request, till it reaches C. C then
finds out that the resource has been looked up and is available at a price within its initial
offer of PC . Msgcert contains the following information - the highest bid M1, the second
highest bid M2, the total marginal cost MCtotal (received by S in Msgbid), and the IP
addresses and Chord IDs (each Chord ID is represented by m number of bits, which is
also the size of the routing table in Chord) of all the terminal nodes that participated
in the auction. The terminal nodes are contacted by C to verify the auction results, and
the Reqidprivate values initially sent in the lookup messages are used to authenticate
the terminal nodes. (Note that Reqidprivate values are not sent by the terminal nodes to
S in Msgbid). In [11] we provide a detailed analysis of the robustness of the proposed
lookup protocol, including the various threat models it is designed to withstand.

The information in messages Msgcert and Msglookup allow the intermediate nodes,
including TRW RC

, to calculate their reward for being part of the WRC.3 The knowledge
of the auction result also enables C to determine the price it finally has to pay for R. The
calculation of exact payoff values are discussed below.

4.4 Rewarding Nodes of the WRC

Msgcert includes the total marginal cost value MCtotal of all the nodes in the WRC.
This information along with the highest and second highest bids determines each WRC
node’s payoff. For example, node x’s payoff Payx is calculated as follows.

Payx = MCx + (
MCx

MCtotal
∗ (M1 −M2)) (1)

The amount received by S is equal to M2 (> MCS). The profit share of C, i.e. the por-
tion of its initial offer that it saves or gets to keep, is similarly calculated as given below.

ProfitC = (
MCC

MCtotal
∗ (M1 −M2)) (2)

C after keeping its profit share gives the remaining, i.e. UC
R − ProfitC , to its suc-

cessor. The successor node in turn after keeping its payoff gives the remainder to its
successor, and so on.

5 Resource Index Replication

The proposed resource pricing scheme utilizing Vickrey auction is based on competition
among different chains of nodes attempting to forward the lookup request and delivering
the resource back to the client. Higher the competition among the nodes is (i.e. more

3 The possession of messages Msgcert and Msglookup serves as a contract between a node and
its predecessor regarding the reward that it is entitled to receive (from the predecessor).

14 R. Gupta and A.K. Somani

disjoint the request chains are), higher is the robustness of the pricing scheme. If normal
Chord index replication is used, i.e. storing the resource index values at the k Chord
successors of the ID where the resource hashes to, then with high probability lookups to
all these replicas pass through a single (or a small group) node. Such a node can easily
control the lookup process and charge arbitrarily high payoffs for forwarding the requests.
To avoid such a monopolistic situation and ensure fair competition in setting prices, we
propose that resource indices be replicated uniformly around the Chord network at equal
distances from each other. In other words, resource Chord ID mappings should span the
entire Chord ID space; this ensures that the lookup paths to different index replicas
are maximally disjoint, and are not controlled by any single or a group of small nodes.
Below we give a mechanism for determining the location for storing index replicas in
the network.

If resource R hashes to Chord ID RI (i.e. the output of the hash function, whose
input ID is R, is RI),4 then the k resource index replicas map to the following Chord IDs.

RIRi
= (RI +

2m

k
∗ (i− 1))mod(2m), ∀i ∈ {1, . . . , k} (3)

The index values are then stored at the Chord successors (the terminal nodes) of the
IDs represented by RIRi

∀i ∈ {1, . . . , k}. The intent of replication in Chord is to simply
obtain fault-tolerance, while in our protocol the intent is to obtain both fault-tolerance
as well as fair pricing. Uniformly spacing the resource index ensures that the lookup
paths for different index copies are as node disjoint as possible. This is evident from the
results of Fig. 3, where we find that the replication strategy described above decreases the
probability that the same nodes are included in multiple paths to reach the index replicas.
Similar results would be obtained for a network of any size and any replication factor.

Fig. 3. Average number of repetitions of intermediate nodes that appear in multiple lookup paths
to the resource index replica copies. Size of the network, N = 500

6 Selfish Network Topology

So far we have assumed that nodes form a Chord network and the lookup messages
are forwarded in accordance with the Chord routing protocol. Now we investigate how

4 The hash function used for computing resource Chord ID mapping is the same as that used for
determining Chord IDs of the nodes.

An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks 15

correct is the assumption that nodes truthfully follow the Chord protocol. Since nodes
are selfish and join a network in order to obtain resources and maximize their profits,
the manner in which they select neighbors has a bearing on how successful they are
in achieving these goals. This argument definitely holds true for our protocol, since
intermediate nodes take their cut (equal to their marginal costs) before forwarding a
lookup request. Thus, fewer intermediate nodes generally translate to higher profits for
the client.

1
n11

n12

n13

n14

n15

1

n11

n12

n13

n14

n15

h1

h2

h3

h1

(a)

(b)

(c)

Client node

Client using the Chord routing approach Client using the Greedy routing approach

Terminal node for resource R

(d)

}N

K = k/m

N/m=

Number of nodes in the given region =

Number of replicas in the given region =

Total number of nodes in the network = N

Resource index replication factor = k

nij is the j

hi is the i

N

K

Size of Chord ID in number of bits = m (= 5)

h2

th

th hop

neighbor of node i
Neighbors of the client node

Fig. 4. Comparison of Chord and the greedy routing approach

A node can make higher profits by being close to terminal nodes of as many different
resources that it requires as possible. However, if the location of those terminal nodes
is not known beforehand, then it might be advantageous for a node to greedily choose
neighbors around the Chord network distributed at equal distances from each other.
This strategy seems appropriate, especially since the resource indices are also uniformly
distributed around the network. Consider the network shown in Fig. 4 in which node 1
fill the m (= 5) entries in its routing table as per the greedy routing approach instead.
So if node 1 needs to send a message to the terminal node for resource R, it can do it
in two hops as opposed to three hops required using Chord. In general, one can see that
in at least half of the cases, when the resource to be looked up has Chord ID mapping
in region (a), the greedy routing scheme guarantees that the number of hops required to
reach the corresponding terminal node is less than (or at most equal to) what is required
by Chord. (This assumes that the network size, N, is large and the nodes are uniformly
distributed around the Chord network.) Even for the other regions, the greedy approach
appears to perform comparably to Chord. This is because node 1 always first sends a
lookup message to its neighbor that is closest (and with lower Chord ID) to the resource
Chord ID mapping, and from there on the message is routed using the Chord protocol.

From the above discussion it appears that nodes do not have motivation to follow
the Chord protocol, and can make higher profits by utilizing the fact that other nodes
follow Chord. In such a scenario the whole routing service would break down, i.e.
instead of O(logN) routing provided by Chord, O(N/k) hops would be required due
to the resulting sequential search for the resource indices. However, minimization of the
number of routing hops by the greedy approach when everyone else follow Chord is not
always correct. We prove below that in a large network, on average the performance of
greedy routing approach is no better than that provided by Chord.

16 R. Gupta and A.K. Somani

Theorem 1. In a large network, on average the greedy routing approach for any node
(say node 1 in Fig. 4) requires the same number of hops as that required by the Chord
routing approach.

Proof. For the ease of discussion, we assume that the routing table size is fixed for all
the nodes in both the approaches and is equal to m (same as it is in Chord).

In Chord, the average number of hops required to reach any node from a given node
is 1/2 ∗ (logN). Therefore, the average number of hops required to reach any one of the
given set of n nodes (with Chord IDs in the range 0−2m−1) is 1

2 ∗log(N/2
n/2) = 1

2 ∗log(N
n).

These n nodes are assumed to be located at equal distances from each other. Using these
results we obtain the following values.

Average number of hops required by the greedy routing approach to reach one of the
k terminal nodes: The neighbors (i.e. the entries in the routing table) of node 1 in this
case completely span the entire Chord ID space, i.e. they are uniformly located at equal
distances from each other around the Chord network. Therefore, node 1 requires the
same number of average hops to reach any of the terminal nodes. (The client first sends
the request to its neighbor, which then follows the Chord routing protocol to further
route the request.)

Thus, the average number of hops taken by the greedy routing approach to reach any
resource index replica are given as follows.

(1 +
1
2
∗ log(

N

k
)) (4)

Average number of hops required by the Chord routing protocol to reach one of the
k terminal nodes: Now we calculate the average number of hops required to reach a
resource index replica when node 1 (and everyone else) follows the Chord protocol. It
will be (1+ 1

2 ∗log(N
k)) when the terminal node is located in region (a), (1+ 1

2 ∗log(N
k))

when in region (b)5, and so on (up to m such terms).
Therefore, the total average hops needed to reach any of the resource index replicas

are given as follows:

(1 +
1
2
∗ log(

N

k
)), (5)

which is same as the number of hops given by Equation 4.
The results in Fig. 5 from our simulations also confirms the fact that a node cannot

benefit by selecting the greedy routing strategy. Fig. 5 gives the difference in the observed
number of hops when greedy routing is used as opposed to normal Chord routing. We
did simulations for varying number of total nodes and averaged the number of hops for
several lookups performed for each network size. As can be seen, there is a difference
of at most one hop in the two routing strategies and this is true for both small as well as
large network sizes. Thus, a node does not gain an advantage by not following Chord.

The following lemma follows directly from this result.

Lemma 1. If others in a large network follow the Chord protocol, it is a good strategy
to do the same in order to maximize one’s payoff.

5 (1 + 1
2 ∗ log(N/4

k/4)).

An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks 17

Fig. 5. Comparison of Chord and the greedy routing approaches with regards to the hop-length

7 Conclusion

In this paper we have presented an incentive driven lookup protocol for searching and
trading resources in Chord-based P2P networks. Our proposed protocol takes selfish
behavior of network nodes into account. We used Vickrey auction for setting resource
prices in P2P networks and described how it can implemented in a completely distributed
and untrusted environment.

We also investigated the applicability of Chord network topology in forming con-
nectivity among selfish nodes. We proved that in the absence of privilege network infor-
mation, the best strategy for a node is to follow Chord, provided that everyone else also
follow the Chord protocol.

References

1. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Protocol for Internet Applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, 2001.

2. A. Eytan, and A. H. Bernardo. Free Riding on Gnutella. First Monday, vol. 5, No. 10, Oct.
2000.

3. N. Nisan. Algorithms for Selfish Agents: Mechanism Design for Distributed Computation.
In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, volume 1563, Springer, Berlin, pages 1-17, 1999.

4. D. Geels, and J. Kubiatowicz. Replica Management Should Be A Game. In Proceedings of
the SIGOPS European Workshop, 2002.

5. V. Vishumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A Secure Economic Framework
for Peer-to-Peer Resource Sharing. In Proceedings of the 2003 Workshop on Economics of
Peer-to-Peer Systems, Berkeley CA, 2003.

6. S. M. Lui, K. R. Lang, and S. H. Kwok. Participation Incentive Mechanism in Peer-to-Peer
Subscription Systems. In Proceedings of the 35th Annual Hawaii International Conference
on System Sciences (HICSS’02), vol. 9, January 2002.

7. S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, cheat-proof, credit-based system for
mobile ad-hoc networks. In Proc. of IEEE INFOCOM, vol. 3, pages 1987-1997, March 2003.

8. L. Buttyan and J. P. Hubaux. Stimulating cooperation in self-organizing mobile ad-hoc nert-
works. In Proc. of ACM Journal for Mobile Networks (MONET), special issue on Mobile Ad
Hoc Networks, summer 2002.

18 R. Gupta and A.K. Somani

9. W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of Finance,
pages 8-37, 1961.

10. T. Sandholm. Limitations of the Vickrey Auction in Computational Multiagent Systems. In
Proceedings of the 2nd International conference on Multi-Agent Systems, pages 299-306.
Kyoto, Japan, December 1996.

11. Technical Report. http://ecpe.ee.iastate.edu/dcnl/DCNLWEB/Publications/pub-research
tech-rep.htm

A Novel Battery Aware MAC Protocol for
Ad Hoc Wireless Networks

S. Jayashree, B. S. Manoj, and C. Siva Ram Murthy�

Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, India

{sjaya, bsmanoj}@cs.iitm.ernet.in, murthy@iitm.ernet.in

Abstract. A major issue in the energy-constrained ad hoc wireless networks is
to find ways that increase their lifetime. The communication protocols need to be
designed such that they are aware of the battery state. They should also consider
the presence of varying sizes and models of the nodes’ batteries. Traditional MAC
protocols of these networks are designed considering neither the state nor the char-
acteristics of the batteries of the nodes. Major contributions of this paper are: (a) a
novel distributed heterogeneous Battery Aware MAC (HBAMAC) protocol, that
takes benefit of the chemical properties of the batteries and their characteristics, to
provide fair node scheduling and increased network and node lifetime through uni-
form discharge of batteries, (b) theoretical analysis, using discrete time Markov
chains, for batteries of the nodes, and (c) a thorough comparative study of our
protocol with IEEE 802.11 and DWOP (Distributed Wireless Ordering Protocol)
MAC protocols.

1 Introduction

The nodes of an ad hoc wireless network, a group of uncoordinated heterogeneous nodes
(Heterogeneous nodes, in this paper, refer to a set of nodes with varying battery models)
that self organize themselves to form a network, have constrained battery resources. In
addition, in the case of heterogeneous networks, traditional protocols perform poorly as
they do not consider the underlying behavior of the batteries. In such scenarios, there
exists a need for battery (energy) aware protocols at all the layers of the protocol stack. On
the other hand, ad hoc wireless networks, with characteristics such as the lack of a central
coordinator and mobility of the nodes (as in the case of battle-field networks), require
nodes with a very high energy reserve. However, advances in the battery technologies
are negligible when compared to the recent advances that have taken place in the field of
mobile computing and communication. The increasing gap between power consumption
requirements and energy density (energy stored per unit weight of a battery) tends to
increase the size of the batteries and hence increases the need for energy management
(energy-aware design of ad hoc networks and their protocols, which efficiently utilize
the battery charge of the nodes and minimize the energy consumption). The lifetime

� Author for correspondence. This work was supported by the Department of Science and Tech-
nology, New Delhi, India.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 19–29, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

20 S. Jayashree, B.S. Manoj, and C. Siva Rama Murthy

of ad hoc networks can be defined as the time between the start of the network (when
the network becomes operational) to the death of the first node. We use this definition
because in ad hoc networks, the death of even a single node may lead to partitioning of
the network and hence may terminate many of the ongoing transmissions.

The rest of the paper is organized as follows. Section 2 provides an overview of
battery characteristics and existing work in this area. In Section 3, the description of the
proposed HBAMAC protocol is provided and Section 4 presents a theoretical analysis
for the batteries. In Section 5, we present the simulation results and a comparative study
of theoretical and simulation results. Finally, Section 6 summarizes the paper.

2 Overview of Battery Characteristics and Related Work

A battery consists of an array of one or more electro-chemical cells. It can be character-
ized either by its voltages (open circuit, operating, and cut-off voltages) or by its initial
and remaining capacities. The behavior of the batteries is governed by the following two
major chemical effects.

Rate and Recovery Capacity Effects: As the intensity of the discharge current in-
creases, an insoluble component develops between the inner and outer surfaces of the
cathode of the batteries. The inner surface becomes inaccessible as a result of this phe-
nomenon, rendering the cell unusable even while a sizable amount of active materials
still exists. This effect termed as the rate capacity effect depends on the actual capacity
of the cell and the discharge current. The recovery capacity effect is concerned with the
recovery of charges under idle conditions. Due to this effect, on increasing the idle time
of the batteries, one may be able to completely utilize the theoretical capacity of the
batteries.

Battery Capacities: The amount of active materials (the materials that react chemically
to produce electrical energy when battery is discharged and restored when battery is
charged) contained in the battery refers to its theoretical capacity (T) and hence total
number of such discharges cannot exceed the battery’s theoretical capacity. Whenever
the battery discharges, the theoretical capacity of the battery decreases. Nominal (stan-
dard) capacity (N) corresponds to the capacity actually available when the battery is
discharged at a specific constant current. Whenever the battery discharges, nominal ca-
pacity decreases, and increases probabilistically as the battery remains idle (also called
as recovery state of the battery). This is due to the recovery capacity effect. The energy
delivered under a given load is said to be the actual capacity of the battery. A battery
may exceed the actual capacity but not the theoretical capacity. This is due to the rate
capacity effect. By increasing the idle time one may be able to utilize the maximum
capacity of the battery. The lifetime of a battery is the same as its actual capacity.

Battery Models: Battery models depict the characteristics of the batteries used in real
life. The following battery models are discussed in [1]. The authors of [1] summarize
the pros and cons of each of them: Analytical models, Stochastic models, Electric circuit
models, and Electro-chemical models.

A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks 21

Recent work in [2] and [3] suggest that a proper selection of power levels for nodes
in an ad hoc wireless network leads to power saving. The authors of [4] have shown
that the pulsed discharge current applied for bursty stochastic transmissions improves
the battery lifetime than the constant discharge. The authors of [5] have assumed each
node to contain a battery pack with L cells and have proposed three battery scheduling
policies for scheduling them. In [6], Kanodia et al. proposed DWOP, a MAC scheduling
protocol which tries to provide, for the nodes of the network, a fair share access to the
channel. Since this protocol schedules the nodes in a round-robin fashion, it introduces
indirectly a uniform discharge of the batteries for their nodes. However, the authors do
not consider the state of the battery into the scheduling process. In our earlier work [7],
we have proposed a battery aware MAC protocol, BAMAC(k), for homogeneous ad hoc
wireless networks, which uses a round-robin scheduling of the nodes to attain a uniform
discharge of their batteries and hence an increased lifetime.

3 Our Work

In this paper, we propose a novel heterogeneous MAC protocol, HBAMAC, that tries to
utilize the battery in an efficient manner. We also show how battery awareness influences
throughput, fairness and other factors that describe the performance of the network.
Existing MAC protocols do not consider the nodes’ battery state in their design. While
our earlier work in [7] provides a battery aware MAC protocol for homogeneous ad hoc
networks, to the best of our knowledge, there has been no such reported work till date
for the heterogeneous ad hoc wireless networks. In this paper, we propose a novel
distributed battery aware MAC scheduling scheme, where we consider nodes of the
network, contending for the common channel, as a set of heterogeneous batteries and
schedule the nodes in order to provide a uniform discharge of their batteries. The key
idea behind our protocol lies in calculating the back-off period for the contending nodes
which can be stated as follows: “higher the remaining battery capacity, lower the back-
off period”. That is, a node with higher remaining battery charge backs-off for a longer
duration than the one with lower battery charge. This ensures a uniform discharge of
batteries. The basic principle behind HBAMAC protocol is to provide proportionally
more number of recovery slots (the minimum amount of time required for an idle battery
to recover one charge) for the nodes with lesser battery recovery capacity effect than
those with higher recovery capacity. We now discuss this protocol in detail.

3.1 HBAMAC

In real life, end users (mobile nodes) of the ad hoc wireless network may have hetero-
geneous nodes, which may vary in voltages, recovery capacity effect, current rating,
lifetime, operational environment, and weight. We model the heterogeneity based on
voltage and recovery capacities. Traditional MAC protocols which assume the nodes
to behave in a homogeneous manner may perform poorly in the presence of heteroge-
neous nodes. We, in this paper, propose HBAMAC protocol which extends the basic
BAMAC(k) protocol [7] to work in the presence of heterogeneous nodes. As explained
earlier, on increasing the idle time of the battery, the whole of its theoretical capacity can

22 S. Jayashree, B.S. Manoj, and C. Siva Rama Murthy

be completely utilized. Equation 1 (explained later in this section) clearly shows that this
effect will be higher when the battery has higher remaining capacity and decreases with
decrease in the remaining battery capacity. Thus, HBAMAC protocol tries to provide
enough idle time for the nodes of ad hoc wireless networks by scheduling the nodes in an
appropriate manner. It tries to provide uniform discharge of the batteries of the nodes that
contend for the common channel. This can be effected by using a round-robin scheduling
(or fair-share scheduling) of these nodes if the nodes are homogeneous. However, in the
case of heterogeneous battery scheduling, a different strategy has to be adopted to attain
a uniform discharge of batteries. We now give a brief description of the BAMAC(k)
protocol and the variations introduced in HBAMAC.

In BAMAC(k) protocol, to attain a round-robin scheduling of the nodes in a dis-
tributed manner, each node maintains a battery table that contains information about the
remaining battery charge of each of its two-hop neighbor nodes. The entries in the table
are arranged in the non-increasing order of the remaining battery charges. The RTS,
CTS, Data, and ACK packets carry the following information: remaining theoretical (in
terms of remaining battery voltage) and nominal capacities of the battery and the time of
last usage of the battery (the time at which the battery underwent its last discharge) of the
node that originated the packet. The neighbor nodes, on listening to these packets, make
a corresponding entry in their battery table. The objective of the back-off mechanism
used in BAMAC protocol is to provide a near round-robin scheduling of the nodes. The
back-off period is given by

back− off = Uniform[0, (2x × CWmin)− 1]× rank × (Tt + TSIFS + TDIFS) .

R(N ,T)
i i

tk x T t Tt(n−1) x k x T k x

φ(Τ)iφ(Τ)i

0.0

Ti

0.0200 to 0

200 to 100

100 to 0

Even node
addresses

addresses
Odd node

Condition

0.5

200 to 196

195 to 101

100 to 6

5 to 0

0.0025

0.0

0.008

15.6

Ti

Time

Time

V
ol

ta
ge

C
ur

re
nt

Recovery effect

(a)

Discharge

(b) (c)

Fig. 1. Illustration of battery discharge of nodes using BAMAC

where CWmin is the minimum size of the contention window and rank is the position
of that entry in the battery table of the nodes which are arranged based on the following
rule: “The battery table is arranged in descending order of its theoretical capacity of the
nodes. Any tie, that arises, is broken by choosing the one with higher nominal capacity
and then by choosing the one with least value for the time of last usage. Further ties are
broken randomly”. TSIFS and TDIFS represent the short inter-frame spacing and DCF
inter-frame spacing durations, respectively. Their values are the same as those used in
IEEE 802.11. Tt is the longest possible time required to transmit a packet successfully,
including the RTS-CTS-Data-ACK handshake. The nodes follow the back-off even for
the retransmission of the packets. When this back-off scheme is followed, nodes with
lesser rank values back-off for smaller time durations compared to those with higher
ranks. Uniform[0, (2x×CWmin)−1] returns a random number distributed uniformly
in the range 0 and (2x × CWmin − 1), where x is the number of transmission attempts

A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks 23

made so far for a packet. Thus the nodes are scheduled based on their remaining battery
capacities. The higher the remaining battery capacity, the lower the back-off period and
vice versa. Hence, a uniform rate of battery discharge is guaranteed across all the nodes.
This provides a discharge time of k×Tt and an average recovery time of (n−1)×k×Tt

for the nodes as shown in Figure 1(a), where n is the number of nodes and k is the number
of packets transmitted continuously by a node on gaining access to the channel. In each
idle/recovery slot, the battery recovers one charge unit with a probability Ri,j (explained
in Section 4). This improves the lifetime of the battery as it gains more idle time to recover
charge because of the recovery capacity effect. In the BAMAC(k) protocol, whenever the
node attempts to gain access to the channel, it waits for DIFS duration before transmitting
the first packet. If no other neighbor transmits in this duration, the active node (the node
that gains access to the channel) initiates its transmission. For transmitting each of the
next k − 1 packets, it waits only for an SIFS duration; since the channel remains idle
during this SIFS duration, the active node proceeds with the transmission of the packet.
This ensures a continuous packet transmission for a node.

As mentioned earlier, in BAMAC(k) protocol, maximum lifetime of a network can
be achieved when a round-robin scheduling of nodes is carried out. This actually results
in a uniform discharge of batteries. However, the same round-robin scheduling may not
be directly applicable in the case of ad hoc networks with heterogeneous nodes. For
example, let us consider a network with n nodes and node A amongst the n nodes be
of a different battery model. Let us assume its battery does not recover the charges as
quickly as the rest of the n− 1 nodes in the network. If an ideal round robin scheduling
of nodes is used, all the nodes of the network irrespective of their battery characteristics
would be given same number of recovery slots. When n − 1 nodes of the n nodes
recover more charges in the recovery slot time they gain, node A would recover only
fewer charges due to its lesser battery recovery capacity effect and thus dies sooner. For a
uniform discharge of batteries, node A should gain access to the channel less frequently
compared to others.

The basic principle behind HBAMAC algorithm is to give proportionally higher
number of recovery slots for the nodes with lesser battery recovery capacity effect than
those with higher recovery capacity. HBAMAC uses the same structure for the battery
table and back-off function as that of BAMAC(k) protocol. In addition, it uses the same
fields for control and data packets as that of BAMAC(k). In HBAMAC, the battery table
is always arranged in the decreasing order of the remaining battery capacities of the nodes
as in BAMAC(k). The difference between these protocols lies in the values of φ(Ti) in
Equation 1. The values we have assumed in our protocol are shown in Figure 1(c). We
have assumed k = 1 in the case of HBAMAC protocol for simplicity. This assumption
was taken from the research work of Adamou and Sarkar in [8]. However, the probability
of recovery also depends on the remaining nominal capacity of the batteries. As the φ
value decreases, the probability of recovery of a charge increases. Unlike BAMAC(1)
protocol [7], wherein all the nodes uniformly increase in their position in the table by
one for every recovery slot, in HBAMAC, the arrangement of the nodes in the battery
table occurs such that, the nodes with higher recovery probabilities will have lesser
rank value than those with lower recovery probabilities. Hence, the nodes with higher
recovery probabilities have more transmissions than recoveries. Whereas the nodes with

24 S. Jayashree, B.S. Manoj, and C. Siva Rama Murthy

lesser probability for recovery have more recovery slots than transmission slots. This
ensures a uniform discharge of batteries and hence maximum lifetime for the network.
We have provided the theoretical analysis for HBAMAC protocol for a network with
two kinds of battery models.

4 Modeling the Batteries Using Discrete-Time Markovian Chains

The behavior of the batteries of the nodes, which uses HBAMAC protocol for transmis-
sion, is represented using a Markov model as shown in Figure 2. The state of the battery
in the Markov model represents the remaining nominal capacity of the battery. Hence,
the battery can be in any of the states from 0 to N , where N is the maximum nominal
capacity of the battery. The battery model assumes that, in any Δt time unit, the battery
can remain in any one of the two main states – transmission state (Tx) or the reception
state (Rx), where Δt is the sum of the average back-off value and the time taken for one
packet transmission. In each time unit Δt, if a node remains in the Tx state, it transmits
a packet and the battery discharges two units of its charge; if it remains in the Rx state,
the neighbor nodes transmit and if it does not receive any packets, the battery recovers
one unit of the charge with probability RNi,Ti , where RNi,Ti is given by

RNi,Ti
=

{
e−g×(N−Ni)−φ(Ti) if 1 ≤ Ni ≤ N , 1 ≤ Ti ≤ T ,
0 : otherwise .

(1)

where g is a constant value and φ(Ti) is a piecewise constant function of number of charge
units delivered which are specific to the battery’s chemical properties. An example of
the values of the piecewise constant function φ(Ti) is shown in Figure 1(b). This value
affects the battery recovery drastically. If the battery receives a packet in the Rx-state,
it discharges one unit of its charge. In the model shown above, Rxij (Txij) represents
the battery in the Rx (Tx) state at time unit i and j represents the remaining nominal
capacity of the battery. RxI0 and TxI0 represent the battery in its dead (absorbing) state
with nominal capacity 0 at any time unit I . Here, we assume Δt as one basic time unit and
one cycle time as the time between two successive entries in to Tx state or Rx state. State
of a battery is denoted by the tuple < Ni, Ti > and the initial state is given by the tuple
< N, T >. In Δt, a battery which is in state < Ni, Ti >, goes to state < Ni−1, Ti−1 >
if it is in Rx state and receives a packet. If the battery remains idle in Rx state, it reaches
< Ni+1, Ti > or < Ni, Ti > with probabilities RNi,Ti

and INi,Ti
respectively, where

the probability to remain in the state on being idle is given by INi,Ti = 1 − RNi,Ti .
Hence, the battery can be modeled differently in each of these two states and the battery
flip-flops between these two states. Let us consider an ad hoc network with n+1 nodes.
Each node alternates between periods of recovery and discharge. Let us assume that x
out of n nodes be of battery model A and the remaining n−x be of battery model B. Let
the batteries that belong to model A be y times more efficient than those of model B. In
other words, for recovery of a charge, batteries of model A require at least one recovery
slot, whereas those of model B require at least y slots. This can be explained using an
example. Let, node A with battery model A and another node B with battery model B
have Ti, remaining theoretical capacity value, 50. Let N and Ni of these batteries be
25 and 10, respectively. If each of these nodes gets one recovery slot, the probability of

A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks 25

−
 p
 N−2

 N−1
 q

 i
 q

 i
 q

 N−1
 q

 N
 q N

 q

 N
 q

 i+1
 q

 1
 q

 N
 q

 i+1
 q

 1
 q

 N−1
 q

 N
 q

 i
 q

 i
 q

 N−1
 q

 N
 q

 1
 q 1

 q

R

R

0N

−0(N 1)

1 step in Tx state (x−1)y+(n−x) or (n−x−1)+xy steps in Rx state

r

r

 r r

r

rr

r

 r

r

r

r r

rr

 p

 p

 p

 p 0

 p
 i

R

R R

R

R R

R

R

 r

r

 r

r

r

r

 p

 p

 p

 p

r

 p

 p

 p

R R

R

R

R

Zi

Z0

IN

Ii

I0

1N

1i

10

0i

00

ZN

Z(N 1)
R

I(N 1)−1(N 1)−

 p

 p

 N

 N−1

 i−1

 i

 i

 0

 N

 N−1

 p

 p

 p

 N−1

 N−2

 i

 i−1

 0 0

 r N

 i

 0

 N−1
 N−1

 i
 i

 0
 0

 i−1

 0

 i

 N−2

 N−1

 N−1

 N N N

 N−1

 N−2

 i

 i

 i−1

 0
 0

r

−

−

−

−

−

−

−
−

− −

−

−

−

−

−

 p
 N−1 −

−

 N−1 −
 p

r N−1−

 p
 N−1 −

 1

 1

 1

 1

 1

 1

R

 p

T

T

TN−1

T T

T

N N

N−1

i Ti

0 T0

R (T) represents Rx (Tx) State STATE Rx STATE Tx

(Z 1)NR

−

(Z 1)iR

(Z 1)0R

−

(Z 1)(N 1)−−

−

−

Fig. 2. Discrete-time Markov model representing battery states for heterogeneous nodes

recovery for these two nodes, which can be calculated from Equation 1, is found to be
0.4724 and 0.2865, respectively. This implies that nodes with battery model B require
twice (y = 2) the number of recovery slots as that of model A. Hence, in each cycle,
nodes using batteries of model A should be made to gain access to the channel y times
more often than those of model B. This is ensured by the battery table arrangement
and the equation for the recovery probability. Now, for each node with battery model
A, the number of recovery and discharge slots can be calculated as follows. Any node
containing battery model A will have x − 1 nodes of its own type and the remaining
n − x of type B. When k = 1, the total recovery time for nodes with battery model A
is (x− 1)y + (n− x) and that of battery model B is (n− x− 1) + xy recovery slots.
The discharge time for all the nodes remains one slot. Thus, the probability matrix for
nodes with battery model A is given by, PA = Tx×Rx = Trans×Rec(x−1)y+(n−x)

and for battery model B is PB = Trans×Rec(n−x−1)+xy [7], where Trans and Rec
represent the probability matrices for one basic time unit of the battery in Tx and Rx
states, respectively. We assume the matrix index to start from 0 for ease of denoting the
0th state or the dead state.

P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0
1 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
0 . . . 1 0 0 0
0 . . . 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

1 0 0 0 . . . 0 0
q1 r1 p1 0 . . . 0 0
0 q2 r2 p2 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
0 0 . . . qN−2 rN−2 pN−2 0
0 0 . . . qN−1 rN−1 pN−1
0 0 0 . . . 0 qN rN

⎤
⎥⎥⎥⎦

Z

Z =
{

(x − 1)y + (n − x) for model A
(n − x − 1) + xy for model B

The probability value Pi,j refers to the probability that the battery goes to state j from
i. We can now calculate the maximum number of packets transmitted by the nodes with
heterogeneous batteries, by substituting the corresponding values of probability matrices
(PA and PB) in the place of P in the following. (a) Given any probability matrix P ,
matrix Q=[Q(i,j)], where i and j represent only the transient states, is calculated. Hence,
in our protocol, Q(i,j) = P(i+1,j+1). (b) Matrix M = (I−Q)−1, where I is the identity
matrix, is calculated. (c) Now M(i,j) × Δt represents the total number of times the

26 S. Jayashree, B.S. Manoj, and C. Siva Rama Murthy

battery enters state j if the starting state is i and Δt is the time duration the Markov
model spends in state j once it enters it. That is matrix Q=[Q(i,j)] is calculated from
PA (PB) for nodes with battery model A (B), where i and j represent only the transient
states. Hence, in our protocol, Q(i,j) = P(i+1,j+1). Now, M = (I − Q)−1, where
M(i,j)×Δt represents the total number of times the battery enters state j if the starting
state is i. Let, Tactive of a battery model give the total active time of batteries. Now
the time for which battery remains active or the lifetime of the battery can be given by,
Tactive =

∑i=N
i=1 MN,i. This is nothing but the total number of transitions (left, right,

and stationary) in the model from the starting state N till the battery reaches state 0.
The left, right and stationary transitions denote the battery state as being – discharge,
recovery and idle (remains in the same state after recovery) respectively. Tactive is the
sum of the elements present in the N th row of the matrix M , which is equal to the
number of times battery enters into states 1 to N if the starting state is N . The number of
left transitions in the model represents the actual number of discharges. Hence, the total
number of packets transmitted is the total number of left transitions by a battery starting
from state N is given by, Tleft =

∑N
i=1×

∑i−1
j=1 Pi,j , here Pi,j corresponds to the entry

at the ith row and jth column of matrix P . Thus, we can calculate the total number of
packets transmitted by a node given its battery model and the probability matrix using
the above equation.

5 Performance Analysis

The proposed HBAMAC protocol was implemented using GloMoSim simulator. All
the nodes send packets with same transmission power. The routing protocol used was
Dynamic Source Routing (DSR) protocol and the channel bandwidth was assumed to be
2 Mbps. Results were derived by simulation using the following values for the param-
eters: T=2000, N=250, g=0.05. We have compared our protocol with the IEEE 802.11
and DWOP [6] (see Section 2) MAC protocols. In the following discussion, capacity
refers to nominal battery capacity unless otherwise specified. We have assumed a data
packet size of 512 bytes. We make an assumption that receiving takes half the amount of
power spent as that of transmission. We, at this point of time, neglect the power spent by
the nodes for control packets (RTS, CTS, Data, and ACK) transmission and reception.
We assume that listening to the channel consumes negligible amount of power and if a
battery idles for one unit of time (recovery slot time), that is, if the node neither transmits
nor receives a packet in one time slot, it recovers one unit of charge with probability
Ri,j . It is assumed to be equal to the sum of the transmission time slot and the average
back-off value for the node. We assume the availability of a small alternate battery to
power up the electronic components of the node while the node resides in the idle mode.
Since, the power required by these electronic components is very small compared to the
power spent in transmission and reception, we do not consider the effect of this battery
on the nodes’ lifetime calculation. We make use of the same basic assumptions as in
BAMAC(k) protocol. Here, we assume the value of φ(Ti) to be varying as a piecewise
constant function as shown in Figure 1(c). That is, half of the nodes are assumed to have
battery model A and the rest of model B.

A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks 27

Figure 3 shows the total number of packets transmitted by the nodes using HBA-
MAC, IEEE 802.11, and DWOP protocols. Here, HBAMAC transmits more packets
than IEEE 802.11 and DWOP protocols. Unlike the homogeneous case, here we find
that DWOP transmits lesser number of packets than IEEE 802.11 MAC protocol. This is
because DWOP tries to establish a round-robin scheduling of the flows, which ultimately
fails in the presence of heterogeneous nodes. Figure 4 shows the total remaining battery
capacity of all the nodes in the network (either transmitter or receiver). HBAMAC shows

20

25

30

35

40

45

50

55

60

0 2 4 6 8 10 12 14 16

Pa
ck

et
s

tra
ns

m
itt

ed

Inter-arrival time of packets (ms)

HBAMAC
DWOP
802_11

Fig. 3. Packets transmitted

25

30

35

40

45

50

55

60

65

70

75

0 2 4 6 8 10 12 14 16

R
e

m
a

in
in

g
 b

a
tt
e

ry
 c

a
p

a
ci

ty
 (

%
)

Inter arrival time for packets (ms)

HBAMAC
DWOP
802.11

Fig. 4. Remaining battery
capacity at the end of the
simulation

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16

R
e
m

a
in

in
g
 b

a
tt
e
ry

 c
a
p
a
ci

ty
 (

%
)

Inter arrival time for packets (ms)

HBAMAC
DWOP
802.11

Fig. 5. Remaining battery
capacity of the receivers

0

5

10

15

20

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14 16

R
e
m

a
in

in
g
 b

a
tt
e
ry

 c
a
p
a
ci

ty
 (

%
)

Inter arrival time for packets (ms)

HBAMAC
DWOP
802.11

Fig. 6. Remaining battery
capacity of the transmitters

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 th
ro

ug
hp

ut
 (p

kt
s/

se
c)

Inter-arrival time of packets (ms)

HBAMAC
DWOP
802.11

Fig. 7. Average throughput
graph

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

P
e
rc

e
n
ta

g
e
 s

ta
n
d
a
rd

 d
e
vi

a
tio

n
 o

f
th

ro
u
g
h
p
u
t

Inter arrival time of packets (ms)

HBAMAC
DWOP
802.11

Fig. 8. Throughput fairness
graph

HBAMAC

50
100

150
200

250
Nominal battery capacity

0
2

4
6

8
10

12
14

16
18

20

Number of neighbors

0
100
200
300
400
500
600
700
800
900

Number of packets transmitted (pkts/node)

Fig. 9. Theoretical results with varying
N and n

HBAMAC

50
100

150
200

250
Nominal battery capacity

0
2

4
6

8
10

12
14

16
18

20

Number of neighbors

100
150
200
250
300
350
400
450
500
550

Number of packets transmitted (pkts/node)

Fig. 10. Simulated results with varying
N and n

28 S. Jayashree, B.S. Manoj, and C. Siva Rama Murthy

better performance even in terms of the remaining battery capacity. Though nodes of the
network using DWOP protocol have higher remaining battery capacity, the reason behind
transmitting lesser number of packets is due to the non-uniform discharge of batteries,
which can be observed from Figures 5 and 6 which show the remaining battery capacity
of the receivers and transmitters, respectively. Unlike IEEE 802.11, where nodes try to
transmit in a greedy manner, in DWOP, the nodes use a fair scheduling for transmission of
their packets. Due to the presence of heterogeneity, nodes gain a non-uniform discharge
of their batteries. Figure 7 shows the throughput achieved by the nodes. As shown in
the figure, throughput achieved remains higher for DWOP compared to HBAMAC and
that of IEEE 802.11 varies randomly with inter-arrival time of packets. Though, the
throughput remains less in the case of HBAMAC protocol, standard deviation of the
throughput across the nodes also remains less as shown in Figure 8. Figures 9 and
10 show the number of packets transmitted calculated through theoretical analysis and
simulations, respectively. The graphs show that there exists some discrepancy between
them, which is due to the random nature of back-off values.

6 Summary

In this paper, we proposed a novel energy efficient heterogeneous battery aware MAC
protocol (HBAMAC), the main aims of which were minimal power consumption, longer
life, and fairness for the nodes of ad hoc wireless network. Traditional ad hoc wireless
MAC protocols are designed without considering the battery state and their character-
istics. We found that even those MAC protocols, that perform better in the presence of
homogeneous nodes, performs worser for heterogeneous networks. We, thus, provided a
MAC protocol to work in the presence of nodes with heterogeneous batteries. We found
that our protocol performs better, in terms of power consumption, fairness, and lifetime
of the nodes, compared to IEEE 802.11 and DWOP MAC protocols. A discrete Markov
chain was used to theoretically analyze the batteries of the nodes, the correctness of
which was verified through extensive simulation studies.

References

1. K. Lahiri, A. Raghunathan, S. Dey, and D. Panigrahi, “Battery-Driven System Design: A New
Frontier in Low Power Design”, Proceedings of IEEE ASP-DAC/VLSI Design 2002, pp. 261-
267, January 2002.

2. R. Wattenhofer, L. Li, P. Bahl, and Y. M. Wang, “Distributed Topology Control for Power-
Efficient Operation in Multi-HopWirelessAd Hoc Networks,” Proceedings of IEEE INFOCOM
2002, vol. 3, pp. 1388-1397, April 2001.

3. R. Zheng, J. C. Hou, and L. Sha, “Asynchronous Wakeup for Ad Hoc Networks,” Proceedings
of ACM MOBIHOC 2003, pp. 35-45, June 2003.

4. C. F. Chiasserini and R. R. Rao, “Pulsed Battery Discharge in Communication Devices”,
Proceedings of ACM MOBICOM 1999, pp. 88-95, November 1999.

5. C. F. Chiasserini and R. R. Rao, “Energy Efficient Battery Management”, Proceedings of IEEE
INFOCOM 2000, vol. 2, pp. 396-403, March 2000.

A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks 29

6. V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly, “Ordered Packet Scheduling
in Wireless Ad Hoc Networks: Mechanisms and Performance Analysis”, Proceedings of ACM
MOBIHOC 2002, pp. 58-70, July 2002.

7. S. Jayashree, B.S. Manoj, C. S. R. Murthy, “On Using Battery State for Ad hoc Wireless
Networks,” Proceedings of ACM MOBICOM 2004, September 2004.

8. M. Adamou and S. Sarkar, “A Framework for Optimal Battery Management for Wireless
Nodes”, Proceedings of IEEE INFOCOM 2002, vol. 3, pp. 1783-1792, June 2002.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 30–39, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Dynamic Topology Construction
in Bluetooth Scatternets

Rajarshi Roy1, Mukesh Kumar4, Navin K. Sharma2, and Shamik Sural3

1 Dept. of Electronics & Electrical Communication Engineering,
2 Dept. of Civil Engineering,

3 School of IT, Indian Institute of Technology, Kharagpur, 721302, India
{royr@ece, shamik@cse}.iitkgp.ernet.in

4 Dept of CSE, Institute of Technology, Banaras Hindu University, Varanasi, India

Abstract. We propose a topology construction algorithm for Bluetooth devices
in which a piconet or a scatternet is assumed to be a dynamic network structure.
A new node can join the scatternet or an existing node can shut down at any
point of time, without affecting the rest of the topology. The algorithm works
bottom up by first combining individual nodes into small piconets, the small
piconets then joining to form larger piconets. Finally, the large piconets join to
form a scatternet. All these operations are conducted in a way such that none of
the nodes need to act as a coordinator. No a priori information about the total
number of nodes in the network is required for successful topology
construction.

1 Introduction

After power up, a new Bluetooth node discovers other nodes by synchronizing the
frequency hopping patterns before it is able to exchange data or voice packets [1]. An
important step in the successful operation of a Bluetooth network (either a single
piconet or a scatternet) is the formation of a network topology – a configuration in
which each node in a piconet is synchronized with its master and multiple piconets
are connected by bridge nodes. Bluetooth nodes are symmetric so that any node can
act as a master or as a slave [2,3].

One of the early attempts at connected topology construction in Bluetooth was
made by Salonidis et al [4]. They introduce a scatternet formation algorithm—
Bluetooth Topology Construction Protocol (BTCP). Miklos et al suggest the use of a
number of heuristics to generate scatternets [5]. Tan [6] proposes a distributed Tree
Scatternet Formation (TSF) protocol. Law et al [7] present a Bluetooth scatternet
formation protocol in which they try to optimize some of the quality measures,
namely, the number of piconets, maximum degree of the nodes and the network
diameter. Basagni and Petrioli propose a three-phase scatternet formation protocol [8]
in which a “Bluestar” piconet is initially formed. Multiple Bluestar piconets then join

Dynamic Topology Construction in Bluetooth Scatternets 31

together to form BlueConstellations. Yun et al [9] also propose a three-phase protocol
for the construction of their version of Bluestar. Basagni et al [10] compare the
scatternet formation protocols for networks of Bluetooth nodes – Bluetree, Bluenet
and the Yao protocol. Guerin et al [11] investigate the problem from an algorithmic
perspective.

A careful analysis of the above-mentioned research works reveals a few
commonalities among the various approaches. These include (i) Assumption of a
leader election process [4,6] (ii) Topology optimization starting with a fixed set of
Bluetooth nodes [4,9,12] (iii) Deferring the problem of topology “reconstruction” as a
future extension [4,8,11] and most importantly (iv) Approach the topology
construction problem as a stand-alone problem and not as an outcome of specified
properties of Bluetooth nodes [5,7-9,11,12]. We approach the topology construction
problem from a different perspective. Instead of considering it as a one-time, stand-
alone requirement, we integrate topology formation specific properties with the
normal operations of Bluetooth nodes. It should be kept in mind that the Bluetooth
nodes are power-constrained devices due to their portability. Hence, we cannot
possibly run elaborate optimization algorithms like that proposed by Marsan et al [12]
on such nodes in practical applications. We feel that it is more practical to develop an
engineering solution for dynamic scatternet formation. To achieve this, we propose a
Bluetooth topology construction protocol, which is simple, implementable and does
not alter the baseband specifications.

In the next section, we present the dynamic topology construction scheme. This
is followed by simulation results in section 3 and we conclude in section 4 of the
paper.

2 Dynamic Topology Construction Algorithm

The proposed algorithm attempts to form a fully connected and balanced network. By
fully connected we mean a scatternet configuration in which each piconet is
connected to each other piconet by a bridge. It is evident that if the number of nodes
is high, we cannot obtain a fully connected scatternet. Such a situation is quite rare in
practice and if it happens, we try to minimize the number of hops to connect one
piconet to another. A balanced network is one in which each piconet has similar
number of nodes. In the rest of the paper, we use the term optimum to denote a
scatternet configuration in which piconets are either fully connected or are connected
through minimum number of hops and the scatternet is balanced. However, with
every perturbation of an existing network, we do not try to minimize the number of
piconets immediately since this leads to high message complexity and device power
wastage. Instead, the topology keeps getting modified leading towards an optimum
scatternet.

In our approach to topology construction, we consider the situation in which any
node can go to the ON state at any instant of time. We use the term ON state in a
broader sense to mean that a node is within radio proximity of a piconet and it tries to
communicate with other nodes in order to become a member of the piconet. An ON

R. Roy et al. 32

 node can take up any one of the four roles, namely, Isolated (I), Master (M), Slave
(S) or Bridge (B). Similarly, any node may go to the OFF state at any instant of time.
OFF state means that the node is no longer able to communicate either because it is
powered off or it has moved out of the radio range and thus should not be an active
part of a piconet. A node that has become OFF with respect to one piconet may
become ON with respect to another piconet due to mobility.

The complete algorithm for dynamic scatternet formation consists of five routines:
Start-up Routine (SUR), Next State Routine (NSR), Piconet Formation and
Modification Routine (PFMR), Scatternet Formation and Modification Routine
(SFMR) and Normal Communication Routine (NCR). Each routine resides within
every Bluetooth node and gets called depending on the current role of the node and
discovery of other nodes.

When a node is powered ON, it first calls the Start-up Routine shown in Fig. 1.
Inside this routine, the current role of the node, denoted by the ROLE variable, is
assigned a value of I – an Isolated node. In this role, the node performs either Inquiry
or Inquiry-scan. In order to determine whether the node should enter Inquiry or
Inquiry-scan state, the Next State Routine shown in Fig. 2 is called. The NSR routine
selects Inquiry as the next state of an Isolated node with probability PI and selects
Inquiry-scan with probability 1-PI. During Inquiry or Inquiry-scan, when the isolated
node latches with another node, they first exchange configuration information. If the
second node is also isolated, they together form a piconet by calling the Piconet
Formation and Modification Routine of Fig. 3. However, if the second node is the
master or the slave of an existing piconet, there are two possibilities. The piconet
may be able to accommodate the new node, in which case, the isolated node is added
to it by calling the Piconet Formation and Modification Routine. Otherwise, the
existing scatternet is modified to include the new node by calling the Scatternet
Formation and Modification Routine of Fig. 4. The new node is assigned the role of
Master or Slave depending on its memory and available power and that of the master
of the piconet in which the node joins.

In the role of Master or Slave, a node calls the Normal Communication Routine of
Fig. 5 and takes part in the usual data/voice exchange. In the Master Communication
Protocol of NCR, after some regular intervals, a master signals its most idle non-
bridge slave to participate in node/piconet discovery by going to the Inquiry-scan
state. If a slave receives this signal while executing the Slave Communication
Protocol of NCR, it goes to Inquiry-scan state. The master may also participate in
node/piconet discovery by going to the Inquiry or the Inquiry-scan state at certain
intervals. When a master or a slave detects an isolated node or another piconet, either
the two piconets are merged together or they start sharing a bridge to extend the
scatternet using the PFMR or the SFMR routine. In the SFMR routine, some of the
slaves are assigned as bridge nodes. The bridge nodes execute the Bridge
Communication Protocol of the Normal Communication Routine. It should be noted
that a slave cannot discover another slave as both of them perform node discovery in
the Inquiry-scan state.

Dynamic Topology Construction in Bluetooth Scatternets 33

In the NCR, if a master detects that one of its slaves is not responding to polling
packets for a long time, the master assumes that the slave has become OFF. The
master then removes this slave from its piconet and notifies all the remaining slaves.
Similarly, if a slave does not receive polling packets from its master for a number of
cycles, the master is assumed to be OFF. The slave considers itself to be isolated and
tries to join a new piconet by invoking the Start-up Routine. If a bridge node does not
receive a polling packet from one of its masters while executing the Bridge
Communication Protocol of NCR, it assumes that particular master to be OFF. The
bridge then becomes a non-bridge slave of its other master. Finally, a master may
swap its role with a slave if its power falls below a certain threshold. However, it
should be noted from the PFMR and SFMR routine descriptions that, usually the
more powerful (in terms of memory and power availability) nodes have higher chance
of becoming master in the first place.

function SUR ()
ROLE (i) = I // ROLE of node i set to Isolated
While (ROLE(i)==I) // Stays in role I till it gets connected

j = NSR (I) // Call Next State Routine
If (j==1)

While elapsed time < TI // Stay in Inquiry for TI to latch with another node
If node i receives message from node j

 If ROLE(j)== I // j is also an Isolated node
Call PFMR(I, I)

 Else
Let n(j) be the number of nodes in the piconet to which j belongs
If ROLE(j) = M and n(j) < 7 Call PFMR(I, M)
If ROLE(j) = M and n(j) = 7 Call SFMR(I, M)
If ROLE(j) = S and n(j) < 7 Call PFMR(I, S)
If ROLE(j) = S and n(j) = 7 Call SFMR(I, S)

Else
While elapsed time < TIS // Stay in Inquiry-scan for TIS to latch with another node

If node i receives message from node j
Call PFMR or SFMR based on role of node j as shown above

Fig. 1. Start-up Routine (SUR)

function NSR (node_role)
Generate a random number r between 0 and 1
If (node_role == I)

If (r <=PI) // An Isolated Node goes to Inquiry State with probability PI
 return 1

Else // An Isolated Node goes to Inquiry-scan State with probability 1-PI
return 0

If (node_role ==M)
If (r <=PM) // A Master goes to Inquiry State with probability PM

return 1
Else // A Master goes to Inquiry-scan State with probability 1-PM

return 0

Fig. 2. Next – State Routine (NSR)

R. Roy et al. 34

function (node_role_i, node_role_j)

Case 1 – An isolated node detects another isolated node
If (node_role_i == I AND node_role_j == I)

Let F(m,p) denote a function of the memory ‘m’ and power ‘p’ of a node
If (F(mi,pi) >= F(mj,pj))
 // a piconet is formed with node i as master and node j as slave

 ROLE(i) = M; i calls NCR(M)
 i sends message to j to do the following

ROLE(j) =S; j calls NCR(S)
Else

 Same as above with roles of i and j reversed.

Case 2 – An isolated node detects master of another piconet with less than 7 slaves
If (node_role_i == I AND node_role_j == M)

If (F(mi,pi) >= F(mj,pj))
 ROLE(i) = M // Node i becomes the new master
 i calls NCR(M)
 Let P(j) denote the piconet to which node j belongs

Broadcast new master information to all the slaves of P(j)
 i sends message to j to do the following

 ROLE (j) =S; j calls NCR(S)
Else

 Same as above with roles of i and j reversed.

Case 3 – An isolated node detects a slave of another piconet with less than 7 slaves
If (node_role_i == I AND node_role_j == S)

Let M(j) be the master of a piconet to which node j belongs
Notify M(j) about new node discovery
Let k = M(j)
i sends message to j to do the following

 j calls NCR(S) // Goes back to normal slave communication state
i joins P(j) either as a slave or as the new master similar to Case 2 above

Case 4 – A Master detects master of another piconet with a total of less than 7 slaves
If (node_role_i == M AND node_role_j == M)

If (F(mi,pi) >= F(mj,pj))
Merge P(i) and P(j) // The master of the combined piconet is node i
i sends message to j to do the following

ROLE (j) =S; j calls NCR(S)
 i sends message to B(i, j) to do the following
 ROLE (B(i,j)) =S //Bridge between P(i) and P(j) no longer required
 B(i,j) calls NCR(S)
 ROLE (i) =M; i calls NCR(M)

Else
 Same as above with roles of i and j reversed.

Case 5 – A Master detects a slave of another piconet with a total of less than 7 slaves
If (node_role_i == M AND node_role_j == S)

Notify M(j) about new piconet discovery
i sends message to j to do the following

 j calls NCR(S) // Goes back to normal slave communication state
P(i) and P(j) are merged similar to Case 4 above

Fig. 3. Piconet Formation and Modification Routine (PFMR)

Dynamic Topology Construction in Bluetooth Scatternets 35

function SFMR (node_role_i, node_role_j)

Case 1 - An isolated node detects master of another piconet with 7 slaves
If (node_role_i == I AND node_role_j == M)

Let NBS(j) denote the total number of non-bridge slaves of the piconet whose Master is j
 If (NBS (j)!=0) //P(j) has some non-bridge slaves that can be shared

Form a new piconet with i as the master
Transfer upto 4 non-bridge slaves from P(j) to P(i) //To keep the piconets balanced
Designate any node b as B(i,j)
i calls NCR(M)
i sends message to b to do the following

 b calls NCR(B)
 else

i calls SUR() / / i starts Inquiry Inquiry-scan again

Case 2 - An isolated node detects a slave of another piconet with 7 slaves
If (node_role_i == I AND node_role_j == S)

Notify master M(j) about new isolated node discovery
Let k = M(j)
i sends message to j to do the following
 j calls NCR(S) // Goes back to normal slave communication state
i and k form a scatternet of two piconets similar to Case 1 above

Case 3 – A Master detects master of another piconet with a total of 7 to 13 slaves
If (node_role_i == M AND node_role_j == M)

If ((n(i)==7 AND NBS(i)==0) OR (n(j)==7 AND NBS(j)==0))
 i calls NCR(M)
 i sends message to j to do the following

 j calls NCR(M)
Else

If B(i,j) exists
If (n(i)+n(j)==7)

Call PFMR(M,M) // If the piconets are merged, Bridge node is not required
If (n(i)>=n(j) AND NBS(i)>=0)

Let n= (n(i)-n(j))/2
if (NBS(i)>=n)

n non-bridge slaves from P(i) join P(j)
else

NBS(i) non-bridge slaves from P(i) join P(j)
 If (n(j)>=n(i) AND NBS(j)>=0)

 Transfer non-bridge slaves from P(j) to P(i) as shown above
Else

Assign slave k with maximum F(mi,pi) from P(i) and P(j) as B(i,j)
Non-bridge slaves join P(j) from P(i) or join P(i) from P(j) as shown above
Both i and j broadcast new piconet structure to their slaves
i calls NCR(M)
i sends message to j to do the following
 j calls NCR(M)

Case 4 - A Master detects a slave of another piconet with a total of 7 to 13 slaves
If (node_role_i == M AND node_role_j == S)

Notify master M(j) about new piconet discovery
Let k = M(j)
i sends message to j to do the following
 j calls NCR(S) // Goes back to normal slave communication state
i and k form a scatternet of two piconets similar to Case 3 above

Fig. 4. Scatternet Formation and Modification Routine (SFMR)

R. Roy et al. 36

function NCR (node_role)

// Case 1 – Master Communication Protocol
If (node_role == M)

Let m be the master node
m polls slaves for data/voice exchange
Let j be the non-bridge slave of P(m) with the lowest packet arrival rate
M signals j to go in IS state for a random period of time
Call NSR(M) and go to I or IS state for new node/piconet discovery
If m receives message from any node k in IS or I state
 If ROLE(k) = I and n(m) < 7 Call PFMR(I, M)
 If ROLE(k) = I and n(m) = 7 Call SFMR(I, M)
 If ROLE(k) = M and n(m)+n(j) < 7 Call PFMR(M, M)
 If ROLE(k) = M and 7<=n(m)+n(j) < 14 Call SFMR(M, M)
 If ROLE(k) = S and n(m)+n(j) < 7 Call PFMR(M, S)
 If ROLE(k) = S and 7<=n(m)+n(j) < 14 Call SFMR(M, S)
If a slave l of P(m) does not respond to a large number of polling packets
 Remove l from the piconet //Assumed l is OFF
 Notify all the other slaves of P(m)
Receive F(mi,pi) for each of n(m) slaves of P(m)
If F(mm,pm) falls below Min (F(mi,pi)) for all i P(m)
 Swap master role with the non-bridge slave k with highest F(m,p)
 i sends message to k to do the following

k calls NCR(M)
 i calls NCR(S)

// Case 2 – Slave Communication Protocol
If (node_role == S)

Let s be the slave node
s sends data/voice packets to the master
If packet arrival rate is low
 Go to IS state for node discovery by notifying the master
 If s receives message from any node j in I state

If ROLE(j) = I and n(s) < 7 Call PFMR(I, S)
If ROLE(j) = I and n(s) = 7 Call SFMR(I, S)
If ROLE(j) = M and n(s)+n(j) < 7 Call PFMR(M, S)
If ROLE(j) = M and 7<=n(s)+n(j) < 14 Call SFMR(M, S)

If polling packet not received from master for a number of polling cycles
 ROLE(s) = I //s assumes master is OFF. Goes to Isolated Node role
 s calls SUR()

// Case 3 – Bridge Communication Protocol
If (node_role == B)

Let b be the bridge node
b sends and routes data/voice packets between two masters
If polling packet not received from one master for a number of polling cycles
 ROLE(b) = S //b becomes a non-bridge slave of the other piconet
 b calls NCR(S)

Fig. 5. Normal Communication Routine (NCR)

3 Simulation Results

We have developed a Bluetooth topology formation and scheduling environment
using ‘C’ on the Linux platform [13].

After setting the parameter values through initial simulation, we measured the
performance of the algorithm through extensive simulation. In Fig. 6(a), we plot the
average number of slaves per piconet vs. number of nodes. We notice that the average

Dynamic Topology Construction in Bluetooth Scatternets 37

number of slaves per piconet is close to the ideal average number of slaves per
piconet. It may be observed that as the number of nodes in the scatternet increases,
our algorithm closely tracks the ideal number.

In Fig. 6(b), we plot number of piconets vs. number of nodes. We also plot the
ideal number of piconets vs. number of nodes. We note that the number of piconets
produced by the proposed algorithm is close to the ideal number. The number of
piconets is either equal to the ideal number or is one greater than the ideal. Fig. 7(a)

0

2

4

6

8

1 6 11 16 21 26 31
No. of Devices

A
vg

 n
o.

 o
f

sl
av

es
 p

er

pi
co

ne
t

Avg no of slaves per piconet
Ideal Avg no of slaves

0

2

4

6

8

1 9 15 17 22 27 31
No. of devices

N
o.

 o
f

pi
co

ne
ts

No of piconets
Ideal no of piconets

 6 (a) 6(b)

Fig. 6. (a) Average number of slaves per piconet Versus number of nodes (b) Number of
piconets Versus number of nodes

0

2

4

5 15 25 31 33 35
No. of devices

A
vg

 in
te

r
pi

co
ne

t
ro

ut
in

g
de

la
y

0

500

1000
1500

2000

2500

2 10 20 30
No. of Devices

Is
o

la
te

d
 n

o
d

e
co

n
n

ec
ti

o
n

 d
el

ay

(m
s)

 7 (a) 7(b)

0

400

800

1200

1600

2 10 18 26
No. of Devices

N
o

. o
f

P
ac

ke
ts

tr

an
sm

it
te

d
 b

y
an

is

o
la

te
d

 n
o

d
e

 7(c)

Fig. 7. (a) Average inter-piconet routing delay Versus number of nodes (b) Isolated node
connection delay Versus number of nodes (c) Average number of packets transmitted by an
isolated node during connection establishment Versus number of existing nodes in the
scatternet

R. Roy et al. 38

shows that inter-piconet routing delay (in number of hops) increases slowly as the
number of nodes increases. This is due to the fact that our algorithm tries to maintain
full one-hop connectivity between all the piconets. Here, by number of hops between
two piconets we mean hop counts between the masters of those piconets.

The set up delay and the number of packets used for connecting an isolated node
to an existing scatternet are shown in Fig. 7(b) and (c), respectively. We notice that
the set up delay is initially high when the number of existing nodes in the scatternet is
low. This is because, only one or two masters alternate in Inquiry and Inquiry-scan
states. The slaves that could perform node discovery through Inquiry-scan may not be
able to go in the IS state due to less number of slaves in the piconet. However, as the
number of nodes goes up, there are a larger number of masters and slaves trying to
perform node discovery. As a result, the time and the number of packets for link set
up goes down and then remain almost constant as we increase the number of nodes.
Since we try to achieve full connectivity between piconets, with higher number of
nodes, a higher percentage of slaves take up the role of bridge nodes and do not join
the node discovery process. Thus, the set up time or the number of set up packet
exchanges attains a steady state.

4 Conclusions

In this paper, we have described a Bluetooth scatternet formation algorithm. Our
algorithm addresses a dynamic scenario where nodes may join and leave the
scatternet at any point of time. We try to maintain full minimum hop connectivity
between piconets and form a scatternet where the piconets are as balanced as possible
in terms of the number of slaves. We re-organize the scatternet and try to create
balanced piconets by merging small piconets with larger ones if necessary when new
nodes join the network. Simulation results show that the nodes achieve connectivity
and take reasonable amount of time and message exchanges to attain the same.
Average inter-piconet routing delay also increases slowly as the number of nodes
increases. Thus, the proposed algorithm achieves a scatternet with balanced number
and size of piconets while maintaining desirable set-up time, message complexity and
inter-piconet communication delay. The algorithm operates in a fully distributed
manner without any leader election process. It involves evaluation of only a few
branch conditions and simple arithmetic. Further, the algorithm operates within the
existing specifications of Bluetooth nodes.

References

1. The Bluetooth Special Interest Group. http://www.bluetooth.com. Specification of the
Bluetooth system, Volume 1, Core.

2. B. A. Miller, C. Bisdikian, Bluetooth Revealed: The Insider's Guide to an Open
Specification for Global Wireless Communications, Prentice Hall, USA, 2000.

3. J. Haartsen, Bluetooth - the universal radio interface for ad-hoc, wireless connectivity,
Ericsson Review, 3 (1998) 110–117.

Dynamic Topology Construction in Bluetooth Scatternets 39

4. T. Salonidis, P. Bhagwat, L. Tassiulas, R. LaMaire, Distributed topology construction of
Bluetooth personal area networks, Proc. Infocom (2001).

5. G. Miklos, A. Racz, Z. Turanyi, A. Valko, P. Johansson, Performance aspects of Bluetooth
scatternet formation, Proc. The First Annual Workshop on Mobile Ad-hoc Networking and
Computing, (2000) 147–148.

6. G. Tan, Self-organizing Bluetooth scatternets, Master’s thesis, Massachusetts Institute of
Technology, January 2002.

7. C.Law, A.K.Mehta, K-Y Siu, A New Bluetooth Scatternet Formation Protocol,
ACM/Kluwer Journal on Mobile Networks and Applications (MONET), Special Issue on
Mobile Ad Hoc Networks, 8 (2003).

8. S. Basagni, C. Petrioli, Multihop Scatternet Formation for Bluetooth Networks, Proc. VTC
(2002) 424–428.

9. J. Yun, J. Kim, Y-S Kim, J.S. Ma, A three-phase ad-hoc network formation protocol for
Bluetooth Systems, The 5th International Symposium on Wireless Personal Multimedia
Communications, (2002) 213–217.

10. S.Basagni, R.Bruno, A Petrioli, A Performance Comparison of Scatternet Formation
Protocols for Networks of Bluetooth Devices, IEEE International Conference on Pervasive
Computing and Communications (PerCom’03) (2003) 341–350.

11. R. Guerin, J. Rank, S. Sarkar, E. Vergetis, Forming Connected Topologies in Bluetooth
Adhoc Networks, International Teletraffic Congress (ITC18), Berlin, Germany (2003).

12. M. A. Marsan, C. F. Chiasserini, A. Nucci, G. Carello, L. De Giovanni, Optimizing the
Topology of Bluetooth Wireless Personal Area Networks, Proc. Infocom (2002).

13. R. Roy, M. Kumar, N.K. Sharma, S. Sural, P3-A Power-aware Polling Scheme with
Priority for Bluetooth. Proc. International Conf. on Parallel Processing (ICPP) Workshops,
2004, Montreal, Canada (to appear).

Efficient Secure Aggregation in Sensor Networks

Pawan Jadia and Anish Mathuria

Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat, India

{pawan jadia, anish mathuria}@da-iict.org

Abstract. In many applications of sensor networks, readings from sen-
sor nodes are aggregated at intermediate nodes to reduce the communica-
tion cost. The messages that are relayed in the data aggregation hierarchy
may need confidentiality. We present a secure data aggregation protocol
for sensor networks that uses encryption for confidentiality, but with-
out requiring decryption at intermediate nodes. A salient feature of the
protocol is the use of two-hop pairwise keys to provide integrity while
minimizing the communication required between the base station and
sensor nodes. We analyze the performance of our protocol and compare
its efficiency with a protocol proposed by Hu and Evans.

1 Introduction

In many sensor network applications, the base station needs to find the sum-
marized statistics of the whole network or part of the network. To support this
requirement, each node can send its reading to the base station and then the
base station can compute the aggregate of the data. This approach is not very
energy efficient since each reading is communicated to the base station. Instead
if we combine several sensor readings at intermediate sensor nodes as the read-
ings are routed towards the base station, we can save on communication at the
cost of some extra computation. This process is called aggregation or in-network
aggregation [1]. Since aggregation reduces the amount of data to be transmitted
through the network, it increases the lifetime of the energy constrained sensor
nodes [2, 3].

Security is a critical requirement in data aggregation. A dishonest interme-
diate node can read, modify, or drop the data as well as sending false values to
mislead the base station [4]. Therefore authentication and integrity are impor-
tant requirements [5]. Data confidentiality is an equally important concern as
authentication and integrity, especially in battlefield management where most
of the information is sensitive. If data is not kept confidential then an adversary
or opponent in the battlefield can get sensitive data.

To provide confidentiality in data aggregation, one can use a key sharing
approach in which messages are encrypted using keys that are shared pairwise
between nodes. Under this approach it is essential that a node that aggregates
a secure message be able to decrypt the message. Therefore, an attacker who
compromises a neighboring node by obtaining its keying material can obtain

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 40–49, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Secure Aggregation in Sensor Networks 41

the sensor readings. From a security point of view, the readings should not be
visible at intermediate nodes. Another disadvantage of the above key sharing ap-
proach is that it requires decryption at intermediate nodes to process the data,
followed by re-encryption. This three steps process (decryption, aggregation and
re-encryption) is not very computationally efficient [6]. In this paper, we propose
a protocol for secure data aggregation that does not require decryption at inter-
mediate nodes. A salient feature of our protocol is the use of two-hop pairwise
keys to provide integrity while minimizing the communication required between
the base station and sensor nodes.

The LEAP protocol [6] provides confidentiality in aggregation process. How-
ever, it requires each node to possess a unique cluster key to be established to
secure its message, which the neighboring nodes use to decrypt and authenticate
the message. Our protocol does not require cluster or group keys to be estab-
lished. Unlike LEAP, our protocol has low computation cost at intermediate
nodes since it does not require decryption for aggregation.

The rest of the paper is organized as follows. In Section 2 we discuss the
security requirements for sensor networks. In Section 3 we review an existing
protocol of Hu and Evans [7]. In Section 4 we discuss the security mechanisms
used in our protocol. In Section 5 we describe our protocol. In Section 6 we give
a security analysis of the protocol as well as the cost analysis.

2 Requirements for Sensor Network Security

The following basic requirements need to be considered while designing security
protocols for sensor networks [5, 8, 9].

– Data confidentiality: The neighboring nodes or the attacker should not be
able to read the data. We should ensure that the attacker is not able to de-
duce the plaintext, even if he sees multiple encryption of the same plaintext.
This property can be achieved by changing the encryption key each time
a message is encrypted. In order to generate a different encryption key, we
can derive the encryption key as a function of some nonpersistent quantity
like a counter value which changes on every query. To lower the communica-
tion overhead, we can maintain a counter at both transmitting and receiving
ends which is incremented each time the base station injects a query. The
encryption key will be the function of counter value at that instant and the
master secret shared between the transmitter and receiver.

– Data authentication and integrity: Authentication ensures the receiving node
that the data is coming from the claimed source only. It guarantees that an
adversary is not injecting the messages instead of a trusted sensor node. To
achieve data authentication (as well as integrity) we can use a hash based
MAC.

– Data Freshness: Since the sensor nodes send readings over time, we must
also guarantee that data is fresh in order to avoid the replay of messages
by an adversary. One common method of ensuring freshness is challenge-

42 P. Jadia and A. Mathuria

response exchange using nonces. However, this method is not suitable be-
cause it causes more communication overhead. Changing the encryption keys
provides data freshness without the extra communication overhead.

In a sensor network, nodes are generally deployed in remote areas and the
environment is generally unattended and hostile. So nodes can be compromised
with non-zero probability. One very important design goal is to confine the se-
curity impact of a node compromise to immediate network neighborhood of the
compromised node [6]. A single node should not be able to misrepresent the read-
ings of a large part of the sensor network. If a sensor node forwards the wrong
aggregation result of its descendants, then the base station should be able to
detect and exclude spoofed data without ignoring genuine readings originating
from the same subtree.

3 Hu and Evans Protocol

This is a lightweight security protocol that provides data integrity, authentication
and data freshness. The protocol makes the following assumptions:

– The base station can directly send messages to all nodes whereas the sensor
nodes can only communicate with neighboring nodes.

– Each node shares a secret key with the base station. That is, every node
trusts the base station.

The protocol consists of two rounds. In the first round, shown in Figure 1,
the sensor readings are transmitted and aggregated at intermediate nodes. In
the second round, the base station reveals the keys needed to authenticate the
messages. These two rounds are described below.

1. Data Transmission Round:
– Each leaf node α sends its reading Pα along with the MAC of Pα under

a one-time key Kαi
shared between α and the base station.

– The parent node forwards the data and the MACs it receives to the
grandparent node along with the MAC over the aggregation. It does not
send the aggregated data.

– The grandparent node saves the MACs computed by the grandson nodes.
It aggregates the data received from each child node and sends the ag-
gregate value along with the MAC computed by the child node. It sends
a MAC of the aggregated data of all child nodes under the one-time key
shared with the base station.

– After the grandparent node, each node in the routing hierarchy performs
aggregation.

2. Data Validation Round:
– In this round the base station reveals the keys using the μ − Tesla

broadcast authentication protocol [5]. These keys are received by all
nodes.

Efficient Secure Aggregation in Sensor Networks 43

Fig. 1. Hu and Evans Protocol

The above protocol ensures that the parent node of a data originating node
does not tamper with the data. The leaf nodes send their readings to the grand-
parent node through the parent node (unchanged). As noted earlier, the parent
node calculates the aggregate value but sends only a MAC of the aggregated
value. Since the grandparent node can independently calculate the aggregate
value, the parent node cannot change the actual readings without being no-
ticed. If any parent node tries to change the readings, it will get detected by its
immediate parent during the data validation round.

The Hu-Evans protocol has the following deficiencies:

– It does not provide confidentiality.
– Because of delayed authentication, sensor nodes need to buffer the data to

authenticate it later. Thus this protocol has extra memory overhead.
– Since the keys revealed by the base station are received by all nodes, the

nodes waste energy in receiving keys that are not intended for them [10].
– It requires the base station to be involved in the data validation step.

4 Security Mechanisms

This section describes the security mechanisms that we will use to provide con-
fidentiality, and to minimize the involvement of the base station.

44 P. Jadia and A. Mathuria

4.1 Processing over Encrypted Data

There exist several lightweight methods for processing encrypted data without
decryption [11]. We adopt the method where encryption is performed by adding
the data to a sufficiently long random encryption key. A word size big enough
to prevent data overflow is assumed. Consider as example a 4-node topology
with two leaf nodes A and B, one intermediate node C, and a base station S.
All data sent by the leaf nodes to S is routed via C. We will use the following
notations.

– KA, KB , KC are the encryption keys shared by nodes A, B, C with the base
station, respectively.

– PA, PB , PC are the actual sensor readings of nodes A, B, C, respectively.
– XA, XB , XC are the encrypted data of nodes A, B, C, respectively.

Consider the scenario where A and B send their readings in encrypted form
to C. Encryption of actual readings at node A, B and C is done simply as

XA = (PA + KA)
XB = (PB + KB)
XC = (PC + KC)

Then node C can perform aggregation over encrypted data by calculating the
value Z = XA +XB +XC . Upon receiving this value, S can obtain the aggregate
sum by calculating Z − (KA + KB + KC).

4.2 One-Hop and Two-Hop Pairwise Keys

Our motivation for using pairwise keys is to replace the data validation step
of the Hu-Evans protocol with some other mechanism that does not require
unnecessary key reception by all nodes. Instead of relying on keys shared between
the base station and sensor nodes for authentication, we use pairwise keys shared
between nodes. Use of pairwise keys reduces the memory overhead since it does
not require messages to be stored for later verification. In our protocol we make
use of one-hop as well as two-hop pairwise keys. There are various mechanisms
to establish one-hop and two-hop pairwise keys [6], [12], [13], [10], [14].

5 Protocol for Aggregating Encrypted Data

We will use the following notations to describe our protocol.

– A, B, C, D are the sensor nodes that transmit their readings.
– IDα is the unique identity of sensor node α.
– Kαi is the ith encryption key of node α synchronized with the base station.

We assume there is some master secret Kα that is shared between α and

Efficient Secure Aggregation in Sensor Networks 45

the base station. If Ci is the ith counter value synchronized with the base
station, then Kαi

= PRF(Kα, Ci), where PRF is a suitable psuedo-random
function.

– Pαi
is the reading of node α in response to the ith query. Xαi

is the encryption
of Pαi

using key Kαi
, that is, Xαi

= Pαi
+ Kαi

.
– Ki

αβ is the ith two-hop (or one-hop) pairwise key shared between nodes α
and β, where β is the grand-parent node (or parent node) and α is the
grandson node (or child node). This ith key is the result of PRF(K0

αβ , Ci),
where K0

αβ is a pairwise key deployed initially. On each query injected by
the base station, the counter value i is incremented by the nodes α and β to
ensure that they both use the same key.

– MAC(Ki
αβ ,M) denotes the message authentication code of M under key

Ki
αβ , where Ki

αβ is one-hop or two-hop pairwise key and M is either some
encrypted message or aggregated encrypted data.

5.1 Protocol Steps

Figure 2 shows the steps of our protocol.

1. Base station injects a query in the network. Whenever a sensor node receives
the query, it increments its counter value by one. We assume that the base
station does not send the next query until it receives all responses to the last
query. This is just to ensure self-synchronization of sensor nodes amongst
themselves as well as with the base station.

Fig. 2. Illustration of Protocol Steps

46 P. Jadia and A. Mathuria

2. The data originating nodes encrypt their readings with the encryption keys
that they share with the base station. The encryption method is same as
the one described in Section 4.1. For example, node A will perform following
operation: XAi = (PAi + KAi). For further steps this encrypted reading
(XAi) will act as the data.

3. The data originating nodes send their encrypted readings to their respective
parents along with their IDs and two MAC values, a MAC of the encrypted
data under the two-hop key shared with the grandparent node and a MAC
of encrypted data under the one-hop key shared with the parent node. For
example:

A ⇒ E: IDA | XAi | MAC(Ki
AG, XAi)

| MAC(Ki
AE , XAi)

4. The parent node receives the message and verifies the origin of the data
using the one-hop pairwise shared key. It performs the aggregation over
encrypted data but does not transmit this aggregated value. It calculates a
MAC of this aggregated value using the two-hop pairwise key shared with its
grandparent node and transmits it along with the encrypted sensor readings
and the MACs that it received from its children (minus the MAC intended for
itself). The parent node does not attach its own node id with the last MAC,
since we are assuming that node G will already know this. For example:

E ⇒ G: IDA | XAi
| MAC(Ki

AG, XAi
)

| IDB | XBi
| MAC(Ki

BG, XBi
)

| MAC(Ki
EH , XAi

+XBi
).

5. The node G receives the message and checks the authenticity and integrity
of XAi and XBi in the received message using the keys Ki

AG and Ki
BG. If

XAi and XBi are modified in transit, node G will detect and notify the base
station. Otherwise it aggregates the encrypted data of each branch separately
and sends the aggregated values along with the corresponding MACs that
it received from nodes E and F . It also sends a MAC of the encrypted data
aggregated over all branches. For example:

G ⇒ H: IDE | (XAi
+ XBi

) | MAC(Ki
EH , XAi

+ XBi
)

| IDF | (XCi + XDi) | MAC(Ki
FH , XCi + XDi)

| MAC(Ki
GJ , XAi + XBi + XCi + XDi)

6. Similarly node H verifies that node G is sending the correct aggregation (XAi

+ XBi
) and (XCi

+ XDi
) with the help of MAC(Ki

EH , XAi
+ XBi

) and
MAC(Ki

FH , XCi
+ XDi

) respectively. Again if any misbehavior is detected,
node H will notify the base station. Then the same process is repeated at
node H. In this way aggregated readings (encrypted) are forwarded to base
station. In the whole process, no intermediate node can modify the data that
it receives from its child nodes without being detected.

7. The base station receives the final encrypted aggregated value. It checks
the authenticity of the received messages and then subtracts the encryption
keys shared with the data originating nodes to get the aggregated data in
plaintext.

Efficient Secure Aggregation in Sensor Networks 47

6 Protocol Analysis

6.1 Security Analysis

We assume that the data originating nodes (in our case leaf nodes) are not
compromised, that is, that attacker does not possess the keying material of leaf
nodes. Otherwise, there is no way to differentiate between a compromised node
and a legitimate node. We only consider attacks involving intermediate nodes.

– Protection Against Data Theft. Our protocol protects against aggregated
data theft from unattended sensor nodes. It achieves security similar to end-
to-end data encryption. The data is only encrypted at the originating end
and finally decrypted at the base station. No decryption is required at in-
termediate nodes. Thus the protocol prevents theft of data at intermediate
nodes.

– Detection of Compromised Node. If a node is compromised, its key are re-
vealed. The adversary is then able to spoof the MAC intended for the grand-
parent node. Assuming two consecutive nodes are never compromised, the
parent node that receives the message will be able to detect the compromised
node. After a compromised node is found, the parent node can notify the
base station.

– Replay Protection. Since encryption and authentication keys are changed
with every message, replay attacks are not possible.

– False Node Attack. A node not having valid keys termed a false node. A false
node may try to transmit the sensor readings (encrypted) of a legitimate
child node, but it will not be able to generate a valid MAC. Thus, it will be
detected by the legitimate grandparent node.

– Damage Associated with a Compromised Node. A node in the upper hierarchy
may attempt to misrepresent the readings of its descendants. In the event of
this, the legitimate grandparent node knows that either any or some of child
or grandchild nodes are misbehaving, thus it can exclude readings from only
those descendants.

– Collusion Resistance. Our protocol is weak against this type of attack. If
the parent and child nodes collude, they can misrepresent the readings of
whole subtree without being detected. To protect against this attack, node
snooping can be employed [6].

6.2 Cost Analysis and Comparisons

We consider the case that only leaf nodes transmit their sensor readings. A
similar analysis can be made for the more general case where all or some of the
intermediate nodes also transmit their readings. Following Hu and Evans [7],
we assume a general tree hierarchy in which every node has b children and the
depth of the tree is d, that is, leaf nodes are d nodes away from the base station.
Suppose the length of data field (encrypted or aggregated reading) is x bits,
node id is y bits, and the length of MAC is z bits. The leaf nodes will send
their encrypted readings (x) along with the node id (y) and two MACs (2z).

48 P. Jadia and A. Mathuria

The total number of leaf nodes is bd. Thus the total number of message bits sent
by all nodes at depth d will be bd(x+y+2z). A node at depth d − 1 will send
[b(x+y+z)+z] message bits and there are bd−1 such nodes. So the total number
of message bits sent by nodes at this level will be bd−1[b(x+y+z)+z]. Similarly
nodes at d − 2 level will send bd−2[b(x+y+z)+z] message bits and so on. The
total number of bits transmitted in our protocol will be

bd(x+y+2z)+bd−1[b(x+y+z)+z] +bd−2[b(x+y+z)+z]+...+ b[b(x+y+z)+z]
= bd(x+y+2z) +(bd-b)[b(x+y+z)+z]/(b-1)

If we compare this result with Hu and Evans [7], we need one extra MAC per
leaf node, that is, bd(z) extra bits to be transmitted. Besides this our protocol
also requires one extra bit per leaf node for overflow protection. So our protocol
requires bd(z) + bd extra bits over the Hu-Evans protocol. We require extra
bits at intermediate nodes for overflow protection. The Hu-Evans protocol too
requires these extra bits because of arithmetic sum over unencrypted data. One
example scenario given in [7] (b = 4, d = 5, 22-byte messages, 2-byte node id and
6-byte MAC) requires approximately 75 KB data to be transmitted for secure
aggregation. In our case extra transmission will be bd(z)+bd = 1024(6)+1024 = 7
KB, that is total transmission will be 82 KB as compared to 75 KB. Our protocol
saves energy that the nodes would waste in the Hu-Evans protocol in receiving
keys from the base station. For the case b = 4 and d = 5, the total number

of nodes (excluding the base station) will be
bd+1 − b

(b− 1)
, which in our case equals

1364. So a total of 1364 keys need to be disclosed (broadcast) by the base station
and all the 1364 nodes will listen to these messages (although later they discard
most of the packets), so total 13642 = 1860496 key receptions will be there and
a large amount of energy will be wasted. As compared to this our protocol does
not require keys to be disclosed. It does not require any extra data to be flooded
in the network for synchronization. Every node is automatically synchronized
whenever it receives some query from the base station.

7 Conclusions

We proposed a secure aggregation protocol for sensor networks that provides
confidentiality as well as integrity guarantees. Our protocol aggregates encrypted
data directly, without requiring decryption at intermediate nodes. The protocol
does not require intermediate nodes to buffer data for later authentication; this
results in reduced delays. The protocol is not suitable for certain kinds of queries
like Min, Max. This is part of our future work.

Acknowledgements

We thank the three anonymous reviewers for their helpful criticisms on a draft
of this paper.

Efficient Secure Aggregation in Sensor Networks 49

References

1. Karl, H., Loebbers, M., Nieberg, T.: A data aggregation framework for wireless
sensor networks. In: Proc. Dutch Technology Foundation ProRISC Workshop on
Circuits, Systems and Signal Processing, Veldhoven, Netherlands (2003)

2. Deng, J., Han, R., Mishra, S.: Security support for in-network processing in wireless
sensor networks. In: Proc. 1st ACM Workshop on the Security of Ad Hoc and
Sensor Networks (SASN). (2003) 83–93

3. Zhao, J., Govindan, R., Estrin, D.: Computing aggregates for monitoring wireless
sensor networks. In: Proc. IEEE International Workshop on Sensor Net Protocols
and Applications. (2003) 139–148

4. Przydatek, B., Song, D., Perrig, A.: SIA: secure information aggregation in sensor
networks. In: Proc. 1st International conference on Embedded networked sensor
systems. (2003) 255–265

5. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, D.: SPINS: security protocols
for sensor networks. Wireless Network journal (WINE) 8 (2002) 521–534

6. Zhu, S., Setia, S., Jajodia, S.: LEAP: efficient security mechanisms for large-scale
distributed sensor networks. In: Proc. 10th ACM Conference on Computer and
Communications Security (CCS). (2003) 62–72

7. Hu, L., Evans, D.: Secure aggregation for wireless network. In: Proc. IEEE Sym-
posium on Applications and the Internet Workshops (SAINT’03). (2003) 384–394

8. Zhou, L., Haas, Z.J.: Securing ad hoc networks. IEEE network Magazine 13 (1999)
24–30

9. Cam, H., Ozdemir, S., Muthuavinashiappan, D., Nair, P.: Energy-efficient security
protocol for wireless sensor networks. In: Proc. 58th IEEE Vehicular Technology
Conference. (2003) 2981–2984

10. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In:
Proc. 10th ACM Conference on Computer and Communications Security (CCS’03).
(2003) 52–61

11. Ahituv, N., Lapid, Y., Neumann, S.: Processing encrypted data. Communications
of the ACM 30 (1987) 777–780

12. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: Proc. IEEE Symposium on Security and Privacy. (2003) 197–213

13. Du, W., Deng, J., Han, Y.S., Varshney, P.: A pairwise key pre-distribution scheme
for wireless sensor networks. In: Proc. 10th ACM Conference on Computer and
Communications Security (CCS). (2003) 42–51

14. Zhu, S., Xu, S., Setia, S., Jajodia, S.: Establishing pairwise keys for secure com-
munication in ad hoc networks: A probabilistic approach. In: Proc. 11th IEEE
International Conference on Network Protocols (ICNP’03). (2003) 326–335

Optimal Access Control for an Integrated
Voice/Data CDMA System

Shruti Mahajan, Manish Singh, and Abhay Karandikar

Information Networks Laboratory, Department of Electrical Engineering,
Indian Institute of Technology Bombay, Powai, Mumbai-76, India

karandi@ee.iitb.ac.in

Abstract. Access control (call admission and data transmission poli-
cies) becomes essential for optimum resource utilization with traffic hav-
ing varying Quality of Service (QoS) requirements. In this paper, we de-
termine optimal algorithms for joint admission control of voice calls and
transmission of data packets in an integrated voice and data dual-class
CDMA system. The objective is to minimize the cost due to blocking
of voice calls and the average delay suffered by the data packets. The
problem is formulated as an optimization problem over an infinite hori-
zon, and the solution turns out to be a stationary policy for a given set
of bit rate, Signal to Interference Ratio (SIR) and outage probability
requirements.

1 Introduction

Next generation wireless networks need to be suitably engineered to support a
heterogeneous mix of traffic with varying Quality of Service (QoS) requirements.
CDMA has been acclaimed as the predominant medium access control (MAC)
protocol for next generation systems for its effectiveness in high capacity multi-
class traffic systems. The capacity of a CDMA air interface is determined by the
capacity of the reverse link, which is typically interference-limited. In this work,
we focus on access control of traffic on such a reverse link.

Quite a few attempts have been made to characterize a dual-class CDMA
system, with a delay-intolerant voice class and a delay-tolerant data class with
higher SIR and bit-rate requirements. Probability of blocking the arriving calls
is a direct measure of customer satisfaction for voice subscribers, while the data
traffic can be characterized by the queuing delay seen by the packets.

Since the reverse link of a CDMA system is interference limited, the power
transmitted by a Mobile Station (MS) is controlled by the Base Station (BS)
using sophisticated power control algorithms [1]. In [2], a necessary condition for
the feasibility of transmit power assignment for given bit-rate and SIR require-
ments has been derived. In a perfectly power controlled system, if this condition
is not satisfied, SIR demands of all users will not be met, an event termed as
outage. This condition has been employed by the authors of [3] to schedule data
packets in periods of low voice activity. Voice Activity Detection (VAD) capabil-
ity is assumed to differentiate between voice activity intervals. Though we model

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 50–59, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Optimal Access Control for an Integrated Voice/Data CDMA System 51

our traffic types differently and consider an open system with arrivals and de-
partures, we largely retain their notations for the similarity with their system
model and parameters.

The system model in [4] considers two classes (similar to voice and data) of
user traffic, with complementary delay tolerance and bit-rate requirements. Their
objective is to maximize the throughput of delay tolerant users while minimizing
the sum of transmit powers of all mobiles. This work has been extended to include
minimization of inter-cell interference in [5]. Both these problems are formulated
from a “power allocation” point of view, with a given number of users and do not
consider call admission control. For other related work, the readers are referred
to [6], [7], [8], [9], [10], [11].

Despite several interesting proposals described above, none of them attempt
‘optimal’ management of the intrinsic trade-off between admitting more voice
calls and delayed scheduling of data packets that are queued up. The primary
contribution of our work is to determine a joint admission control and scheduling
algorithm which is optimal with respect to the long term average cost due to
blocking of voice arrivals and queuing delay of data packets.

2 System Model

We consider a single cell slotted CDMA system. The slot duration is t0, and is
equal to the transmission time of a packet. All arrivals into or departures from
the system take place at slot boundaries, and so do any changes in voice activity
state of the admitted users.

Voice Traffic. There are N voice subscribers, out of which a maximum of M
can be supported by the system at any time so as to satisfy the outage probability
constraint, which is the probability that target SIR values of all users are not
achieved. A voice subscriber who initiates a call and is subsequently accepted
into the system is termed as “active”. Subscribers not making calls are called
“inactive” or “idle”. Users which are present in the system just before the start
of slot n (where n is the slot index) are denoted by KV (n). Assuming Voice
Activity Detection (VAD), only V (n) of these (active) users might be ON. ON
users transmit fixed length packets with a rate of RV bits/s, OFF users don’t
transmit (in a practical system, they might transmit at a minimal rate though).
We employ geometric probability distributions for the period for which a user
remains in the system and for voice activity intervals to model the discrete nature
of the system. We define the following probabilities, for events at the start of a
slot:

p = probability with which a voice user initiates a call
q = probability with which a voice user departs from the system
s = probability with which a voice user continues to be ON in this slot
u = probability with which a voice user continues to be OFF in this slot

52 S. Mahajan, M. Singh, and A. Karandikar

Arrival and departure processes are discrete time batch processes. Thus, at
the start of slot n, the number of voice call arrivals, AV (n), and departures,
G(n), are observed. Assume ac(n) is the number of voice call arrivals accepted,
with the decision being instantaneous. These admitted users are considered to be
ON users in the current slot n. In addition, users that depart are also considered
to be ON in the previous slot. This assumption simplifies our analysis while it
introduces a negligible error in the computations.

Users in the system are assumed to change their voice activity state at the
beginning of a slot. We denote by VON (n) the number of voice users that become
ON, and by VOFF (n) the number of voice users that become OFF at the start
of slot n.

Data Traffic. A simple data model with a single queue of maximum length of
L packets is considered. Packets of fixed length arrive according to a Poisson
process with an average arrival rate of λD. A new packet is placed at the end
of the queue. It is assumed that the rate is low enough so that the probabil-
ity of queue length exceeding the maximum length is negligible. Each packet
takes exactly one slot to transmit at a rate of RD bits/s. Multiple packets may
be scheduled for transmission on the reverse link in a slot. We assume that r
CDMA codes are alloted to the data queue, so that a maximum of r simultaneous
transmissions of data packets are possible. This would be possible in a system
implementing multi-code CDMA. In case of outage, the transmitted packets are
lost. However, the analysis can be easily modified to incorporate the case when
the errored packets are retransmitted. Just before the start of slot n, the queue
length is denoted by Q(n). At the beginning of the slot, AD(n) packets arrive,
out of which D(n) are scheduled to be transmitted in slot n. Again, the feedback
time from BS to the mobile is assumed to be negligible.

An Outage Event. Consider the nth slot, i.e., the interval [n, n + 1). Just
before start of this slot, we have V (n) ON voice users in the system. At the
beginning of this slot, ac(n) new voice users are admitted and D(n) data packets
are scheduled for transmission. Considering the departures and the users that
change their ON/OFF state (as given in the evolution equation below), we’ll
now have V (n + 1) users that’ll be ON during the interval [n, n + 1). Suppose
the target SIR values for voice and data packets are γV and γD respectively.
With V (n + 1) ON voice users and D(n) data packets in transmission in slot n,
a feasible power assignment will exist [2]1 if

P

{
V (n + 1)

aV
+

D(n)
aD

< 1
}

where aV = W/(RV γV) + 1

aD = W/(RDγD) + 1 and W = spread-bandwidth

The event when this condition is violated is termed as outage. The probability
of outage is constrained by a given number δ, which is typically a specified system
parameter. The constraint

1 Note that our definition of variables is different from that of [2].

Optimal Access Control for an Integrated Voice/Data CDMA System 53

Pout = P

{
V (n + 1)

aV
+

D(n)
aD

> 1
}
≤ δ (1)

has to be satisfied on a per slot basis. We note here the assumption of perfect
power control. For obtaining optimal design constraints, we satisy Equation 1
with equality in our analysis.

The maximum number of voice users that can be admitted into the system,
M , can be calculated using the outage condition (1) and the stationary proba-
bility distributions of different states of a voice user.

3 Formulation as a Markov Decision Process

The evolution equations for the system variables can be written as

KV (n + 1) = KV (n) + ac(n)−G(n), Q(n + 1) = Q(n) + AD(n)−D(n)
V (n + 1) = V (n) + ac(n)−G(n) + VON (n)− VOFF (n)

Define the system state by the 4-tuple xn = {KV (n), V (n), AV (n), Q(n)}.
The number of states is finite, their number denoted by S. At every state, we
take an action, denoted by the 2-tuple μ(xn) = {ac(n), D(n)}. The space of all
possible actions, U(x), is state-dependent. Given the system is in state xn at the
observation epoch n (the beginning of nth slot), if action μ(xn) = un is taken,
some immediate cost gn(xn,un) is incurred (which we quantify later), and the
system moves to the next state xn+1 with a probability pxnxn+1(un). Such a
controlled dynamic system is a Markov Decision Process [12]. The sequence of
actions Γ = {μ1, μ2, ...} is termed as a policy.

Our system satisfies the Markovian assumption, that the next state to be vis-
ited depends only on the present state of the system. The transition probability
is controlled by taking actions. The transition probabilities are stationary in our
problem, which also implies the stationarity of the policy so computed [13].

3.1 State Transitions

Since the ordering among the states does not matter, without loss of generality,
we index the states for convenience of notation as follows:

Let i = {KV , V, AV , Q}, j = {K ′
V , V ′, A′

V , Q′} and u = {ac, D}.
We also drop the time index n. Then, we have,

K ′
V = KV + ac −G, Q′ = Q−D + AD

V ′ = V + ac −G + VON − VOFF

where, as mentioned earlier, we have assumed that arrivals and departures are
all from the pool of ON users. The state transition probabilities can be derived
as follows.

54 S. Mahajan, M. Singh, and A. Karandikar

pij(u) = P{xn+1 = j|xn = i,un = u}
= P{K ′

V , V ′, A′
V , Q′|(KV , V, AV , Q), (ac, D)}

= P{K ′
V |KV , ac}P{V ′|K ′

V , KV , V, ac}P{A′
V |K ′

V }P{Q′|Q, D} (2)

Now

P{K ′
V |KV , ac} = P{G = KV −K ′

V + ac}
=

(
V

G

)
qG(1− q)V −G (3)

Letting z = V ′ − V − ac + G = V ′ − V + KV −K ′
V then

P{V ′|K ′
V , KV , V, ac} =

V −G∑
x=0

(
V −G

x

)
(1− q − s)xsV −G−x

(
KV − V

z + x

)
(1− u)z+xuKV −V −z−x (4)

Voice arrivals have a geometric distribution while the data packets arrive
according to a Poisson process. Hence we have,

P{A′
V |K ′

V } =
(

N −K ′
V

A′
V

)
pA′

V (1− p)N−K′
V −A′

V (5)

P{Q′|Q, D} = P{AD = Q′ −Q + D} =
(λt0)Q′−Q+D exp(−λt0)

(Q′ −Q + D)!
(6)

Substituting the numerical values from (3), (4), (5) and (6) in (2), we can
compute the transition probability pij(u).

3.2 Cost Formulation

At every decision epoch, the decision that is taken incurs a cost for the system.
The immediate cost is defined as

gn(xn,un) =
AV (n)− ac(n)

pN
+ β

Q(n)−D(n)
λD

(7)

The first term is the cost incurred due to rejection of voice arrivals, while the
latter takes into account the cost due to queuing of data packets. β is a scalar and
has been employed to assign desired weights to the two cost terms. This enables
us to give priority to voice or data according to the system requirements; e.g.
the lower the value of β, the lower will be the fraction of voice calls blocked on
arrival. This we verify later through numerical results.

For a finite observation interval, of length say K slots, the total cost incurred
will be

JK = gK(xK,uK) +
K−1∑
n=0

gn(xn,un)

Optimal Access Control for an Integrated Voice/Data CDMA System 55

However, the system under consideration can be assumed to evolve over a
very long period of time, effectively over an infinite horizon. We seek to minimize
the average cost per unit time, defined as [14]

lim
K→∞

1
K

{
K∑

n=0

g(xn, μn(xn))

}

= lim
K→∞

∑K
n=0 (AV (n)− ac(n))

KpN
+ lim

K→∞
β

∑K
n=0 (Q(n)−D(n))

KλD

= blocking probability + β(average delay of data packets)

where the Little’s Theorem has been used for computing the average delay. Thus,
we attempt to minimize a function of the long-term blocking probability for voice
arrivals and the average delay seen by the data packets.

4 Computing the Optimal Policy

The above optimization problem can be solved using Dynamic Programming
techniques. Our system has a large state space, and Value Iteration Algorithm
is well suited for solving such a system over an infinite horizon. The recursion
equation for Value Iteration can be written as

Jk+1(i) = min
u∈U(i)

⎧⎨
⎩g(i,u) +

S∑
j=1

pij(u)Jk(j)

⎫⎬
⎭

Here i is the current state and u is one of the feasible actions. After con-
vergence, the equation can be interpreted as follows. The cost of k + 1 stages
is broken into immediate cost and the cost incurred over the next k stages. We
note that the time indexing has been reversed here, and Jk(i) can be interpreted
as the expected “cost-to-go” with k periods left over the time horizon, when the
current state is i and a terminal cost of J0(j) is incurred when the system ends up
in state j. This suggests that for large k, the one-step difference Jk(i)− Jk−1(i)
will come very close to the minimal average cost per unit time [12].

Let the set of admissible (feasible) policies for a state be denoted by Π(xn).
Natural constraints that arise in our system are

D(n) ≤ min{Q(n), r} and ac(n) ≤ AV (n)

The number of ON voice users along with the number of data packets in
transmission should satisfy the outage probability constraint in every slot. For
slot n, taking the limiting value of outage probabilty

Pout = P

{
V (n + 1)

aV
+

D(n)
aD

> 1
}

= δ ⇒ P{V (n + 1) > Cn} = δ (8)

where Cn = �aV (1−D(n)/aD)�

56 S. Mahajan, M. Singh, and A. Karandikar

At the start of slot n, before deciding on the action, we know KV (n), the
number of active voice users, and V (n), the number of ON voice users, that were
there in the previous slot. Now, for a given value of ac(n), we can determine the
maximum number of data packets that can be scheduled so that Pout does not
exceed δ.

V (n + 1) = V (n) + ac(n)−G(n) + VON (n)− VOFF (n)
⇒ Pout = P{VON (n)− VOFF (n)−G(n) > Cn − V (n)− ac(n)}

Denoting KV (n) by Kv and V (n) by V ,

Pout =
Kv+ac∑
j=Cn

V∑
z=0

Kv−V∑
y=0

V −z∑
x=0

(
V

z

)
qz(1− q)V −z

(
Kv − V

y

)
(1− u)yuKv−V −y

(
V − z

x

)
(1− q − s)x

sV −z−xδf (j − (V + ac − z + y − x))

where j, z, y, x count V (n + 1), G(n), VON (n), VOFF (n) respectively and δf (x)
denotes the impulse function. We can thus determine Cn and the corresponding
D(n). Let us call this number Dmax. Accordingly, we modify the admissible
values of D(n) to

D(n) ≤ min{Dmax, Q(n), r}
Iterating on the cost Jk, the algorithm searches for the minimum cost policy

among the admissible set Π(x) for every state x. Let ck(x) = Jk+1(x)− Jk(x).
The average cost, in the long run, is given by

lim
k→∞

ck(x) = lim
k→∞

(Jk+1(x)− Jk(x))

The convergence criteria used, for a desired level of accuracy ε is,

max
∀x

(ck+1(x)− ck(x)) < ε (9)

The policy so computed is a stationary policy- given that the system is in a
particular state, the optimal action is fixed in time. This has a lot of practical
utility, since the mapping from states to actions can be computed and stored in
the case where traffic characteristics vary slowly with time.

5 Results and Observations

Table 1 gives the values of parameters used in the computations, unless specified
otherwise. We consider a representative system with 15 voice subscribers and a

Table 1. Values of parameters used for computations

t0 W γV γD aV aD p q s u δ λD N L, r M β

20ms 1.25MHz 7dB 10dB 10 7 0.04 0.04 0.67 0.5 0.01 20 15 10 10 0.5

Optimal Access Control for an Integrated Voice/Data CDMA System 57

data queue with a buffer capacity of 10 packets. The system can support 10 voice
users if no data packets were scheduled for a slot. The values of s and u used
correspond to mean ON time of 3 slots (60 ms) and mean OFF time of 2 slots
(40 ms) respectively. Similarly, q = 0.04 corresponds to a mean call holding time
of 25 slots, which is 500 ms. The small value of λD has been taken so that the
average queue length is not more than 5 for a reasonable delay. e.g. for a delay
of 5 slots, the average queue length is 2 packets.

In Figure 1(a) and Figure 1(b)we plot the number of accepted calls (ac) and
the number of data packets scheduled (D), respectively, as we vary the number
of voice call arrivals (AV) and the queue length (Q), while the number of users
in the system (KV) and the number of ON voice users (V) are kept constant.
The fairness of the optimal policy is evident when, for the same number of
active users, ON users and arrivals in the system, lesser number of voice calls
are accepted and more data packets are scheduled as the queue length increases.
To take an example, for 5 users in the system out of which 3 are ON, and 5
arrivals, ac = 5, D = 0 when Q = 3, while we get ac = 2, D = 1 when Q = 4.

On convergence of the algorithm, the differential cost so obtained (Jk+1−Jk)
is the minimum cost per stage of running the system. We plot the optimal cost
per stage versus the parameter λD of the Poisson arrival process of data packets.
As shown in Figure 2, increasing the probability of voice call initiation (p) results
in higher operating costs. This is expected because with increased load on the
system, the average queue length and the fraction of rejected voice calls increases
and hence the average cost will increase.

The value of β affects the relative priority of voice arrivals or queued data
packets. Figure 3 illustrates how the number of accepted voice calls decrease
while the number of scheduled data packets increase, respectively, as we increase
β, the scaling factor of the data cost term. Values of other parameters are same
as given in the table.

Fig. 1. (a) No. of accepted calls as a function of no. of arrivals and queue length (for
KV = 5, V = 3) (b) No. of data packets scheduled as a function of no. of arrivals and
queue length (for KV = 5, V = 3)

58 S. Mahajan, M. Singh, and A. Karandikar

10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

arrival rate of data packets, λ
D

op
tim

al
 c

os
t

p = 0.02

p = 0.03

p = 0.04

p = 0.05

Fig. 2. Optimal cost vs data arrival rate for different values of call initiation
probability p

0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

scaling factor, β

no
. o

f v
oi

ce
 c

al
ls

 a
dm

itt
ed

, a
c

a
c
 vs β

for system state (2,0,8,10)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

scaling factor, β

no
. o

f d
at

a
pa

ck
et

s
sc

he
du

le
d,

 D

D vs β
for system state (2,0,8,10)

Fig. 3. (a) No. of voice calls accepted vs scaling factor (b) No. of data packets scheduled
vs scaling factor

6 Conclusions and Future Directions

In this paper, we have considered the problem of admission control of voice
users and scheduling (transmission) of data packets on the reverse link of a
slotted CDMA system for a single cell scenario. We have computed an optimal
policy for access control (voice call admission and data packet transmission) by
minimizing a weighted sum of long term blocking probability for voice arrivals
and the average delay seen by data packets. The optimization problem has been
formulated over an infinite horizon, and solved using Value Iteration. The results
illustrate the fairness of such a policy - the data queue is not starved of resources
even if the voice load on the system increases. We observe that by increasing the
weight of the cost term attributed to the delay of data packets, the number of
data packets transmitted (keeping values of other variables same) increases, and
vice versa.

In spite of the practical utility of such an algorithm, we note that the solution
does not give us actual values of call blocking probability (pB) and average delay

Optimal Access Control for an Integrated Voice/Data CDMA System 59

(τ) that are achieved by the system. We can address this shortcoming by solving
a constrained optimization problem, that of minimizing pB while τ is upper
bounded by a specified value Υ . The solution thus obtained not only gives us
the required policy, but the optimal cost is a lower bound for pB . Due to lack of
space, this formulation has not been discussed here.

References

1. Andrew J. Viterbi CDMA: Principles of Spread Spectrum Communication Addison
Wesley Longman Inc., 1995

2. Ashwin Sampath, P. Sarath Kumar, Jack M. Holtzman, “Power Control and Re-
source Management for a Multimedia CDMA Wireless System” Proceedings of
PIMRC’95 Toronto, Canada, September 1995

3. Ashwin Sampath, Jack Holtzman, “Access Control of Data in Integrated
Voice/Data CDMA Systems: Benefits and Tradeoffs” IEEE Journal on Selected
Areas in Communications Vol.15, No.8, October 1997

4. Sudhir Ramakrishna, Jack M. Holtzman, “A Scheme for Throughput Maximization
in a Dual-Class CDMA System ” IEEE Journal on Selected Areas in Communica-
tions Vol.16, No.6, August 1998

5. Sudhir Ramakrishna, Jack M. Holtzman, “Throughput Maximization in a DS-
CDMA System via Time Scheduling with Inter-Cell Interference Constraints”
http://winwww.rutgers.edu/pub/about/people/student/rsudhir/jsac2.ps

6. Dongxu Shen, Chuanyi Ji, “Admission Control of Multimedia Traffic for Third
Generation CDMA Network” Proceedings of IEEE INFOCOM 2000 Volume: 3,
26-30 Mar 2000

7. C. Comaniciu, N. B. Mandayam, D. Famolari, P. Agrawal, “QoS Guarantees for
Third Generation (3G) CDMA Systems via Admission and Flow Control” Vehic-
ular Technology Conference (VTC), 2000 Volume: 1 , 2000

8. Yue Ma, James J. Han, Kishor S. Trivedi, “Call Admission Control for Reducing
Dropped Calls in CDMA Cellular Systems” IEEE Infocom, pp.1481-1490, 2000.

9. Mohsen Soroushnejad, Evaggelos Geraniotis, “Multi-Access Strategies for an Inte-
grated Voice/Data CDMA Packet Radio Networks” IEEE Transactions on Com-
munications Vol.43, No.2/3/4, February 1995

10. Taekyoung Kwon, Sooyeon Kim, Yanghee Choi, M. Naghshineh “Threshold-type
Call Admission Control in Wireless/Mobile Multimedia Networks using Prioritised
Adaptive Framework” Electronics Letters Volume: 36 Issue: 9 , 27 Apr 2000

11. Jihyuk Choi, Taekyoung Kwon, Yanghee Choi, Mahmoud Naghshineh “Call Ad-
mission Control for Multimedia Services in Mobile Cellular Networks: a Marko-
vian Decision Approach” Proceedings of Fifth IEEE Symposium on Computers
and Communications (ISCC), 2000.

12. Henk C. Tijms Stochastic Modelling and Analysis- A Computational Approach
John Wiley & Sons

13. Cyrus Derman Finite State Markovian Decision Processes Academic Press 1970
14. Dmitri P. Bertsekas Dynamic Programming and Optimal Control Vol.I, Athena

Scientific, Massachusetts, 1995

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 60–70, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Adaptive Load Balancing of Cellular CDMA Systems
Considering Non-uniform Traffic Distributions

Kuo-Chung Chu1, 2 and Frank Yeong-Sung Lin1

1 Department of Information Management, National Taiwan University,
2 Department of Information Management,

Jin-Wen Institute of Technology, Taipei, Taiwan
d5725003@im.ntu.edu.tw

Abstract. In this paper, we investigate the load balancing problem by jointly
considering sectorization and hybrid F/CDMA scheme in the scenario of
non-uniform traffic distributions. The problem is formulated as a mathematical
optimization model, and is solved by Lagrangean relaxation approach. The
model objective is to minimize weighted blocking probability in terms of
distribution diversity. To evaluate the model, performance analysis of adaptive
load balancing is conducted by proposed bandwidth segmentation scheme; it is
denoted adaptive scheme (AS). Non-adaptive (NA) approach by common
power control scheme is compared. Combining sectorization and bandwidth
segmentation scheme provides novel adaptive load balancing. Performance
improvement that proposed adaptive scheme outperforms common power
control scheme is about 50%.

1 Introduction

Code-division multiple access (CDMA) technique has been a promising technique for
next generation wireless communication systems since the same bandwidth is shared
by all users in the system, i.e. reuse of unity, soft channel capacity, and so forth. Users
transmitting in the same frequency band are identified by user-specific code. For the
sake of imperfect code orthogonality, interferences are incurred. In a multi-cellular
environment, whenever a particular CDMA cell becomes increasingly loaded and the
user increases, it will unavoidably affect all users in the system, not only the users in
the home cell but also those in neighboring cells, especially in the scenario of hot spot
and non-uniform traffic distributions. Hence, the system performance decreases as the
number of active users increases.

Generally, a solution to the interference problem is power control mechanism for
uniform traffic distribution environment, which attempts to achieve constant received
mean power from each mobile within a cell [1]. However, with hot-spot cell,
powering up all users in the cell to accommodate more users will result in excessive
interference to users in neighboring cells to maintain sufficient signal-to- interference
ratio (SIR) levels at their cell sites. Considering linear distribution, as in highway,
power control may not be appropriate approach in the scenario. For non-uniform
traffic distribution, sectorization is an effective way to maximize the network capacity

Adaptive Load Balancing of Cellular CDMA Systems

61

[2][3]. The goal of dynamic sectorization is similar to load balancing in previous
studies [4][5]. Adaptive load-shedding scheme combines the power control and soft
handoff functionality to enforce some users farthest away from cell/base station (two
terms are used in turn hereafter) enter forced soft handoffs, and transfer to
neighboring cells that are lightly loaded. In such a way, heavily loaded cells
dynamically down size their coverage area in order to serve traffics, while adjacent
cells that are less heavily loaded increase their coverage to accommodate the extra
traffics.

A hybrid F/CDMA scheme has been proposed to moderately mitigate
interferences [6]. In consideration of F/CDMA, capacity analysis in multi-band
overlaid CDMA is proposed, and maximum bandwidth utilization is obtained [7][8].
Especially, the multi-band spectrum is to provisioning heterogeneous services
requirements with sub-bands [8]. In this paper, we investigate the load balancing to
maximize system capacity by jointly considering sectorization and allocating
appropriate sub-spectrum in a cell. CDMA background is given in section 2. Section 3
presents the model of adaptive load balancing as well as solution approach. Section 4
illustrates the computational experiments. Finally, Section 5 concludes this paper.

2 CDMA Background

2.1 Sectorization and Hybrid F/CDMA Scheme

The common way to reducing the interference between users is sectorization using
directional antennas. Sectorization utilizes the spatial domain to introduce
orthogonalization [2][3] to the system. Since only a subset of the users is received at
each antenna, the interference that each user incurs is less compared to a single antenna
system. Without loss of generality, the interferences between users can be treated as the
interferences between sectors. If the interference indicator function between sectors is
pre-calculated, the interference from other users/cells is easily analyzed.

To do so, sector candidates probably configured in base station (BS) must be
defined. Denote K the set of sector configurations. Denote S the set of sector
candidates, each sector candidate ,k is is defined by both sector configuration (k) and

sector identity (i). Denote B

the set of BSs, in this paper, two configurations are given

at base station (K =2), they includes one sector (360 with omni-directional antenna)

and three sectors (120 per sector), and assign k =1, 2, respectively. For simplicity, ,k is

is substituted by s , and denote sectorjs the sector s in BS j (,k is S∀ ∈ , j B∈), where

B is the set of base stations.
In hybrid F/CDMA scheme, the available wideband spectrum is divided into a

number of sub-bands with smaller bandwidths. Each sub-band employs direct sequence
(DS) spreading with reduced processing gain and is transmitted in one and only one
sub-band. The capacity of this F/CDMA system is calculated as the sum of the
capacities of the sub-band. Given the whole bandwidth WHOLEBW 60MHZ in both

K.-C. Chu and F.Y.-S. Lin

62

uplink and downlink (in both
,k i

DL
jsW and

,k i

UL
jsW), which is made up of FUN frequency

units (FU) with FUBW =6MHZ, where FUN = WHOLE FUBW BW =10. By integrating FU

a number of frequency segments (FS), so-called sub-band, can be separated. FS instead
of whole bandwidth is deployed in sectorjs . The term frequency segment and sub-band

will be used in turn throughout the paper.
We investigate the load balancing by jointly considering sectorization and hybrid

F/CDMA scheme in the scenario of non-uniform environment. If there are four
frequency segments (FS0, FS1, FS2, and FS3) to be assigned in a cell/sector, for each
of traffic distributions in Fig. 1 where shadow cell means heavy loads, the probable
assignment would be different. Since the nature of non-uniform traffic distribution, the
bandwidth requirement in each cell to satisfying SIR would be varied. The proposed
scheme is called “adaptive load balancing” to optimally assigning FS with respect to
traffic loads, the interferences between cells/sectors can be mitigated by bandwidth
segmentation. For example, if WHOLEBW allocated in downlink connection is

decomposed into five FUs, FUN = FU = WHOLE FUBW BW =5, the frequency segments

(FS) that combined consecutively from FU are categorized into five groups of FS
length. Thus, the set FU ={ 1, 2, 3, 4, 5 }, the set FS ={ (1), (2), (3), (4), (5), (1,2),
(2,3), (3,4), (4,5), (1,2,3), (2,3,4), (3,4,5), (1,2,3,4), (2,3,4,5), (1,2,3,4,5) }. The total
number of FS, FSN = FS = () 21DL DL

FU FU
N N× + = 5 6 2× =15.

FS0 FS0

FS0 FS0

FS0FS0

FS0

FS1

FS1

FS1

FS2

FS2

FS2

FS3

FS1

FS1

FS2

FS2

FS3 FS3 FS3

(a) uniform model (b) hot spot (c) linear model

Fig. 1. Scenarios of F/CDMA scheme applied in distribution diversity

2.2 Interference Model

Given sector configuration, the interference indicator functions ' '
UL
js j sΩ and ' '

DL
js j sΩ for

uplink (UL) and downlink (DL) from sectorjs to ' 'sector j s , respectively, can be

pre-calculated. Denote ULFS and DLFS the FS set in UL and DL, respectively.

Applying bandwidth segmentation scheme, let jsux (jsdy) be the decision variable

which is 1 if sectorjs deploys frequency segment ULu FS∈ (DLd FS∈) or 0 otherwise.

Thus, bandwidth allocated for uplink and downlink is calculated by WUL
js

=
UL

UL
jsu u FU

u FS

x L BW
∈

⋅ ⋅ and WDL
js =

DL

DL
jsd d FU

d F

y L BW
∈

⋅ ⋅ , respectively, where uL (dL) is the

Adaptive Load Balancing of Cellular CDMA Systems

63

length of u (d). Frequency segments deployed in any two sector js probably exists

overlapping of FUs. Furthermore, the interference indicator function '
UL
u uΨ from u to

'u can be pre-calculated, and the indicator function DL
d d'Ψ is similar to '

UL
u uΨ .

For traffic distribution, denote C the set of traffic classes and ()c t (()c t C∈) the

traffic class of call request from mobile station (MS) t (t T∀ ∈), where T is the set of
mobile stations. If call type of MS t belongs to class- c , class- ()c t is equivalent to

class- c . Let ()
UL
c td (()

DL
c td) be the information rate in uplink (downlink). Denote jstz the

decision variable which is 1 if MS t is granted by sectorjs or 0 otherwise. Assuming

both link powers are perfectly controlled, it ensures the received power at sectorjs from

MS t with constant value in same traffic class- ()c t . Denote ()
UL

c tP (()
DL

c tP) the received

uplink (downlink) power signal, the signal-to-interference ratio (SIR) , ()
UL
js c tSIR in

uplink, which consists of processing gain and intra-inter cell/sector interferences, is

defined as ()
, ()

() , ,

(1)

(1)

UL UL
js c t jstUL

js c t UL UL UL UL
c t jst intra jst inter

W P z V
SIR

d I Iρ
+ −

= ⋅
− +

, where ULρ is the uplink orthogonality factor,

()
UL
c tα is uplink activity factor. A very large constant value V in numerator is to satisfy

constraint requirement if MS t is rejected (jstz =0). Denote jtD the distance from MS t

to sectorjs , and given attenuation factor τ =4, the intra-cell interference is

', (') (') '
'

UL UL UL
t Tjst intra c t c t jst
t t

I P zα∈
≠

= and inter-cell ,
UL
jst interI in uplink can be expressed by (1).

Equation (1) jointly considers effect of inter-sector and inter-FS on inter-cell
interference.

Linear model is a best form to efficiently solve the integer programming problem.
Unfortunately, the coupling of decision variables (jsux , jstz) and decision variables

(' ' 'j s ux , jsux , jstz) results to non-linear form in , ()
UL
js c tSIR and (1), respectively. Here we

introduce auxiliary variable jsut jsu jstx zγ = (s.t. 2jsu jst jsutx z γ+ ≥ ⋅ , 1jsu jst jsutx z γ+ − ≤)

so that non-linear form can be reduced to linear form. Applying auxiliary variable jsutγ ,

, ()
UL
js c tSIR can be rewritten as (2). Based upon jsutγ , another auxiliary variable

' ' ' 'j s u jsutζ = ' ' ' 'j s u t jsuxγ = ' ' ' ' ' 'j s u j s t jsux z x is also employed (s.t. ' ' ' ' ' ' ' '2j s u t jsu j s u t jsuxγ ζ+ ≥ ⋅ ,

' ' ' ' ' ' ' '1j s u t jsu j s u t jsuxγ ζ+ − ≤). Applying auxiliary variable ' ' ' 'j s u jsutζ , (1) can be rewritten

as (3).

 ()' '
, ' ' (') (') ' ' ' ' ' ' '

' ' ' ''
' ' '

UL UL

j tUL UL UL UL UL
jst inter j s js c t c t j s t u u j s u jsu

j B s S t T u FS u FSjt
j j s s t t

D
I P z x x

D

τ

α
∈ ∈ ∈ ∈ ∈
≠ ≠ ≠

= Ω Ψ (1)

()()

()
()

, ()

() , ,(1)

UL

UL UL
u FU jsu jsutc tu FUL

js c t UL UL UL UL
c t jst intra jst inter

L BW x VP V
SIR

d I I

γ

ρ
∈

−+
=

− +
 (2)

K.-C. Chu and F.Y.-S. Lin

64

 ' '
, ' ' ' ' ' ' ' (') (')

' ' ' ''
' ' '

UL UL

j tUL UL UL UL UL
jst inter j s js u u j s u t jsu c t c t

j B s S t T u FS u FSjt
j j s s t t

D
I P

D

τ

ζ α
∈ ∈ ∈ ∈ ∈
≠ ≠ ≠

= Ω Ψ (3)

In downlink connection, it is similar to uplink except that the interference of intra-cell
is more complicated. Auxiliary variables jsdt jsd jsty zη = and ' ' ' 'j s d jsdtξ = ' ' ' 'j s d t jsdyη =

' ' ' ' ' 'j s d j s t jsdy z y are introduced that subject to (2jsd jst jsdty z η+ ≥ ⋅ , 1jsd jst jsdty z η+ − ≤)

and (' ' ' ' ' ' ' '2j s d t jsd j s d t jsdyη ξ+ ≥ ⋅ , ' ' ' ' ' ' ' '1j s d t jsd j s d t jsdyη ξ+ − ≤), respectively. Associated

models are expressed in (4)-(6).

'

', (') (') '
'

jtDL DL DL
t Tjst intra c t c t jst
t t jt

D
I P z

D

τ

α∈
≠

= (4)

' '

, ' ' ' ' ' ' ' (') (')
' ' ' ' '
' ' '

DL DL

j tDL DL DL DL DL
jst inter j s js d d j s d t jsd c t c t

j B s S t T j t d FS d FS
j j s s t t

D
I P

D

τ

ξ α
∈ ∈ ∈ ∈ ∈
≠ ≠ ≠

= Ω Ψ (5)

()()

()
()

, ()

() , ,(1)

DL

DL DL
d FU jsd jsdtc td FSDL

js c t DL DL DL DL
c t jst intra jst inter

L BW y VP V
SIR

d I I

η

ρ
∈

−+
=

− +
 (6)

3 Adaptive Load Balancing Model

3.1 Performance Measure

In this paper, we consider multiple traffic classes in adaptive load balancing. Kaufman
model [9] is used as a performance measure to effectively analyze blocking probability
for each traffic class. Assuming M channels are shared by all traffic requirements. For
each traffic class- c (c C∀ ∈) with distinct resource requirements, the traffic arrival is a
stationary Poisson process with mean rate λ . The channel requirement b is an
arbitrary discrete random variable ({ }c cP b b q= = , c C∀ ∈). A call request with

channel requirement
cb has holding time with mean cμ . Thus, traffics with channel

requirement cb generate in Poisson arrival process with mean rate c cqλ λ= and the

class- c offered load c c ca λ μ= . The blocking probability of traffic class- c is defined

as () ()1

0
, cbc

i
B q ia b M

−

=
= − , where the distribution of ()q i , the number of channels

occupied for the complete sharing policy, satisfies the equation

() ()c c cc C
a b q j b jq j

∈
− = , 0, 1, ..., j M= , and () 0q x = for 0x < and

0
() 1

M

j
q x

=
= .

Adaptive Load Balancing of Cellular CDMA Systems

65

3.2 Problem Formulation and Solution Approach

The capacity of each cell/sector is calculated subject to SIR requirement. Probably, the cell
that is lightly loaded is incurred more interference from the heavily loaded cell, it results to
increasing blocking probability in lightly loaded cell. Appropriately allocating FS in a
sector/cell to mitigate interference is considerable in the environment with heterogeneous
traffics. The aim of the model is to investigate the load balancing among all cells/sectors in
terms of blocking probability. Performance measure, c

jsB the call blocking probability of

traffic class-c in sectorjs , developed by Kaufman is applied. Denote c
js jsc C

g g
∈

= the

aggregate traffic (in Erlangs) in sectorjs , where c
jsg is the aggregate intensity of class- c ,

and denote jsm = ()c t
jstt T

z m
∈

 the number of total channels allocated in sectorjs , where
()c tm is the number of channels required for traffic class- ()c t . The weighted factor jsw is

expressed by c c
js js jsc C j B s S c C

w g g
∈ ∈ ∈ ∈

= . To objective function (IP) is to

minimize weighted blocking probability, in which cK is the balancing coefficient (BLC)
where 1c

c C
K

∈
= . If 1cK > 2cK , it claims that class-c1 is more concerned than class-c2

about traffic load balancing.

 ()min ,c c
IP js js js jsc C

j B s S

Z K w B g m
∈

∈ ∈

= (IP)

()()
()

()

() () , ,(1)

UL

UL ULUL
u FU jsu jsutc tu Fb

UL UL UL UL
TOTAL c t c t jst intra jst inter

L BW x VP VE

N d I I

γ

ρ
∈

−+
≤

− +
 , ,j B s S t T∀ ∈ ∈ ∈ (7)

()()
()

()

() () , ,(1)

DL

DL DLDL
d FU jsd jsdtc td Fb

DL DL DL DL
TOTAL c t c t jst intra jst inter

L BW y VP VE

N d I I

η

ρ
∈

−+
≤

− +
 , ,j B s S t T∀ ∈ ∈ ∈ (8)

 () ()
c

jst c t c t jst T
z gλ μ

∈
= , ,j B s S c C∀ ∈ ∈ ∈ (9)

 ()c t
jst jst T

z m m
∈

= ,j B s S∀ ∈ ∈ (10)

 jst jt js jstz D R δ≤ , ,j B s S c C∀ ∈ ∈ ∈ (11)

 1jst
j B s S

z
∈ ∈

≤ t T∀ ∈ (12)

 2 jsut jsu jstx zγ⋅ ≤ + , , , , ULj B s S t T u FS∀ ∈ ∈ ∈ ∈ (13)

 1jsu jst jsutx z γ+ − ≤

, , , , ULj B s S t T u FS∀ ∈ ∈ ∈ ∈ (14)

 ' ' ' ' ' ' ' '2 j s u jsut j s u t jsuxζ γ⋅ ≤ + , ' , ', , ' , ', ' , , ' ULj j B j j s s S s s t T u u FS∀ ∈ ≠ ∈ ≠ ∈ ∈ (15)

 ' ' ' ' ' ' ' '1j s u t jsu j s u jsutxγ ζ+ − ≤ , ' , ', , ' , ', ' , , ' ULj j B j j s s S s s t T u u FS∀ ∈ ≠ ∈ ≠ ∈ ∈ (16)

 2 jsdt jsd jsty zη⋅ ≤ + , , , , DLj B s S t T d FS∀ ∈ ∈ ∈ ∈ (17)

 1jsd jst jsdty z η+ − ≤

, , , , DLj B s S t T d FS∀ ∈ ∈ ∈ ∈ (18)

K.-C. Chu and F.Y.-S. Lin

66

 ' ' ' ' ' ' ' '2 j s d jsdt j s d t jsdyξ η⋅ ≤ + , ' , ', , ' , ', ' , , ' DLj j B j j s s S s s t T d d FS∀ ∈ ≠ ∈ ≠ ∈ ∈ (19)

 ' ' ' ' ' ' ' '1j s d t jsd j s d jsdtyη ξ+ − ≤ , ' , ', , ' , ', ' , , ' DLj j B j j s s S s s t T d d FS∀ ∈ ≠ ∈ ≠ ∈ ∈ (20)

()

()

jsc t
c t T
js

jsc t
t T

z

δ
∈

∈

Φ ≤ , ,j B s S c C∀ ∈ ∈ ∈ (21)

 1
UL

jsu
u FS

x
∈

= ,j B s S∀ ∈ ∈ (22)

 1
DL

jsd
d FS

y
∈

= ,j B s S∀ ∈ ∈ (23)

 0 or 1jstz = , ,j B s S t T∀ ∈ ∈ ∈ (24)

 0 or 1jsux = ULu FS∈ (25)

 0 or 1jsdy = DLd FS∈ (26)

0 or 1jsutγ = , , , , ULj B s S t T u FS∀ ∈ ∈ ∈ ∈ (27)

 0 or 1jsdtη = , , , , DLj B s S t T d FS∀ ∈ ∈ ∈ ∈ (28)

 ' ' ' ' 0 or 1j s u jsutζ = , ' , ', , ' , ', ' , , ' ULj j B j j s s S s s t T u u FS∀ ∈ ≠ ∈ ≠ ∈ ∈ (29)

 ' ' ' ' 0 or 1j s d jsdtξ = , ' , ', , ' , ', ' , , ' DLj j B j j s s S s s t T d d FS∀ ∈ ≠ ∈ ≠ ∈ ∈ (30)

Denote () ()

UL

b TOTAL c t
E N and () ()

DL

b TOTAL c t
E N the QoS requirement of admission control,

then SIR constraint for uplink and downlink is expressed by (7) and (8), respectively.
Traffic intensity of class- c in sectorjs is calculated in (9), where ()c tλ is mean arrival

rate for class-c(t). The number of channels allocated is constrained by (10). Denote jstδ

indication function which is 1 if MS t is covered by sectorjs or 0 otherwise. MS t can be

serviced in the coverage of sectorjs by (11), where j sR

is the power transmission

radius and jtD

is the distance from sectorjs to MS t. Constraint (12) requires that each

mobile user can be homed to only one base station. We do not take soft handoff into
account. Since four auxiliary decision variables are introduced, a number of constraints

are listed from (13) to (20). A pre-defined service rate c
jsΦ for class-c is given in (21).

Using bandwidth segmentation scheme, only one FS can be deployed in uplink and
downlink by constraint (22) and (23), respectively. Constraints (24)-(30) are integer
properties of the decision variables.

To solving the complicated optimization model, Lagrangean relaxation method is
applied [10]. Problem (IP) is transferred to be a dual problem max ()D DZ Z V= by

relaxing ten constraints (7), (8), (13)-(20), then multiply the relaxed constraints with
corresponding Lagrangean multipliers vector V=(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10), and
add them to the primal objective function. We then get Lagrangean relaxation (LR)

Adaptive Load Balancing of Cellular CDMA Systems

67

problem, which is further decomposed into three independent subproblems, including
admission control subproblem related to jstz , uplink bandwidth allocation subproblem

related to jsux , jsutγ , ' ' ' 'j s u jsutζ , and downlink bandwidth allocation subproblem related

to jsuy , jsutη , ' ' ' 'j s u jsutξ . All of them can be optimally solved efficiently by proposed

algorithms1. According to the weak Lagrangean duality theorem, for any 0V ≥ , the
objective value of ()DZ V is a lower bound (LB) of ZIP. Thus, the dual problem (D)

max ()D DZ Z V= subject to 0V ≥ is constructed to calculate the tightest lower bound

by adjusting multipliers. Subgradient method is used to solving the dual problem. Let
the vector S be a subgradient of ()DZ V at 0V ≥ . In iteration k of subgradient

optimization procedure, the multiplier vector π is updated by 1k k k kt Sπ π+ = + , in

which kt is a step size determined by () 2* ()k k k
IP Dt Z Z Sλ π= − , where *

IPZ is an

upper bound (UB) on the primal objective function value after iteration k, and λ is a
constant where 0 2λ≤ ≤ . To calculate upper bound of (IP), the algorithm of getting
primal feasible solutions is also proposed 2.

4 Computational Experiments

4.1 Environment and Parameter

The structure of 5 5× two-dimensional array with hexagonal cells is deployed, and

given jsR =5.0km. The required bit energy-to-noise density (QoS) for voice (v) and

data (d) traffics ()UL

b TOTAL v
E N = ()UL

b TOTAL v
E N =7dB and ()UL

b TOTAL d
E N = ()UL

b TOTAL d
E N =10 dB,

respectively, and the information rate UL
vd = DL

vd =9.6bps, UL
dd =19.2bps, DL

dd =38.4bps.

Activity factor UL
vα = DL

vα = UL
dα = UL

dα =0.5. Number of channel required vm =1, dm =4.

Orthogonality factor ULρ =0.9, DLρ =0.7. Power is perfectly controlled by UL
vP =10dB,

DL
vP =15 dB, UL

dP =15 dB, DL
dP =20 dB. Service rate v

jsΦ = d
jsΦ =0.1. Call requests for

voice and data are generated in Poisson arrival process with vλ and dλ , respectively.

The mean call holding time is given vμ =180(sec), dμ =600(sec). Traffic intensity

generated in heavy loaded cells of non-uniform distribution is multiple of five in
uniform distribution.

For each case of distributions, IPZ is solved with maximum number of 1000
iterations. The improvement counter is given 25. Time consumed in each case is up to
370 (sec). The error gap defined by (UB-LB)/LB*100% is calculated less than 30% in
all cases. For the purpose of statistic analysis, 100 tests are experimented in each case.
Performance analysis is based on the average of 100 tests.

1, 2

 Detailed algorithms are omitted due to the length limitation of the paper. A complete version
of the paper is available upon request.

K.-C. Chu and F.Y.-S. Lin

68

4.2 Performance Analysis

Traffic distributions including uniform (U), linear (L), as well as hop spot (H)
models as shown in Fig. 1 are considered, performance analysis of adaptive load
balancing is manipulated by proposed bandwidth segmentation scheme; it is
denoted adaptive scheme (AS). For the comparison purpose, non-adaptive (NA)
approach by common power control scheme [4][5] is implemented. Besides,
sectorization is also taken into account. We analyze the weighted blocking

0.024

0.025

0.026

0.027

0.028

0.029

0.03

6 9 12 15 18 21 24

NA-L
NA-H
NA-U
AS-L
AS-H
AS-U

IPZ

v
jsg

Fig. 2. Blocking as a function of voice
traffics with d

jsg =30 and S =1

0.024

0.026

0.028

0.03

0.032

0.034

12 18 24 30 36 42 48

NA-L
NA-H
NA-U
AS-L
AS-H
AS-U

IPZ

d
jsg

Fig. 3. Blocking as a function of data
traffics with v

jsg =15 and S =1

0

0.005

0.01

0.015

0.02

0.025

0.03

6 9 12 15 18 21 24

NA-L
NA-H
NA-U
AS-L
AS-H
AS-U

IPZ

v
jsg

Fig. 4. Blocking as a function of voice
traffics with d

jsg =30 and S =3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

12 18 24 30 36 42 48

NA-L
NA-H
NA-U
AS-L
AS-H
AS-U

IPZ

d
jsg

Fig. 5. Blocking as a function of data
traffics with v

jsg =15 and S =3

Adaptive Load Balancing of Cellular CDMA Systems

69

probability (IPZ) as a function of voice (data) traffic intensity with constant data
(voice) traffic, in which load balancing scheme v.s. traffic distribution is compared.
BLC ratio of vK vs. dK (0.5 vs. 0.5) is given.

First of all, without sectorization (S =1) and given d
jsg =30, IPZ is a function of

voice traffic in Fig. 2, while IPZ is a function of data traffic in Fig. 3 with v
jsg =15. In

the case of voice intensity v
jsg =15 in Fig. 2, no matter which distribution is considered,

proposed AS scheme reduces blocking percentage of (0.0265-0.025)/0.0265*100% =
56.6%. In Fig. 3, much more blocking (up to 0.034) is incurred in case of data intensity

d
jsg =48 with NA scheme. Considering sectorization with S =3, IPZ is harmonically

increasing function of data and voice traffics intensity in Fig. 4, and Fig. 5, respectively.
This implies that combining sectorization and bandwidth segmentation approaches
provides novel adaptive load balancing scheme. In summary, performance
improvement that proposed adaptive scheme outperforms power control scheme is
about 50%.

5 Conclusion

To maximize entire system capacity in ever-increasing non-uniform distribution, we
propose the load balancing mechanism by jointly considering sectorization and hybrid
F/CDMA scheme. Experiments show the mechanism is outstanding for performance
management. For more practical, further experiments can be conducted, such as more
generic cell planning rather than hexagonal cell structure, a great diversity of
non-uniform distributions, a lot of BLC combinations.

References

1. W.-M. Tam and F.C.M. Lau, “Analysis of power control and its imperfections in CDMA
cellular systems,” IEEE Trans. Veh. Technol., vol. 48, pp. 1706–1717, Sep. 1999.

2. C. U. Saraydar and A. Yener, “Adaptive cell sectorization for CDMA systems,” IEEE J.
Select. Areas Commun., vol. 19, pp. 1041–1051, June 2001.

3. C. Y. Lee, H. G. Kang, and T. Park, “A dynamic sectorization of microcells for balanced
traffic in CDMA: genetic algorithms approach,” IEEE Trans. Veh. Technol., vol. 51, pp.
63–72, Jan. 2002.

4. X.H. Chen and K.L. Lee, “A novel adaptive traffic load shedding scheme for CDMA cellular
mobile systems,” in Proc. ICCS, 1994, pp. 566–570.

5. X.H. Chen, “Adaptive traffic-load shedding and its capacity gain in CDMA cellular
systems,” in Proc. IEE Communications, 1995, pp. 186–192.

6. T. Eng and L. B. Milstein, “Comparison of hybrid FDMA/CDMA systems in frequency
selective Rayleig fading,” IEEE J. Select. Areas Commun., vol. 12, pp. 938–951, June 1994.

7. L. Zhuge and V. O. K. Li, “Reverse-link capacity of multiband overlaid DS-CDMA
systems,” Mobile Networks and Applications, vol. 7, pp. 101–113, 2002.

K.-C. Chu and F.Y.-S. Lin

70

8. L. Zhuge and V. O. K. Li, “Overlaying CDMA systems with interference differentials,”
Mobile Networks and Applications, vol. 8, pp. 269–278, 2003.

9. J. S. Kaufman, “Blocking in a shared resource environment,” IEEE Trans. Commun., vol. 29,
pp. 1474–1481, 1981.

10. M. L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming
Problems,” Management Science, vol. 27, pp. 1–18, 1981.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 71–80, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Active Framework for a WLAN Access Point Using
Intel’s IXP1200 Network Processor

R. Sharmila, M.V. LakshmiPriya, and Ranjani Parthasarathi

Dept. of Computer Science and Engg., College of Engineering, Guindy,
Anna University, Tamil Nadu, India

sharmilaradhakrishnan@rediffmail.com,
{tkslp, rp}@cs.annauniv.edu

Abstract. Active Networks provide the user with the capability to inject
customized programs into the network. The network nodes should interpret
these programs and perform the desired operation on the data flowing through
the network. The Network Processor (NP), a special purpose programmable
device designed specifically to process packets at high speed with its concurrent
packet processing model, forms an ideal platform for the implementation of
active networks. This paper presents the development of an active framework
using the IXP1200 network processor. This active framework is implemented
for a Wireless LAN Access Point that bridges wired and wireless network
segments. This framework allows the access point to use different
classification, scheduling or queue management algorithms for different
applications. The special features of IXP1200 such as multiprocessing,
multithreading, block data movement, etc., are exploited to develop the access
point and the active framework, with increased processing speed, scalability
and flexibility.

1 Introduction

Active Networks (AN)[1] are networks that allow routing elements to be programmed
by the packets passing through them. The network nodes interpret the programs carried
in the packets and perform desired operation on the data flowing through the network.
This allows computation previously possible only at endpoints to be carried out within
the network itself, thus enabling optimizations. Although, this concept of active
networks has been around for a long time, the deployment of these networks has not
really taken off. The prime reason here is the additional processing that needs to be
done at the intermediate routers, which has a negative impact on the efficiency in
packet processing. Added to this is the lack of flexibility for this kind of processing in
routers that are built using ASICs and FPGAs. With the advent of Network processors,
however, the scenario has changed. Network Processors are well suited for most
packet-processing tasks, ranging from content switching, load balancing, network
security, and terminal mobility. With their high processing capability, they also
provide an ideal platform for supporting the implementation of active networks [2].

R. Sharmila, M.V. LakshmiPriya, and R. Parthasarathi

72

This paper presents the development of an active framework on a network
processor. The network environment chosen for the active framework is the wireless
LAN. In a wireless LAN, the access point is the ideal location to implement the active
framework, as it acts as a bridge connecting the wired and wireless segments, with
vastly different bandwidth and reliability characteristics [3, 4]. For instance, in a
wired network, having static packet classification rules may suffice, whereas, in a
wireless environment, where nodes enter/leave the network, there is a need to change
the classification rules dynamically. Hence, it would be reasonable to have an active
framework on the access point, where, classification rules can be dynamically
downloaded and used. Similarly, other network functions like scheduling, queue
management, Qos support etc., can benefit from this flexibility.

The use of network processors for the access point itself is a recent approach.
Access points are typically implemented entirely in software on a general-purpose
processor or in hardware. Access points implemented in software [5,6,7] have the
disadvantage of lower packet processing speed but the advantage of greater
flexibility. On the other hand, access points implemented in hardware [8,9] have
greater processing power but are not flexible. Thus there exists a gap in the access
point domain. Network processor with its concurrent packet-processing model forms
an ideal platform for the implementation of access points, by providing both
flexibility and processing power. It is this flexibility that is further exploited to
provide an active framework in our work. The active framework is used to choose the
desired classification / scheduling / queue management algorithms in the access point
for different applications. The network processor used here is the Intel IXP1200 [10].
Even though network processors like the Intel’s IXP440, which have been specifically
designed for developing VPNs, access points, etc., could be used, we have chosen the
IXP1200 for its low cost. Thus we present a low cost solution to develop an active
access point.

The rest of the paper is organized as follows. Section 2 gives an overview of
IXP1200 network processor. Section 3 gives the design of the access point using
IXP1200 NP. Section 4 gives the design of the active framework on IXP1200 NP.
Section 5 presents the implementation and test results. Finally, section 6 gives the
conclusions and future work.

2 Overview of IXP1200 Network Processor

The IXP1200 [10] is an integrated Network Processor, comprised of a single
StrongARM processor, six Microengines, standard memory interfaces (SRAM,
SDRAM and scratch pad memory), and high-speed bus interfaces. Each microengine
can support four threads. The unique architecture of the IXP1200 provides the user a
highly concurrent packet-processing model, while keeping the programming model
simple.

The microengines are custom processors implemented specifically for networking
applications. The microengines being fully programmable processors are able to
examine packet contents at all levels of the networking stack. This makes them

An Active Framework for a WLAN Access Point

73

suitable not only for layer 2 and 3 switching and/or forwarding, but also for
applications that require deeper inspection and manipulation of packet contents.

3 Design of the Access Point Using IXP1200 Network Processor

The access point sits between the wired and wireless LAN. The wired network
considered is 802.3 Ethernet network and the wireless network is 802.11. The access
point basically forwards packets from the wireless nodes (802.11) destined to nodes
on the wired segment (Ethernet) and vice versa. Packets destined to the same network
segment from which it originated are discarded. The packets that are selected for
forwarding are mapped to the packet format of the destination segment.

To implement the above functions a Bridge Table (BT), a table that maps MAC
address of the network nodes to the ports on which it arrived is maintained. An Active
Station Table (AST) is also maintained which contains the MAC addresses of the
wireless network nodes. The system also has a default classifier, a default queue
manager and a default scheduler. The default queue management used is ‘tail-drop’
policy. Here packets in the tail of the queue are removed when overflow occurs. For
classification, Class Based Queuing (CBQ)[11] is used. Till now CBQ has been used
at the IP layer. In this access point, CBQ is used at the MAC layer i.e., MAC
addresses are used for classification instead of IP addresses. In a wireless scenario, the
IP addresses are not fixed. Hence classifying packets based on IP addresses is not
reasonable, in this scenario. So, we classify packets based on their MAC addresses
that are fixed. The default scheduling algorithm used is priority scheduling. Here all
higher priority packets are serviced before lower priority packets.

3.1 Access Point Modules

The overall block diagram of the access point on IXP1200 NP is shown in Fig. 1. The
various modules are Ingress, Default Classifier, Receive Handler, Default Scheduler,
Send Handler, and Egress for Ethernet/802.11, Default Queuing Management Module
and Table management Module. The block diagram also shows the mapping of the
modules to various microengines of the IXP1200 network processor. The
functionality of each of the modules is described below.

Ingress for Ethernet/802.11. This module gets the packet from Ethernet/802.11 port
and copies it into an input buffer in SDRAM. The buffer is allocated from a buffer
pool by name IBUFF1/IBUFF2 respectively. When a buffer is allocated, memory of
the defined size is allocated both in SRAM and SDRAM. The incoming packet is
stored in SDRAM and the packet descriptor is stored in SRAM. The fragmented
‘mpackets’ of a single incoming packet, that arrive at the Ethernet/802.11 ports, are
defragmented by this module and copied into the corresponding buffer. The packet
descriptor contains details of the total number of quad words in the packet and the
total number of bytes in the packet. The send handler and egress modules use the
packet descriptor. The packet descriptor is constructed as shown in Fig. 2 and placed

R. Sharmila, M.V. LakshmiPriya, and R. Parthasarathi

74

ME-n – Micro Engine n TM –Table Manager (Bridge Table & Station Table)
DQM – Default Queue Manager Tn – Thread n
Wireless-802.11
DSW- Default Scheduler RW-Receive Handler IW-Ingress
DCW- Default Classifier SW- Send Handler EW – Egress
Ethernet
DSE-Default Scheduler RE-Receive Handler IE – Ingress
DCE-Default Classifier SE-Send Handler EE – Egress

Fig. 1. Overall block diagram of Access Point On IXP1200

in SRAM. The address of this packet descriptor is placed into a queue
Rqueue1/Rqueue2 depending on whether it is an Ethernet/802.11 packet. The default
classifier for the Ethernet/802.11 module handles this respectively.

Default Classifier for Ethernet/802.11. Four queues namely, RE1_Q1..RE2_Q4/
RW1_Q1.RW2_Q4 are maintained for Ethernet/802.11 packets. RE1_Q1/RW1_Q1
has the lowest priority and RE1_Q4/RW1_Q4 has the highest priority Default
classifier for Ethernet/802.11 module gets the descriptor address of the next packet
to be processed from Rqueue1/Rqueue2. It then places the incoming packet into any
one of the four queues RE1_Q1..RE1_Q4/ RW1_Q1..RW2_Q4 respectively based
on the default Class Based queuing (CBQ) tree. The source MAC address and
TCP/UDP port number are taken into consideration while classifying using the
CBQ tree.

Default Scheduler for Ethernet/802.11. The default scheduler uses Priority Queuing
(PQ) algorithm. Here packets in the queues, RE1_Q1..RE1_Q4/ RW1_Q1..RW2_Q4,
are scheduled. Here, the packets in the higher priority queues get serviced first. A
packet in a queue is serviced only if there are no packets to be serviced in higher
priority queues. The scheduled packets are sent to the Receive Handler for
Ethernet/802.11 module.

An Active Framework for a WLAN Access Point

75

Fig. 2. Packet descriptor Format Fig. 3. Bridge Table Format

Fig. 4. Active Station Table Format Fig. 5. Internal Packet Format

Receive Handler for Ethernet/802.11 Module. This module gets the address of the
packet descriptor of the Ethernet/802.11 packet to be processed next from the above
module. It gets the source and destination address from Ethernet/802.11 header. It
searches the bridge table (BT), which maps station addresses to ports. The format of BT
entry is given in Fig. 3. If an entry is found in the BT, only the timestamp is updated,
else a new entry is added. If the data packet is from 802.11 port then the active station
table (AST), the table that contains the list of registered active wireless LAN terminals
is also updated. The format of this table is shown in Fig. 5. It then searches the BT for
destination address. If the port number in the BT for that address is equal to source port
number, then the memory buffer held by that packet is freed. If the port number in the
BT for that address is not equal to source port number, an internal packet whose format
is given in Fig. 4 is, constructed and placed in a queue SEQ/SWQ. The Send handler for
Ethernet/802.11 modules processes this queue respectively.

Send Handler for Ethernet/802.11 Module. This gets the internal packets from
SEQ/SWQ. It then constructs the corresponding 802.11/Ethernet headers and
calculates the CRC. It then copies the constructed 802.11/Ethernet packets into
another buffer OBUFF2/OBUFF1. The packet descriptor is constructed according to
the format as in Fig. 3. The constructed descriptor is written into the corresponding
SRAM of the allocated buffer. It then places the address of this packet descriptor into
a queue Squeue2/Squeue1, the queue that contains the descriptor address of
802.11/Ethernet packets to be handled by Egress for 802.11/Ethernet modules.

Egress for Ethernet/802.11. This module gets the next packet to be sent out from
Squeue1/Squeue2, fragments it to a maximum size of 64b and sends it onto the
corresponding Ethernet/802.11 interface.

Default Queuing Management Module. This module is responsible for removing
packets from the queues if the access point’s load is high and the queues approach
overflow. Overflow is detected by checking a shared variable residing in scratch
memory (FOVERFLOW). All the other modules, which send data to the queues,
update this variable. FOVERFLOW is incremented by 1 by other modules if send
operation fails because of the queue being full. Default queuing management module

Total no. of quad
words in the packet

10:3 (bits)

Total no. of bytes
in the packet
10:3 (bits)

Destination MAC
(6 Bytes)

Port Number
(2 Bytes)

Timestamp
(8 Bytes)

Destination
MAC Address

(6 Bytes)

Source
MAC

Address
(6 Bytes)

Pointer to data
packet
in memory
(4 Bytes)

Port
number
(2 Bytes)

Destination
MAC

(6 Bytes)

Port
Number
(2 Bytes)

Time
stamp

(8 Bytes)

R. Sharmila, M.V. LakshmiPriya, and R. Parthasarathi

76

checks FOVERFLOW periodically (say every 2000 machine cycles), and if it exceeds
specific threshold (Q_THRESHOLD), a single element is removed from all the
queues. It also resets the value of FOVERFLOW to zero.

Table Management Module. This module is responsible for removing obsolete
entries in the BT and the AST Obsolete entries are those in which the difference
between timestamp in table for that entry and the current machine cycle is greater
than a specific threshold value.

4 Design of Active Framework for a WLAN Access Point Using
IXP1200 Network Processor

The access point discussed above has a fixed classifier, scheduler and queue manager.
An active framework that enables the access point to use different scheduling,
classification and queue management algorithms that can be dynamically downloaded
is presented here. The key design issues that are considered for the development of
the active framework are choice of active approach, interoperability, extensibility, and
abstraction.

There are two possible approaches to building active networks - a discrete or out-
of band approach and an integrated or in-band approach. In the discrete approach,
programs are injected into the programmable active node separately from the actual
data packets that traverses through the network. In an integrated approach, also
termed as the encapsulation approach, the program is integrated into every packet of
data sent to the network. In this system, discrete approach [3] is selected, as the
active code is relatively large. Each data packet need not carry the
classification/scheduling /queue management algorithms as they are flow dependent
and not specific to a particular packet.

There are three well-known methods of achieving interoperability [3]. One is to
express the programs in a high level source language that may be interpreted at the
nodes. The second is to adopt a platform independent intermediate representation. The
third is to have programs in platform-dependent format and arrange to carry multiple
encoding of its program - one for each type of the platform it traverses. In this system,
the third method is chosen, wherein, platform dependent binary code is passed.
However, code for only one NP platform (IXP1200) has been developed.

The system has been developed using Micro-c, a high level type-safe language as
a basis for extensibility. Moreover the system has the ability to avoid disruption of
inflow of data packets to the maximum extent possible when switching over from one
algorithm to another. This is one of the greatest advantages of the system.

Application Programming Interfaces (API) has been developed to provide an
abstraction to the AP, which enable the implementation of various classification,
scheduling and queue management algorithms. Active packets are encapsulated in
Active Network Encapsulation Packet (ANEP) format.

An Active Framework for a WLAN Access Point

77

Version Flags TypeID

ANEP Header Length ANEP Packet Length

Options

Payload

4.1 Active Framework

The overall block diagram for the active framework for the WLAN access point
system is given in Fig. 6. The various modules are Packet Forwarder, Active Code
Handler, Active Classifier, Active Scheduler and Active Queue Manager. The figure
also shows the mapping of the modules to the various microengines of the IXP1200
NP. The functionality of each of the module is described below.

 AC- Active Classifier AQM –Active Queue Manager PF-Packet Forwarder
 AS – Active Scheduler SA – Strong-Arm ME-n – Micro Engine n.

Fig. 6. Active Framework For WLAN access point

Packet Forwarder. This module decides where to forward the incoming packet. It
forwards it to the classifier if it is a data packet or to the active-code handler module of the
strong -arm if it is an active code packet. If it is a data packet it sends it to the active
classifier that has been enabled for that port. Otherwise it sends it to the default classifier.

Active Code Handler. This is built on the StrongArm Processor. The incoming
active packets are in Active Network Encapsulation Packet (ANEP) format. The
format of ANEP packet is shown in Fig. 7. The ANEP packets are embedded in the IP
payload of the incoming packets. The type field of the ANEP packet header indicates
whether the payload has code for the scheduler, classifier or queue manager. The
active code handler module extracts the active code from the ANEP packet. It inserts

0 7 15 31

Fig. 7. ANEP Packet Format

R. Sharmila, M.V. LakshmiPriya, and R. Parthasarathi

78

the code into instruction store of the corresponding microengine depending on
whether the code is for the classifier, scheduler or queue manager. It discards control
packets of the same type if they arrive within the defined MINTHRESHOLD time.
Two sets of queues (RE1/RE2 and RW1/RW2) are available for each port. After
inserting the active code onto the instruction store of the microengines, the active
code handler module finds the empty sets of queues and assigns it as the active set for
that port. It then enables the corresponding microengine onto which the active code
was inserted and disables the corresponding default classification/scheduling/queue
management algorithm.

Active Classifier/Scheduler/Queue Manager. Application Programming Interfaces
(API) are used for developing the classification, scheduling and queue management
algorithms. Some of the functions of the API are send_to_queue,
receive_from_queue, get_src_MAC and enable/disable classifier/ scheduler/queue
manager. These API’s enable development of any classification, scheduling and
queue management algorithms for the access point.

For a proof of concept, we have developed the following using these APIs- an
active CBQ tree, two scheduling algorithms namely Round Robin (RR) and Weighted
Fair Queuing (WFQ), two queue management algorithms namely Partial Buffer
Sharing (PBS) algorithm and Random Early Detection (RED).

If the active classifier is enabled, the incoming packets are classified based on the
CBQ tree that has been actively downloaded and placed on the currently active set. In
the Round Robin scheduling algorithm packets are classified and sent to ‘n’ queues.
Queues are serviced in order 1..n. In the Weighted Fair Queuing-scheduling
algorithm, the virtual finish time for each incoming packet in each of the queues are
calculated. The virtual finish time of a packet is equal to the sum of the largest finish
time of a packet in its queue and the size of the arriving packets (in bits). The
scheduler will compare the virtual finish time of the first packets in the queues, and
select the packet with the smallest virtual finishing time. The scheduled packets are
sent to the corresponding receive handler modules.

PBS uses a threshold to determine whether an arriving packet should be allowed
to enter the buffer or not. RED estimates the average queue size, using a simple
exponentially weighted moving average method. Two RED parameters, minimum
threshold (minth) and maximum threshold (maxth), are used in the packet drop
decision process. As the average queue size varies from minth to maxth, packets will
be dropped with a probability that varies linearly from 0 to maxp.

5 Implementation and Test Results

The system has been developed using MicroC [12,13]. The IXP Networking Library
has also been used. MicroC compiler has been for compilation of source code to
machine code. The BT is defined in SRAM starting at a specific memory location.
The size of each entry of the BT is 4 long words. The AST is defined in SRAM
starting at a specific memory location. The size of each entry of the AST is 4 long
words. IBUFF1/ OBUFF1 are buffers that hold Ethernet packets. The size of each

An Active Framework for a WLAN Access Point

79

buffer is 190 quad words. IBUFF2/OBUFF2 are buffers that hold 802.11 packets. The
size of each buffer is 192 quad words. Vxworks, an RTOS is used as the Operating
System of the StrongArm. IXP1200 Developer Workbench - Version 2.01[14], has
been used for the development of code for the microengines. Tornado 2.0 has been
used for the development of code for the StrongArm. The system has been simulated
using the workbench and implemented using the IXP1200 evaluation kit.

The system has been tested for different data rates ranging from 10 Mbits/sec to 100
Mbits/sec with transmit and receive buffer size of 256 bytes on both the wireless and
wired sides. The system has also been tested for different packet sizes ranging from
64bytes to 1518 bytes on Ethernet side and from 80 bytes to 1534bytes on 802.11 side.

To test the active classifier API developed, four different classification algorithms
have been developed using them and tested on the AP. To test the active scheduler
API, scheduler algorithms such as Round Robin, Priority Scheduling and Weighted
fair queuing algorithm have been developed using them and tested. Similarly, active
queue management API has been tested by developing PBS and RED algorithms.
Active classifier/scheduler/queue management code packets were sent to the AP. The
access point used the corresponding active classifier/scheduler/queue management
algorithms that were dynamically downloaded. In essence, a test-bed to evaluate
various algorithms has been developed and tested. The actual evaluation of the
algorithms per se in a wireless AP, using the active framework for different
workloads is in progress.

6 Conclusions and Future Work

In this paper, we have presented the design of an active access point on the IXP1200
NP. The design has been verified using both simulator and actual hardware
implementation. There are two key observations that we make based on this work.
One is the use of a low cost NP for an access point, and the second is the successful
development and deployment of an active framework based on NP.

Although the active framework has been designed for the wireless access point,
the concept is applicable for any active node in any type of network. Thus we have
shown that it is practically feasible to use the NPs capability and flexibility
innovatively.

Future work that we plan to do include designs using multiple NPs to study the
scalability of the approaches considered, and bring in additional functionalities such
as security issues which are critical in a wireless network scenario.

References

1. H.Hasim: “Active Network Implementations”, Research and development, 2002,Student
Conference at MARA Univ. Of Technol., Selangor, Malaysia, 16-17 July 2002,Pages:
371–374.

2. Andreas Kind: “The Role Of Network Processors in Active Networks”, ANTA 2002.

R. Sharmila, M.V. LakshmiPriya, and R. Parthasarathi

80

3. D. L. Tennenhouse and D. J. Wetherall: "Towards an Active Network Architecture," ACM
Computer Communication Review, Vol. 26, No. 2, April 1996.

4. D.Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M.Smith: "Active
Bridging," ACM SIGCOMM 1997

5. Kuorilehto, M. et al.: “Implementation of wireless LAN access point with quality of
service support”, IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual
Conference], Volume: 3, Nov 5-8, 2002 Page(s): 2333–2338.

6. M.Hännikäinen, et al.: “Windows NT Software Design and Implementation for a Wireless
LAN Base Station”, ACM International Workshop on Wireless Mobile Multimedia
(WoWMoM'99), August 20, Seattle, USA, pp. 2–9.

7. M.Kuorilehto, et al.: “Design for a Wireless LAN Access Point Driver”, International
Conference on Telecommunications (ICT'2001), June 4-7, 2001, Bucharest, Romania, Vol.
3, pp. 167–173.

8. http://www.fujitsu-siemens.com/
9. http://www.pc-zubehoehelbling.ch/wireless/nokia/AccessPoint/ WirelessLANAccessPoint.html

10. Intel ® IXP1200 Network Processor Family Hardware Reference Manual, Version 1.0,
December 2001.

11. http://www.icir.org/floyd/cbq.html
12. Intel ® Microengine C Networking Library for the IXP1200 Network Processor,

Reference Guide, Version 1.0, December 2001.
13. Intel ® Microengine C Compiler Language Support, Reference Manual, Version 1.0,

December 2001.
14. Intel ® IXP1200 Network Processor Family Development Tools User’s Guide, Version

1.0, December 2001.

MuSeQoR: Multi-path Failure-Tolerant Security-Aware
QoS Routing in Ad Hoc Wireless Networks�

S. Sriram, T. Bheemarjuna Reddy, B. S. Manoj, and C. Siva Ram Murthy��

Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, India 600036

sriram@dcs.cs.iitm.ernet.in,
{arjun, bsmanoj}@cs.iitm.ernet.in,

murthy@iitm.ernet.in

Abstract. In this paper, we present MuSeQoR: a new multi-path routing protocol
that tackles the twin issues of reliability (protection against failures of multiple
paths) and security, while ensuring minimum data redundancy. Unlike in all the
previous studies, reliability is addressed in the context of both erasure and corrup-
tion channels. The reliability and security requirements of a session are specified
by a user and are related to the parameters of the protocol adaptively. In addition,
by using optimal coding schemes and by dispersing the original data, we mini-
mize the redundancy. Finally, extensive simulations were performed to assess the
performance of the protocol under varying network conditions. The simulation
studies clearly indicate the gains in using such a protocol and also highlight the
enormous flexibility of the protocol.

1 Introduction

To ensure reliable communication in Ad hoc wireless networks, one of the common
paradigms involves setting up multiple paths between the source and the destination.
Due to the inherent broadcast nature of the medium, there is the additional concern of
security of the transmitted data. For critical real-time applications, service disruptions
cannot be tolerated and hence, the fault-handling method used is based on Forward-
recovery (Hot Standby). Forward-recovery approaches are characterized by two param-
eters: Redundancy and Dispersion.

Diversity coding [1] is one of the approaches for reliable transmission. Assuming
erasure channels, this approach encodes blocks to be sent on k paths as (k + b) blocks,
where b < k is equal to the number of path failures to be protected against. Ref. [2]
studies the allocation of blocks of data to multiple paths using diversity coding such
that the probability of successful transmission is maximized under the erasure channel
assumption. Ref. [3] links user reliability requirement to path availability by setting up
more paths to the destination if a smaller number does not meet the requirement. But

� This work was supported by the iNautix Technologies India Private Limited, Chennai, India
and the Department of Science and Technology, New Delhi, India.

�� Author for correspondence.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 81–90, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

82 S. Sriram et al.

this may involve high call setup times. In [4] Rabin’s Information Dispersal Algorithm
(IDA) is used to construct a framework for a reliable multi-path scheme.

The resource constraints of Ad hoc wireless networks place a premium on resource
usage. Thus, a protocol that ensures reliable communication while at the same time
minimizing resource usage is desirable. Reliability implies protection against faults
such as link breakages and node failures as well as against corruption of data. Unlike
wired networks, the local broadcast nature of the channel allows nodes that are not on
the path of data transmission to listen to the data. Naturally, we would like to minimize
the number of nodes that can listen to data not intended for them. We need to know how
reliability and security can be related to the protocol parameters.

We outline a multi-path QoS routing protocol that ensures reliable communication
in the event of multiple path failures and the presence of untrustworthy nodes, with
minimum resource overhead. We estimate the overhead involved for a given failure
model. Further, we define a security metric for the protocol. The two key issues of
reliability and security are what the protocol attempts to simultaneously address. The
scheme proposed is adaptive as the failure model and the number of paths to be setup
are decided depending on the current state of the network and the reliability of the paths
available between the source and the destination.

2 MuSeQoR: An Analytical Description

We provide an overview of the scheme followed by a description of the reliability and
security aspects. We describe the protocol in detail in the subsequent section.

2.1 Overview

Given a set of n node-disjoint paths, let Pi(δt) denote the probability of failure of
i (0 ≤ i ≤ n) of these n paths in a time-interval (t, t + δt). We say that the set of n
node-disjoint paths follows an f -path failure model (f < n), if for a given 0 ≤ ε ≤ 1,
Pf (δt) > ε and Pf+1(δt) < ε where ε is a path-failure metric. We assume that node-
disjointedness is sufficient to ensure that the events of failure of the individual paths are
independent. Thus, the probability of failure of the paths p0, . . . , pi−1 in the interval
(t, t+δt) is given by P(0,...,i−1)(δt) =

∏l=i−1
l=0 Ppl

(δt) where Ppl
(δt) is the probability

of failure of the path pl in that interval. The path failure probability for a path p can be
computed as Pp(δt) = 1−∏

(i,j)∈p A(i,j)(δt)
∏

i∈p Bi(δt) where A(i,j)(δt) is the link
availability of the link connecting nodes i and j on path p as discussed in [5] and Bi(δt)
is the node availability of the node i on path p.

For a channel model (erasure or corruption) obeying a given failure model, we need
to establish a session of bandwidth B between source S and destination D so that the
paths can sustain communication. We do this by setting up n node-disjoint paths each
of bandwidth B

k , n ≥ k. This is done by splitting the message into k m-bit blocks.
We transform the k blocks into n blocks using an (n, k)-code and then these n blocks
are transmitted over the n paths setup. The (n, k)-code ensures that the destination can
recover the original k blocks in the case of adversary events. A session that uses an
(n, k)-code is referred to as an (n, k)-session.

MuSeQoR: Multi-path Failure-Tolerant Security-Aware QoS Routing 83

We need to determine the minimum number of paths to be setup i.e., the value of
n so that the connection formed by the set of paths established is reliable for the given
channel and fault model and a given value of k. We do this analysis for the cases of the
erasure and corruption channels.

2.2 Erasure Channel

In erasure channels, faults are manifested in the non-arrival of packets (erasures). Packets
that arrive can be assumed to be correct. This is the case when packet losses are caused
by failures at links and nodes. We define an f -erasure channel as one in which at most
f of the channels (node-disjoint paths) can fail simultaneously.

Consider an f -erasure channel. From the theory of erasure channel codes, the min-
imum value of n is given by n = k + f provided 2m > n. The code vector C =
(C1, . . . , Cn) is derived from the data vector M = (M1, . . . , Mk) as C = MG with G
being a (k× n) matrix, and M and C being m-bit blocks. All operations are performed
in the field GF(2m). G is constructed as G = [gij] = [α(i−1)j] where α is the generator
of GF(2m).

At the destination, some subset of the n coded blocks arrive. For an f -erasure channel,
at least n−f blocks are expected to be received. If C ′ is the vector of some set of k blocks
received and G′ is the sub-matrix formed by the subset of columns of G corresponding
to the blocks of C ′. Then, we have C ′ = MG′ and M = C ′G′−1 where G′−1 is the
inverse of G′. For the construction of G given, G′ is always invertible provided 2m > n.
Thus, in an f -erasure channel, it is sufficient to setup k + f paths. The redundancy ratio
RO defined as the ratio of the amount of data sent in excess to the original data, in this
case, is RO = f

k .

2.3 Corruption Channel

In corruption channels, in addition to the erasures, packets delivered may be corrupted
by malicious nodes. An (f, g)-corruption channel is one in which at most f erasures and
g corruptions can occur simultaneously. Reliability in corruption channels is achieved
by the use of codes such as the Reed-Solomon codes. The Reed-Solomon codes are
based on the Fourier transform. An (n, k) Reed-Solomon code can detect and correct
f erasures and g failures provided n − k ≥ 2g + f [6]. Thus, for a (f, g)-corruption
channel, we need to setup a minimum of k + f + 2g paths. The redundancy ratio in this
case is RO = 2g+f

k .

2.4 Security

The notion of security that we consider has to do with the fact that the data being
transmitted can be overheard by nodes other than those on the n = (k + b) paths.
In this notion of security, we assume the adversaries are passive and non-colluding.
Improving the security is done by reducing the number of nodes that can listen to the
data. Our protocol enhances security by dispersity and coding. Dispersity results in the
data being scattered over a wider area of the network, thereby reducing the probability
that a node can overhear all the packets being transmitted. On the other hand, dispersity
also increases the number of nodes that can access some portion of the data. The mapping
that is used to code the packets is shared between the source and the destination by means

84 S. Sriram et al.

of a Public-key cryptosystem. Since adversaries do not have the mapping information,
even if they have access (by overhearing) to the packets transmitted on a certain fraction
of the paths, it would be difficult to obtain the entire data.

We introduce a metric the Eavesdropping Ratio ER: a measure of the leakage of data
due to the routing protocol relative to shortest-path routing. Consider a session between
two nodes occurring over n paths P1, . . . , Pn. Define a batch of n packets as the set of
n packets formed by encoding the k packets to be transmitted. For successful decoding
of the packets at the destination, it is necessary that at least k packets in each batch must
reach the destination. Let Tk(P1, . . . , Pn) denote the set of nodes which can listen to at
least k < n of the packets of a batch being transmitted on the pathsP1, . . . , Pn. Define the
Eavesdropping Ratio ER as ER = |Tk(P1,...,Pn)|

|Tuni−path| , where Tuni−path is the set of nodes
that can listen to all packets on the shortest uni-path route between the source and the
destination. A relation between ER and the protocol parameters has been derived in [8].

Our protocol is characterized by the three parameters (k, f, g) in the general case.
The user requirements are specified by the parameters ε and ER. These requirements
are then translated into values for k and f . Parameter g is determined by the state of the
network. Thus, the protocol tackles the twin issues of reliability and security.

3 Description of the Protocol

The protocol that we propose is an on-demand protocol that is a modification of the
Dynamic Source Routing (DSR) [7] protocol. Thus, no global topology information is
maintained at the nodes. A session is divided into time frames Δt during which the
network state is assumed to be fairly constant. The parameters computed and the paths
setup during a time frame remain unaltered unless disruption of the existing paths occurs.
To enhance security, each time frame is further divided into code sessions of length Δtc.
A code session is the period for which a single mapping is used by the source for encoding
the packets. This mapping may be changed at the end of a code session by means of a
Public-Key cryptosystem.

3.1 Route Setup and Parameter Selection

In this phase, paths between the source and the destination are probed. Depending on the
reliability of the paths found, which is estimated during route discovery, the fault-model
is chosen. This manner of choosing the fault-model ensures that the protocol adapts to
the state of the network. Accordingly, the parameters k and b are estimated. The protocol
then attempts to find these routes.

Route Discovery. Route request (REQUEST) packets are sent by the source to its neigh-
bors. Each REQUEST packet carries a sequence number, the source and destination IDs,
the connection ID, the path traversed so far, the reliability of the path traversed so far,
the path bandwidth, the bandwidth required for this session, and the path failure metric
ε and the ER specified for this session. Each intermediate node checks the route of the
packet to ensure that there are no loops. The intermediate node forwards a maximum
of MAX FORWARD (a system parameter) route request packets. The higher the value
of the system parameter, the greater the amount of flooding in the network while the
number of routes discovered increases.

MuSeQoR: Multi-path Failure-Tolerant Security-Aware QoS Routing 85

Before forwarding the REQUEST packet, the node multiplies the link availability
of the link on which it received the packet to the reliability being carried in the packet.
This link availability is calculated using information from the upstream node and the
forwarding node (i.e., the instantaneous velocity, the direction of motion, and the current
position of nodes) and the former is included in the REQUEST packet. It also modifies
the bandwidth available on the path and forwards the packet to its neighbors.

Determination of f , b, and k. The destination receives r REQUEST packets (r must be
greater than the number of paths that need to be setup else no reply is sent back). It then
sorts the paths according to their probabilities of failure pf . Let {P1, . . . , Pr} be the paths
where pf (P1) > . . . > pf (Pr). Find i+1 so that pf (P1)×pf (P2)×. . .×pf (Pi+1) < ε.
Then an i-path failure model is used. This calculation of i is an approximation in that
the paths P1, . . . , Pr are not node-disjoint. The number of additional paths b to be
setup is determined either as b = f for the case of erasure channels and b = f + 2g
for the case of corruption channels. k must be chosen subject to the constraint that
k + b ≤ min(|N(S)|, |N(D)|), where N(S) and N(D) are the set of nodes lying
within the transmission range of source S and destination D, respectively. In addition,
the ER can also be used to determine the value of k [8].

Route Calculation and Resource Reservation. Once k is determined, the destination
finds out if there exists (k + b) node-disjoint paths with bandwidth B

k . If it finds a set of
paths, it sends a route reserve (RESERVE) packet on each of the paths and stores that
set of paths in its route cache. The RESERVE packets carry the route, values k,f , and
b and the mapping to be used for encoding for the remaining session. On receiving the
RESERVE packets on the (k + b) paths, the source begins data transmission. Some of
the paths on which the RESERVE packets are being sent may not have the bandwidth
as other calls may have reserved it in the meantime. The node which does not possess
the required resources simply drops the RESERVE packet. Resources that have been
reserved thus far are released when a timeout occurs due to non-arrival of packets of the
connection on that path. The call is accepted only if n RESERVE packets are received
at the source. Communication takes place only if the paths can meet the requirements
of the session, and not merely if the source and the destination are connected.

If the destination is unable to select a set of node-disjoint paths that satisfy the
bandwidth constraint, it does not send any RESERVE packets. The source on non-
receipt of RESERVE packets re-initiates the route discovery. This process is repeated
MAX ATTEMPT times. Failure on all occasions results in the call being rejected at
the source. When the destination is unable to find the set of node-disjoint paths when
the REQUEST packets are sent for the MAX ATTEMPT time (this is indicated in the
REQUEST packet), all the paths to the source are removed from the route cache.

3.2 Route Maintenance

Route maintenance occurs in two scenarios.

Expiry of the Time Frame. At a time Δt− 2RTT , where RTT is the round trip time of
the transmission, the data packets on the various paths carry the path failure probability.
At the destination, this is used to verify that the paths still conform to the f -path fault
model. If they do not, the destination sends back a REPAIR packet to the source. The

86 S. Sriram et al.

source then initiates a route discovery to search for a set of paths disjoint with the current
set of paths. The destination uses the newly discovered paths along with the currently
used (k + b) paths to recompute the parameter f . If f has increased, the destination sees
if the newly discovered paths can be added to the already existing paths to meet the new
reliability constraint. If this is possible, RESERVE packets are sent along the entire set
of paths and the data transmission continues. On the other hand, failure to establish the
required number of paths will be treated in the same way as in the route setup process.
If the value of f decreases, on the other hand, the paths are maintained as such.

Route Break. If the route break occurs when the parameters are being re-estimated
(during the time Δt− 2RTT to Δt), no action is taken as anyway the routes may need
to be reconfigured. Otherwise, failure of a link (u,v) where u is the upstream node results
in node u sending ERROR packets to the source. On receiving these packets the source
initiates a route discovery. The resources reserved on the downstream nodes are released
on a timeout due to non-arrival of any more packets.

In the protocol, both the source and the destination need to know the set of paths
used for communication. The encoding and decoding of the transmitted data requires
this. Every node has a route cache of paths to a particular destination node for which
it is the source (S-CACHE) and another route cache of paths from a source node for
which it is the destination (D-CACHE). For the communication to be successful, the
paths in the route caches of the source (S-CACHE) and the destination (D-CACHE)
must be consistent. After the first route request by the source, the destination selects
the set of node-disjoint paths if available and inserts these into its D-CACHE (Note:
Even if the number of paths discovered is higher than required, the destination inserts
only the required number into the D-CACHE. Thus, the set of paths represents the paths
used for actual data transmission). When the RESERVE packets arrive on the paths at
the source, the source adds these paths to its S-CACHE. A path break causes a ERROR
packet to be sent to the source node which removes the path (and all paths of any other
connection that may be passing through the failed link) from its S-CACHE. It then
initiates a REQUEST to the destination. At the destination, paths which have not been
delivering packets (either data or control) for a time exceeding a window are marked
stale. When a REQUEST arrives at the destination, if this has arrived on a path marked
stale, the path is re-included into the D-CACHE. Otherwise, a new set of paths to the
source that includes the existing set of non-stale paths is computed and if this set is found
to satisfy the bandwidth and the reliability requirements, the stale paths are expunged
and RESERVE packets are sent along the newly-discovered paths.

4 Experiment and Simulation Results

The experiments are intended to study the following metrics and their response to changes
in the mobility of nodes, load in the network, and terrain dimensions.

– Average Call Acceptance Rate:

ACAR =
No. of calls successfully setup

Total no. of call requests
(1)

MuSeQoR: Multi-path Failure-Tolerant Security-Aware QoS Routing 87

– Average Information Delivery Ratio:

IDR =
No. of data packets successfully decoded

Total no. of data packets sent by the source
(2)

– Resource Consumption Ratio:

RCR =
No. of data packets transmitted by nodes across the network

Total no. of data packets sent by the source×Average Hopcount
(3)

– Control Overhead Ratio:

COR =
No. of control bytes transmitted across the network

Total no. of data bytes sent by the source
(4)

– Eavesdropping Ratio:

ER =
No. of nodes that can listen to data packets on at least k paths

No. of nodes that can listen to data packets on the shortest uni− path
(5)

4.1 Simulation Results

We simulated our protocol using Glomosim [9]. The network contains 75 nodes in a
1000 m× 1000 m terrain area. The channel capacity is fixed at 2 Mbps and the duration
of the simulation is 10 minutes. The transmission range is 200 m. The traffic is generated
in the form of Constant Bit Rate (CBR) sessions each of which lasts for 600 seconds.
The load on the network is varied by varying the number of CBR sessions. Mobility
is simulated according to the Random waypoint model. For all cases of mobility in
the network, we set the pause time to 0 and set the minimum and maximum speeds to
the same value to ensure that the nodes move at a constant speed. For the purpose of the
simulation, we assume that the protocol parameters are known a priori and are fixed for
the duration of the simulation for all sessions.

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

C
al

l A
cc

ep
ta

nc
e

R
at

e

n

Call Acceptance Rate vs n
Load=10
Load=30
Load=50

Fig. 1. Variation of Call Accep-
tance Rate vs n(total number of
paths setup) for varying Load

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

0 0.5 1 1.5 2 2.5 3 3.5 4

E
av

es
dr

op
pi

ng
 R

at
io

b

Eavesdropping Ratio vs b
k=1
k=2
k=3
k=4

Fig. 2. Variation of Eavesdrop-
ping Ratio vs protocol parame-
ters k and b

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16

ID
R

Mobility (m/s)

IDR vs Mobility
b=0
b=1
b=2
b=3
b=4

Fig. 3. Variation of Information
Delivery Ratio vs Mobility for
various b (k=2)

Average Call Acceptance Rate. From Figure 1, the call acceptance rate decreases with
increasing n. With an increase in n, majority of the calls are rejected due to lack of n

88 S. Sriram et al.

node-disjoint paths. The call acceptance rate decreases with an increase in the load, yet
the decrease is not considerable showing that the protocol can handle high loads.

Eavesdropping Ratio. From Figure 2, for a fixed value of b, ER decreases with increas-
ing k. As b increases for a fixed k, the number of nodes that can potentially eavesdrop
increases. This increases the value of ER.

Information Delivery Ratio.We have plotted the IDR for different node velocity values
for different values of b in Figure 3 with k = 2. The higher fault-protection schemes
perform better at higher mobility. We also studied the effect of k and b on the IDR,
Figure 4, at a fixed mobility value of 12 m/s. While higher b increases IDR, higher k
decreases IDR. The decrease in IDR due to increasing k is due to the higher fraction
of packets in a batch that must now reach the destination for the original data packets to
be successfully recovered.

Resource Consumption Ratio. We have plotted the variation of the RCR with node
velocity for different k in Figure 5 at b = 2. By increasing k, the RCR decreases as b
is constant for a given failure model. At high mobility, a decrease in the RCR is more
likely a result of loss of data packets. We have also plotted the variation of the RCR with
k and b at a fixed mobility value of 12 m/s (Figure 6). The values indicate an increase
in this ratio with an increase in b due to an increase in the redundancy while a decrease
in this ratio occurs with an increase in k since the redundancy is amortized over the
increased number of paths.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6

ID
R

k

IDR vs k
b=0
b=1
b=2
b=3

Fig. 4. Variation of Information
Delivery Ratio vs k and b (Mo-
bility=12 m/s)

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

R
C

R

Mobility(m/s)

RCR vs Mobility
k=1
k=2
k=3
k=4

Fig. 5. Variation of Resource
Consumption Ratio vs
Mobility for various k (b=2)

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

R
C

R

k

RCR vs k
b=0
b=1
b=2
b=3

Fig. 6. Variation of Resource
Consumption Ratio vs k and
b (Mobility=12 m/s)

Control Overhead Ratio. Control overhead ratio, a measure of the overhead involved
in route setup and maintenance, is seen to increase only slowly for k = 1 and k = 2
(b = 2) at high speeds indicating the suitability of the protocol to a mobile environment.
As expected the control overhead is higher as a greater number of paths are setup as can
be seen from the Figures 7 and 8.

Effect of Load. Figures 9 and 10 show the variation in IDR and RCR with chang-
ing load. IDR is seen to decrease with an increase in the load. With a higher load,
IDR decreases though the value of b is increased. This shows that at high load, an in-
crease in b may not imply an increase in the reliability. This is because, for a fixed k, the

MuSeQoR: Multi-path Failure-Tolerant Security-Aware QoS Routing 89

bandwidth requirement per path remains the same but each node may have to handle
more data due to the setting up of higher number of paths. The RCR decreases with an
increase in k as explained earlier.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16

C
O

R

Mobility (m/s)

COR vs Mobility
k=1
k=2
k=3
k=4

Fig. 7. Variation of Control
Overhead vs Mobility for vari-
ous k (b=2)

0

1

2

3

4

5

6

1 2 3 4 5 6

C
O

R

k

COR vs k
b=0
b=1
b=2
b=3

Fig. 8. Variation of Control
Overhead vs protocol parame-
ters k and b(Mobility=12 m/s)

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

ID
R

b

IDR vs b

Load=10
Load=30
Load=50

Fig. 9. Variation of Information
Delivery Ratio vs protocol pa-
rameter b (k=2)

Comparison of Block Allocation Strategies. In our protocol, the packets are uniformly
distributed over the paths setup. In [2], allocation of packets to the paths is done so that the
probability of successful reception is maximized. Transmission of a majority of packets
of a batch on a single path, however, allows greater eavesdropping.We have compared the
IDR and theER of our protocol using uniform allocation to that which uses non-uniform
allocation. The study was done by setting up 6 paths (k = 3, b = f = 3) between the
source and the destination in a static network. The reliability of the paths was simulated
by dropping packets at the destination. The numerical figures of the example in Section
III-B of [10] were used. The reliability of all the paths except one were fixed at 0.8 while
the remaining path’s reliability (given by q) was varied between 0.8 and 1. The two
allocation vectors compared were (3, 1, 1, 1, 0, 0) and (1, 1, 1, 1, 1, 1). The Figures 11
and 12 indicate that the two schemes have comparable IDR while uniform allocation
has a lower ER.

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4 4.5 5

R
C

R

k

RCR vs k
Load=10
Load=30
Load=50

Fig. 10. Variation of Resource
Consumption Ratio vs parame-
ter k when parameter b is fixed
at 2

0.2

0.4

0.6

0.8

1

1.2

.8 .82 .84 .86 .88 .9 .92 .94 .96 .98 1

ID
R

q

IDR vs q
Allocation used in [10]

Allocation used in our protocol

Fig. 11. Comparison of Infor-
mation Delivery Ratios of the al-
location scheme used in [10] and
our allocation scheme

0.4
.45

.5
.55

.6
.65

.7
.75

.8

.8 .82.84.86.88 .9 .92.94.96.98 1

E
av

es
dr

op
pi

ng
 R

at
io

q

Eavesdropping Ratio vs q
Allocation used in [10]

Allocation used in our protocol

Fig.12.Comparison of Eaves-
dropping Ratios of the alloca-
tion scheme used in [10] and
our allocation scheme

5 Conclusion

MuSeQoR attempts to address the twin issues of reliability and security while ensuring
that the overhead involved is minimum. The protocol is characterized by the parameters

90 S. Sriram et al.

k, f , and g. A higher value of f and g indicates higher reliability while a higher value of
k implies a lower ER and a lower redundancy ratio. The IDR is higher for high values
of b while the redundancy ratio and the ER decrease for high values of k. In a real
scenario, these values of k and b need to be chosen using the user specifications of ε and
ER. For the static scenario, values of k and b between 2 and 3 offer a good compromise.
Finally, we compared the block allocation strategy of [2] with the allocation strategy
used in our scheme, which allocates packets equally on each path.

We are currently working on the translation mechanism that will translate the user
requirements into the protocol parameters which would involve estimating f and k, and
Δt based on the mobility of the nodes and the available bandwidth. Further work needs
to be done to address the issues related to QoS protocols that do not require node-disjoint
paths and those that allow differentiated service based on multiple QoS parameters.

References

1. E. Ayanoglu, I. Chih-Lin, R. D. Gitlin, and J. E. Mazo, “Diversity Coding for Transparent
Self-Healing and Fault-Tolerant Communication Networks”, IEEE Transactions on Commu-
nications, vol. 41, no. 11, pp. 1677-1686, November 1993.

2. A. Tsirigos and Z. J. Haas, “Multi-path Routing in the Presence of Frequent Topological
Changes”, IEEE Communications Magazine, vol. 39, no. 11, pp. 132-138, November 2001.

3. R. Leung, J. Liu, E. Poon, A. C. Chan, and B. Li, “MP-DSR: A QoS-Aware Multi-path
Dynamic Source Routing Protocol for Wireless Ad hoc Networks”, in proceedings of IEEE
LCN 2001, pp. 132-141, November 2001.

4. L. Chou, C. Hsu, and F. Wu, “A Reliable Multi-path Routing Protocol for Ad hoc Network”,
in proceeding of IEEE ICON 2002, pp. 305-310, August 2002.

5. A. B. McDonald and T. Znati, “A Path Availability Model for Wireless Ad hoc Networks”, in
proceedings of IEEE WCNC 1999, vol. 1, pp. 35-40, September 1999.

6. R. E. Blahut, “Algebraic Coding for Data Transmission”, Cambridge University Press, 1st
edition, 2002.

7. D. B. Johnson and D.A. Maltz, “Dynamic Source Routing inAd hoc Wireless Networks”, Mo-
bile Computing, edited by T. Imielinski and H. Korth, Kluwer Academic Publishers, Chapter
5, pp. 153-181, 1996.

8. S. Sriram, T. Bheemarjuna Reddy, B. S. Manoj, and C. Siva Ram Murthy, “MuSeQoR: Multi-
path Failure-tolerant Security-aware QoS Routing in Ad hoc Wireless Networks”, Technical
Report, HPCN Lab, Department of Computer Science and Engineering, IIT Madras, Decem-
ber 2003.

9. X. Zheng, R. Bagrodia, and M. Gerla, “GloMoSim:A Library for Parallel Simulation of Large-
Scale Wireless Networks”, in proceedings of the 12th Workshop on Parallel and Distributed
Simulations (PADS 1998), pp. 154-161, May 1998.

10. A. Tsirigos and Z. J. Haas, “Analysis of Multi-path Routing- Part I: The Effect on the Packet
Delivery Ratio”, IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 138-146,
January 2004.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 91–100, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Tunable Coarse-Grained Parallel Algorithm for
Irregular Dynamic Programming Applications

Weiguo Liu and Bertil Schmidt

School of Computer Engineering, Nanyang Technological University, Singapore 639798
liuweiguo@pmail.ntu.edu.sg, asbschmidt@ntu.edu.sg

Abstract. Dynamic programming is a widely applied algorithm design tech-
nique in many areas such as computational biology and scientific computing.
Typical applications using this technique are compute-intensive and suffer from
long runtimes on sequential architectures. Therefore, many parallel algorithms
for both fine-grained and coarse-grained architectures have been introduced.
However, the commonly used data partitioning scheme can not be efficiently
applied to irregular dynamic programming applications, i.e. dynamic program-
ming applications with an uneven computational load density. In this paper we
present an efficient coarse-grained parallel algorithm for such kind of applica-
tions. This new algorithm can balance the load among processors using a tun-
able block-cyclic data partitioning scheme. We present a theoretical analysis
and experimentally show that it leads to significant runtime savings for several
irregular dynamic programming applications on PC clusters.

1 Introduction

Dynamic programming (DP) is a popular algorithm design technique for optimization
problems. Problems such as genome sequence alignment [8, 14], RNA and protein
structure prediction [3, 10, 16], context-free grammar recognition [4, 11], and optimal
static search tree construction [6] have efficient sequential DP solutions. In order to
reduce the high computing cost of DP problems, many efficient parallel algorithms on
different parallel architectures have been introduced [1].

On fine-grained architectures, the computation of each cell within an anti-diagonal
is parallelized [12, 13]. However, this way is only efficient on architectures such as
systolic arrays, which have an extremely fast inter-processor communication.

On coarse-grained architectures like PC clusters it is more convenient to assign an
equal number of adjacent columns to each processor as shown in Fig. 1. In order to
reduce the idle time further, matrix cells can be grouped into blocks. Processor i then
computes all the cells within a block after receiving the required data from processor
i−1. Fig. 1a shows an example of the computation for 4 processors, 8 columns and a
block size of 2×2, the numbers 1 to 7 represent consecutive phases in which the cells
are computed. We call this scheme block-based. It works efficiently for regular DP
computations with an even load across matrix cells, i.e. each matrix cell is computed
from the same number of other matrix cells.

W. Liu and B. Schmidt 92

P1 P2 P3 P4

1 2

2

3

3

3

4

4

4

4

5

5

5 6

6 7

P1 P2 P3 P4

(a) (b)

Fig. 1. (a) Parallel computation for 4 processors, 8 columns and a 2×2 block size. The complete
8×8 matrix can then be computed in 7 iteration steps; (b) Example of an irregular DP computation

In practice, there are many irregular DP applications. Fig. 1b shows an example of
such an application. The load to compute one cell on the matrix will increase along
the shift direction of the computation. We call this the computational load density.
Fig. 1b shows the change of computational load density along the computation shift
direction by using increasingly blacking shades. We can see that the computational
load density at the top right-hand corner is much higher. The block-based partitioning
scheme will therefore lead to a poor performance, since the load on processor Pi is
much higher than the load on processor Pi-1.

In this paper, we propose a general parameterized parallel algorithm to solve this
problem. By introducing two performance-related parameters, we can get the trade-
off between load balancing and communication time by tuning these two parameters
and thus obtain the maximum possible performance. We demonstrate how this algo-
rithm can lead to substantial performance gains for irregular DP applications.

The rest of the paper is organized as follows: Section 2 gives an introduction to
DP algorithms and describes the characters of irregular DP applications. Section 3
presents our new parallel algorithm. Section 4 evaluates the performance of our algo-
rithm for several irregular DP applications on PC clusters. Section 5 concludes this
paper.

2 Irregular DP Algorithms

DP views a problem as a set of interdependent sub-problems. It solves sub-problems
and uses the result to solve larger sub-problems until the entire problem is solved. In
general, the solution to a dynamic programming problem is expressed as a minimum
(or maximum) of possible alternative solutions. Each of these alternative solutions is
constructed by composing one of more sub-problems. If r represents the cost of a so-
lution composed of sub-problems x1, x2…xl, then r can be written as:

r = g (f(x1), f(x2)…f(xl)) (1)

A Tunable Coarse-Grained Parallel Algorithm

93

The function g() in Eq. (1) is called the composition function, and its nature de-
pends on the problem described. If the optimal solution to each problem is determined
by composing optimal solutions to the sub-problems and selecting the minimum (or
maximum), Eq (1) is then said to be a dynamic programming formulation [9].

DP algorithms can be classified according to the matrix size and the dependency
relationship of each cell on the matrix [7]: a DP algorithm is called a tD/eD algorithm
if its matrix size is t×t and each matrix cell depends on O(ne) other cells. The DP for-
mulation of a problem always yields an obvious algorithm whose time complexity is
determined by the matrix size and the dependency relationship. If a DP algorithm is a
tD/eD problem, it takes time O(nt+e) provided that the computation of each term takes
constant time. Two examples are given in Algorithms 1 and 2.

Algorithm 1 (2D/0D): Given D[i, 0] and D[0, j] for 1 i, j n

D[i, j] = min{D[i 1, j] + xi, D[i, j 1] + yj, D[i 1, j 1] + zi,j} for 1 i, j n (2)

where xi, yj and zi,j are computed in constant time.

Algorithm 2 (2D/1D): Given w(i, j) for 1 i<j n; D[i, i] = 0 for 1 i n

D[i, j] = w(i, j) +
jki<

min {D[i, k 1] + D[k, j]} for 1 i, j n (3)

where w(i, j) is computed in constant time.

Dij

Dij

(a)

(b)

Fig. 2. Dependency relationship and distribution of computational load density along the com-
putation shift direction for (a) Algorithm 1, (b) Algorithm 2

W. Liu and B. Schmidt 94

Fig. 2 shows the dependency relationships and the distributions of computational
load density for Algorithm1 and Algorithm 2. We can notice that the 2D/1D DP algo-
rithms are irregular ones, i.e. the computational load density changes along the com-
putation shift direction. Table 1 shows some 2D/1D DP algorithms in different areas.

Table 1. Some irregular DP algorithms

Algorithm Application Classification Reference
Nussinov RNA base pair

maximization
Matrix chain order Scientific computing

CYK CYK parsing for
context-free grammars

Skyline matrix Scientific computing
Smith-Waterman with

general gap penalty
Genome local alignment

2D/1D [2, 4, 5, 14,15]

3 The Parameterized Parallel Algorithm

Fig. 3 shows the dependency relationship and the change of computational load den-
sity for the irregular algorithms in Table 1. The change is indicated by using increas-
ingly blacking shades along the computation shift direction. For these algorithms, the
block-based partitioning scheme of Fig. 1 leads to a poor load balancing. Thus, a new
data partitioning scheme is needed.

The problem of determining an appropriate data partitioning scheme is to maximize
algorithm performance by balancing the computational load among processors. Since the
data partitioning scheme largely determines the performance and scalability of a parallel

(b)

Mij

(a)

Uij

Lij

(c)

Mij

Fig. 3. Dependency relationship and distribution of computational load density along computa-
tion shift direction for (a) Nussinov, matrix chain and CYK algorithm, (b) Skyline matrix prob-
lem, (c) Smith-Waterman algorithm with the general gap penalty function

A Tunable Coarse-Grained Parallel Algorithm

95

algorithm, a great deal of research has aimed at studying different data partitioning
schemes.

As a result the block-cyclic partitioning has been suggested as a general-purpose
basic scheme for parallel algorithms because of its scalability, load balancing and
communication properties [9].

P1 P2 P3 P4 P1 P2 P3 P4

division=2

rowwidth P1,d1
2

P2,d1
3

P2,d1
4

P2,d1
2

P3,d1
6

P3,d1
5

P3,d1
4

P3,d1
3

P3,d1
2

P4,d1
5

P4,d1
6

P4,d1
7

P4,d1
8

P4,d1
4

P4,d1
3

P4,d1
2

P1,d2
10

P1,d2
9

P1,d2
8

P1,d2
7

P1,d2
6

P1,d2
5

P1,d2
4

P1,d2
3

P1,d2
2

P1,d1
1

P2,d1
1

P3,d1
1

P4,d1
1

P1,d2
1

M[1, n]

P2,d2
1

P2,d2
2

P2,d2
3

P2,d2
4

P2,d2
5

P2,d2
6

P2,d2
7

P2,d2
8

P2,d2
9

P2,d2
10

P2,d2
11

P2,d2
12

P3,d2
1

P3,d2
2

P3,d2
3

P3,d2
4

P3,d2
5

P3,d2
6

P3,d2
7

P3,d2
8

P3,d2
9

P3,d2
10

P3,d2
11

P3,d2
12

P3,d2
13

P3,d2
14

P4,d2
1

P4,d2
2

P4,d2
3

P4,d2
4

P4,d2
5

P4,d2
6

P4,d2
7

P4,d2
8

P4,d2
9

P4,d2
10

P4,d2
11

P4,d2
12

P4,d2
13

P4,d2
14

P4,d2
15

P4,d2
16

P1 P2 P3 P4 P1 P2 P3 P4

division=2

rowwidth P1,d1
1

P1,d1
2

P1,d1
3

P1,d1
4

P1,d1
5

P1,d1
6

P1,d1
7

P1,d1
8

P1,d1
9

P1,d1
10

P1,d1
11

P1,d1
12

P1,d1
13

P1,d1
14

P1,d1
15

P1,d1
16

P2,d1
1

P2,d1
2

P2,d1
3

P2,d1
4

P2,d1
5

P2,d1
6

P2,d1
7

P2,d1
8

P2,d1
9

P2,d1
10

P2,d1
11

P2,d1
12

P2,d1
13

P2,d1
14

P2,d1
15

P2,d1
16

P1,d2
1

P1,d2
2

P1,d2
3

P1,d2
4

P1,d2
5

P1,d2
6

P1,d2
7

P1,d2
8

P1,d2
9

P1,d2
10

P1,d2
11

P1,d2
12

P1,d2
13

P1,d2
14

P1,d2
15

P1,d2
16

P2,d2
1

P2,d2
2

P2,d2
3

P2,d2
4

P2,d2
5

P2,d2
6

P2,d2
7

P2,d2
8

P2,d2
9

P2,d2
10

P2,d2
11

P2,d2
12

P2,d2
13

P2,d2
14

P2,d2
15

P2,d2
16

P3,d2
1

P3,d2
2

P3,d2
3

P3,d2
4

P3,d2
5

P3,d2
6

P3,d2
7

P3,d2
8

P3,d2
9

P3,d2
10

P3,d2
11

P3,d2
12

P3,d2
13

P3,d2
14

P3,d2
15

P3,d2
16

P4,d2
1

P4,d2
2

P4,d2
3

P4,d2
4

P4,d2
5

P4,d2
6

P4,d2
7

P4,d2
8

P4,d2
9

P4,d2
10

P4,d2
11

P4,d2
12

P4,d2
13

P4,d2
14

P4,d2
15

P4,d2
16

P3,d1
1

P3,d1
2

P3,d1
3

P3,d1
4

P3,d1
5

P3,d1
6

P3,d1
7

P3,d1
8

P3,d1
9

P3,d1
10

P3,d1
11

P3,d1
12

P3,d1
13

P3,d1
14

P3,d1
15

P3,d1
16

P4,d1
1

P4,d1
2

P4,d1
3

P4,d1
4

P4,d1
5

P4,d1
6

P4,d1
7

P4,d1
8

P4,d1
9

P4,d1
10

P4,d1
11

P4,d1
12

P4,d1
13

P4,d1
14

P4,d1
15

P4,d1
16

(b)

(a)

Fig. 4. The tunable block-cyclic partitioning scheme for (a) Nussinov, matrix chain and CYK
algorithms, (b) Skyline matrix problem and SW with the general gap penalty function

W. Liu and B. Schmidt 96

In this section, we introduce a tunable block-cyclic based distribution of columns for
irregular DP algorithms to balance the load among processors. The concept is illustrated
in Fig. 4. The parameter division is used to implement a cyclic distribution of columns
to processors. The parameter rowwidth is used to control the size of messages sent by
processor Pi to processor Pi+1 at a time. Increasing the number of cyclic divisions and
decreasing the size of messages can lead to a better load balancing. Of course, doing this
also increases the communication time. Thus, the choice of the parameter division and
rowwidth is a trade-off between load balancing and communication time.

Input: The number of processors p, the value of division and rowwidth. (Pk denotes
the k-th processor, n×n is the size of matrix M, dt denotes the tth division).

Output: Depending on the requirements of the given applications, the output will be
the optimal score M [1, n] or the whole matrix M.

Begin
for Pk (1 k p) in division dt do

for
=

×+
×

×=

ni

division

n
dt

divisionp

n
Pki

 to

to

 1 (b)

1)1((a)
 do

rowwidthi

rowwidthi

by increased is after (b)

by reduced is after (a) do

if k = 1 then
if dt = 1 do

send message to P2;
if dt > 1 do

receive message from Pp;
send message to P2;

if 1< k < p then
receive message from Pk-1;
send message to Pk+1;

if k = p then
receive message from Pk-1;
if dt division then

send message to P1;

for
×+

×
×+×+

×
×=

×+
×

×=

divison

n
dt

divisionp

n
Pk

division

n
dt

divisionp

n
Pkj

division

n
dt

divisionp

n
Pkij

)1(1)1()1((b)

)1((a)

to

to

 do

compute M[i, j];

End

Fig. 5. The general parameterized parallel algorithm for irregular DP problems. (a) For Nussi-
nov, matrix chain and CYK algorithm, (b) For skyline matrix problem and SW algorithm with
the general gap penalty function

A Tunable Coarse-Grained Parallel Algorithm

97

Two scheduling schemes for irregular DP problems are illustrated in Fig. 4. Pi,dj

k
denotes the block of processor Pi at division j and step k. In Fig. 4a, all processors
start computing at block 1 and block 2 in division 1. In the same division, after Pi
completes computing block 1, it sends this part to Pi+1 and then Pi+1 can go on comput-
ing the block 3 in this division. Between two different divisions, the last processor
will send message to P1. This parallel procedure will continue until the final cell M [1,
n] is computed.

Fig. 4b shows the scheduling scheme for the skyline matrix problem and the
Smith-Waterman algorithm with the general gap penalty function. Initially P1
starts computing at block 1 in division 1. In the same division, after Pi completes
computing block 1, it sends this part to Pi+1 and then Pi+1 can work at the block 1 in
this division. Between two different divisions, the last processor will send mes-
sage to P1. This parallel procedure will continue until all cells on matrix M are
computed.

The general parameterized parallel algorithm for these two scheduling schemes
is presented in Fig. 5. We can get the following theorem according to Fig. 4 and
Fig. 5.

Theorem. The proposed algorithm uses ×(division×p-1)×
rowwidth

n communication

steps with O(
p

n3) sequential computing time on each processor. (is
2

1 for the

triangular matrix computation in Fig. 4a; is 1 for the square matrix computation in
Fig. 4b).

Proof. Processor Pi sends Pi,dj

k to Pi+1 after the k-th step in division dj. In the same

division, after ×
rowwidth

n communication steps, processor Pi completes its work and

moves to the next division to continue this loop until finish computing the sub matrix
allocated to itself. Each moving to the next division will bring another computation

and communication loop, thus, after ×(division×p-1)×
rowwidth

n communication steps,

all the processors have completed their work.
As mentioned in Section 2, the time complexity of 2D/1D DP algorithms is

O(n3). Increasing the number of division can balance the load among processors.
For example, as to the Nussinov algorithm, the load on processor Pi is about

33

3
)26322(

pdivision
divisionppdivisionp n

i ××××+× . When the parameter division is increased,

the lower power item 6×P×Pi×division2 can be omitted. Thus, each processor needs

almost the same O(
p

n3) sequential computing time.

4 Performance Evaluations

We have used the described algorithm to develop parallel applications for the
algorithms in Table 1. The parallel programs are presently implemented using
standard C++ and the MPI library provided by MPICH 1.2.5 [17]. We have
executed the program on a PC cluster. The cluster comprises eight AlphaServer

W. Liu and B. Schmidt 98

ES45 nodes. Each node contains 4 Alpha-EV68 1GHz processors with 1GB RAM
for each processor. All the nodes are connected with each other by a Gbit/sec
Quadrics switch.

Tables 2 and 3 show the average speedups for parallel programs using different
division and rowwidth.

Table 2. Speedup comparison using different division (d) and rowwidth (r) for Nussinov, ma-
trix chain and CYK. The matrix size is 5000×5000. The number of processor is 32

 r = 5 10 15 20 30

d = 1 10 10.5 9.8 9.6 8.5

40 22.2 24.5 21.9 21.2 20.6

60 26.2 27.5 26.7 25.2 24.9

65 27.7 29.8 26.9 26.4 25.7

70 24.2 26.2 22.5 22.2 19.9

75 24.2 26.1 23.3 21.6 21.5

Table 3. Speedup comparison using different division (d) and rowwidth (r) for skyline matrix
problem and Smith-Waterman algorithm with the general gap penalty function. The matrix size
is 5000×5000. The number of processor is 32

 r = 5 10 15 20 30

d = 1 10.5 12.8 11.3 10.1 8.5

40 20.4 23.6 21.3 20.6 19.1

60 22.1 24.9 22.2 21.2 19.4

65 25.8 27.9 26.2 25 23.4

70 23.2 26.1 23.2 22.3 21

75 23 24.7 21.9 20.7 20.3

We have analyzed the behavior of division and rowwidth to estimate the optimal
block size for these applications. The measurements show that the best speedups us-
ing 32 processors are obtained when division is set from 60 to 70 and rowwidth is set
from 5 to 15. Fig. 6 shows the speedups for different number of processors. We com-
pare the performance between the block-based partitioning scheme and the tunable
block-cyclic partitioning scheme. Notice the super linear speedups are observed in
several applications. This is because of the effects due to better caching.

A Tunable Coarse-Grained Parallel Algorithm

99

0

5

10

15

20

25

30

35

(a)

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 Using Tunable Block-Cyclic Based Scheme
 Using Block-Based Scheme

CYK

 S
pe

ed
up

s

 MatrixchainNussinov

0

5

10

15

20

25

30

35

(b)

 U sing T unable Block-C yclic Based Schem e
 U sing B lock-B ased Schem e

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 S
pe

ed
up

s

 SW generalSkyline

Fig. 6. Speedups for irregular DP applications using different partitioning schemes: (a) For
Nussinov, matrix chain and CYK algorithms, (b) For Skyline matrix problem and SW algo-
rithm with the general gap penalty function

5 Conclusions

Dynamic programming is a general problem-solving technique that has been widely
used in many areas. In this paper, we have described a new parameterized parallel
algorithm for irregular dynamic programming applications. By introducing the tun-
able block-cyclic partitioning scheme and tuning the block size, our algorithm can be
used to develop parallel programs with significant speedups. We have presented the
effectiveness of our algorithm for five irregular dynamic programming applications:
Nussinov, matrix chain ordering, CYK, skyline matrix and Smith-Waterman with the

W. Liu and B. Schmidt 100

general gap penalty function. Measurements show that the described algorithm can be
used to develop parallel programs with substantial performance gains for irregular
dynamic programming applications on coarse grained architectures.

Our future work includes designing efficient parallel algorithms for three dimen-
sional irregular dynamic programming applications. It will also be interesting to de-
velop the cost analysis and performance prediction tool for our algorithm.

References

1. C.E.R. Alves, E.N. Cáceres, F. Dehne, and S.W. Song: A Parallel Wavefront Algorithm
for Efficient Biological Sequence Comparison, Proceedings of. International Conference
on Computational Science and Its Applications (ICCSA 2003), Montreal, Canada, 2003,
Springer Lecture Notes in Computer Science, Vol. 2667, Part II, pp. 249–258.

2. D.S. Bouman: A Parallel Skyline Matrix Solver in Orca, Proceedings of the 3rd Annual
Conference of the Advanced School for Computing and Imaging, Heijen, Netherlands, pp.
106–110, 1997.

3. J. Bowie, R. Luthy, D. Eisenberg: A Method to Identify Protein Sequences That Fold Into
A Known Three-dimensional Structure, Science, 253, 164–170, 1991.

4. C. Ciressan, E. Sanchez, M. Rajman, J.C. Chappelier: An FPGA-based coprocessor for the
parsing of context-free grammars, IEEE Symposium on Field-Programmable Custom
Computing Machines, April, 2000.

5. R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological Sequence Analysis - Probabilistic
Models of Protein and Nucleic Acids, Cambridge University Press, 1998.

6. M. Farach and M. Thorup: Optimal evolutionary tree comparison by sparse dynamic
programming, 35th Annual Symposium on Foundations of Computer Science, pp. 770–
779, Santa Fe, New Mexico, 20-22 November 1994.

7. Z. Galil, K. Park: Dynamic Programming with Convexity, Concavity and Sparsity, Theo-
retical Computer Science, 92, pp. 49–76, 1992.

8. X. Huang, K.M. Chao: A Generalized Global Alignment Algorithm, Bioinformatics, 19(2),
pp. 228–233, 2003.

9. V. Kumar, A. Grama, A. Gupa and G. Karypis: Introduction to Parallel Computing, The
Benjamin-Cummings Publishing Company Inc, 1994.

10. D.W. Mount: Bioinformatics-Sequence and Genome Analysis, Cold Spring Harbor Labo-
ratory Press, 2001.

11. H. Ney: The Use of a One-Stage Dynamic Programming Algorithm for Connected Word
Recognition, IEEE Trans. on Acoustic, Speech and Signal Processing, Vol. ASSP-32,
num.2, pp.263–271, April 1984.

12. B. Schmidt, H. Schroder, M. Schimmler: Massively Parallel Solutions for Molecular Se-
quence Analysis, Proc. of IPDPS’02, 2002.

13. B. Schmidt, H. Schroder, M. Schimmler: A Hybrid Architecture for Bioinformatics, Fu-
ture Generation Computer System, 18, 855–862, 2002.

14. T.F. Smith, M.S. Waterman: Identification of Common Subsequences, Journal of Molecu-
lar Biology, pp. 195–197, 1981.

15. G.V. Wilson: Assessing the Usability of Parallel Programming Systems: The Cowichan
Problems”, Proceedings of the IFIP Working Conference on Programming Ecvironments
for Massively Parallel Distributed Systems, 1994.

16. M. Zuker, P. Stiegler: Optimal Computer Folding of Large RNA Sequences Using Ther-
modynamics and Auxiliary Information, Nucleic Acids Research, 9, 1981.

17. http://www.unix.mcs.anl.gov/mpi/ mpich

A Feedback-Based Adaptive Algorithm for Combined
Scheduling with Fault-Tolerance in Real-Time Systems

Suzhen Lin and G. Manimaran

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
{linsz, gmani}@iastate.edu

Abstract. In this paper, we propose a feedback-based combined scheduling al-
gorithm with fault tolerance for applications that have both periodic tasks and
aperiodic tasks in real-time uniprocessor systems. Each periodic task is assumed
to have a primary copy and a backup copy. By using the rate monotonic scheduling
and deferrable server algorithm, we create two servers, one for serving aperiodic
tasks and the other for executing backup copies of periodic tasks. The goal is to
maximize the schedulability of aperiodic tasks while keeping the recovery rate of
periodic tasks close to 100%. Our algorithm uses feedback control technique to
balance the CPU allocation between the backup server and the aperiodic server.
Our simulation studies show that the algorithm can adapt the parameters of the
servers to recover the failed periodic tasks.

Keywords: Real-time systems, feedback-based scheduling, deferrable server al-
gorithm, fault-tolerance.

1 Introduction

Real-time systems are defined as those systems in which the correctness of the system
depends not only on the logical result of computation, but also on the time at which
the results are produced [1]. Most real-time systems involve both periodic tasks and
aperiodic tasks. Usually, periodic tasks are more important than aperiodic tasks. Due to
the critical nature of tasks in a real-time system, it is essential that every periodic task
admitted in the system completes its execution even in the presence of faults. Therefore,
fault tolerance is an important requirement in such systems.

To address the fault tolerance problem, the primary/backup technique is used [2].
Each periodic task is assumed to have a primary copy and a backup copy. If the primary
copy fails, the backup copy will be scheduled and then executed.

In order to schedule both periodic and aperiodic tasks in real-time systems, the
simplest approach is to create a periodic server, with a certain computation time and
period, whose purpose is to serve one or more aperiodic tasks each time it is invoked.
In our paper, the concept of deferrable server algorithm [3] is used. We create two
deferrable servers, one for serving aperiodic tasks and the other for executing backup
copies of failed periodic tasks.

In scheduling systems, faults cause the performance of the system unpredictable.
Control theory is one of the successful areas in addressing performance in the presence
of uncertainty [4]. To the best of our knowledge, ours is the first work that uses feedback
control theory to address the problem of combined scheduling with fault tolerance.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 101–110, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 S. Lin and G. Manimaran

In this paper, we propose a feedback-based combined scheduling for uniprocessor
real-time systems. By feeding back the performances, we adjust the utilization capacity
for backup deferrable server. Specifically, we adjust the period of the backup deferrable
server. By adjusting the period, the utilization capacity and priority are both adjusted.
Since the CPU resource is limited, we cannot adjust the utilization for a server without
changing the utilization of the other server. If the utilization capacity of the backup
server is increased (decreased), then the utilization capacity of the aperiodic server must
be decreased (increased). Our goal is to maximize the schedulability of aperiodic tasks
while keeping the recovery rate of periodic tasks close to the desired value (100%).

The rest of the paper is organized as follows. In Section 2, the related work is dis-
cussed. In Section 3, the feedback-based fault-tolerant scheduling algorithm is proposed.
In Section 4, we validate the result through simulation. Finally, Section 5 concludes the
paper.

2 Background

In this section, we will introduce the system model for our algorithm, feedback control
technique, and deferrable server [3] concept.

2.1 System Model

Figure 1 shows the system model. In our model, we make following assumptions.

– The system is uniprocessor real-time system.
– Tasks arrive at the system are periodic and aperiodic tasks. Each periodic task Ti is

denoted by Ti=〈ci, pi〉, where ci and pi are the computation time and period of Ti

respectively. Each aperiodic task Tj is denoted by Tj=〈aj , cj , dj〉, where aj , cj and
dj are the arrival time, computation time and deadline of task Tj respectively.

– We assume a primary-backup scheduling for periodic tasks [6][7][8] wherein a
backup copy of a task is executed if its primary fails the acceptance test.

– We assume transient faults for the periodic tasks and the faults are independent. The
failure of aperiodic tasks is not considered as they are not very critical.

– There exists a fault-detection mechanism such as acceptance tests to detect both
processor failures (transient) and software failures.

– We use the concept of deferrable server to serve aperiodic tasks and the backup
copies. We have n periodic tasks: T1, T2, ..., Tn, and we also create an aperiodic
deferrable server (Tas = 〈cas, pas〉) to serve aperiodic tasks and another backup
deferrable server (Tbs = 〈cbs, pbs〉) to serve backup copies of periodic tasks. cas

and pas are the computation time budget and period of the aperiodic deferrable
server respectively. cbs and pbs are the computation time budget and period of the
backup deferrable server respectively. When a failure is detected in a primary copy,
the backup copy is put into the backup task queue of the backup deferrable server.

– The scheduling algorithm used is rate monotonic scheduling (RMS) [5] algorithm.
The RMS algorithm schedules periodic tasks and the server instances.

– Feedback control technique is used to adjust the utilization allocated to the aperiodic
server and the backup server. The adjustment is based on the fault rate and recovery
rate of the periodic tasks.

A Feedback-Based Adaptive Algorithm for Combined Scheduling 103

Deferrable
Server

Aperiodic

Server
Deferrable
Backup

Aperiodic Task Queue

Backup Copies Queue

Periodic Task Queue

RMS
+

Deferrable Server

Processor

Periodic
tasks

Aperiodic
tasks

B
ac

ku
p

co
pi

es
of

 p
er

io
di

c
ta

sk
s

Fig. 1. System model

We define miss ratio (MR) of periodic tasks and aperiodic tasks and recovery rate
(RR) of periodic tasks for the model. Miss ratio of periodic tasks is the ratio of the number
of periodic tasks that miss their deadlines to the number of periodic tasks admitted into the
system. Similarly, miss ratio of aperiodic tasks is defined for aperiodic tasks. Recovery
rate of periodic tasks is the ratio of the number of recovered tasks (backup copies that
meet their deadlines) to the number of failed primary copies. The desired MR of the
periodic tasks is zero and the desired recovery rate is 100%.

Deferrable Server Algorithm: In the deferrable server algorithm, a periodic task
known as a deferrable server [3] is created to serve aperiodic tasks. When the server is
invoked but no aperiodic tasks are outstanding, the server does not execute but defers
its assigned time slot. When an aperiodic task arrives, the server is invoked to execute
aperiodic tasks and maintains its priority. The computation time budget for the server is
replenished at the beginning of each period of the server.

For periodic tasks and deferrable server, we use the following schedulability checks.
Assume that the tasks are ordered in non-increasing order of priority, that is, we have
T1, T2, ..., Tm, Ts, Tm+1, ..., Tn, where Ts is the server. For schedulability check of each
periodic task Tj that have higher priorities than the server, Equation 1 is used. For the
server, Equation 2 is used, where cs and ps are computation time budget and period
of the server respectively. For each task Tj that have lower priorities than the server,
Equation 3 is used.

j∑
i=1

ci

pi
≤ j(21/j − 1) (1)

m∑
i=1

ci

pi
+

cs

Ps
≤ (m + 1)(21/(m+1) − 1) (2)

j∑
i=1

ci

pi
+

cs

ps
+

cs

pj
≤ (j + 1)(21/(j+1) − 1) (3)

2.2 Feedback Control

Figure 2 shows a typical control system, consisting of a controller, a plant to be controlled
(controlled system), sensors, and actuators [9]. The system defines four variables: (1)
exogenous variables are inputs from outside of the system, e.g., set points (desired values
of the output values) and disturbance. (2) regulated variables are the output values that

104 S. Lin and G. Manimaran

the system wants to regulate. (3) measured variables are values that the sensors measure.
(4) control variables are the inputs of the actuators. The actuators will actuate the plant
based on the control variables. Besides, The system also defines the error, which is the
difference between the set points and the feedback information.

The system works as follows: The sensors periodically monitor the regulated vari-
ables and get the error to feed to the controller. The controller computes the required
control, using the control function of the system, based on the error. The actuators change
the control (manipulated) variables to control the system.

Controller
+

−

C
on

tr
ol

V
ar

ia
bl

e(
s)

Sensors

Controlled

System

disturbance

Regulated

Variable(s)

Measured

Variable(s)

S
et

 P
oi

nt
(s

)

Actuators

Fig. 2. Control system

3 Proposed Combined Scheduling Using Feedback

The goal of the proposed algorithm is to maximize the schedulability of aperiodic tasks
while keeping the recovery rate of primary copies of periodic tasks close to 100%. Since
aperiodic tasks are less important than periodic tasks, we give the aperiodic deferrable
server a period larger than all periodic tasks, that is, the aperiodic deferrable server has
lowest priority. According to Section 2.1, the CPU utilization allocated to the backup
deferrable server is ubs = cbs

pbs
, the utilization that the periodic tasks need is up =∑n

i=1
ci

pi
, and the utilization allocated to aperiodic tasks is uas = cas

pas
.

The problem is how to allocate CPU utilization to the periodic tasks, aperiodic
deferrable server and backup deferrable server. Since there is no way to know exactly
how many tasks and which tasks will fail until the failures happen, we need to estimate
ubs to allocate resource. When an application starts, we guarantee enough capacity to the
periodic tasks, allocate small capacity to the backup deferrable server, and the remaining
capacity is allocated to the aperiodic deferrable server. When faults occur, we increase
ubs. ubs can be increased by increasing cbs or decreasing pbs. Since decreasing pbs can not
only increase ubs but also increase the priority of the backup deferrable server, we adjust
the period of the backup deferrable server to change ubs. The failure information can be
obtained by measuring the recovery rate of failed periodic tasks in a past interval. The
remaining utilization is assigned to the aperiodic deferrable server with lowest priority.
When ubs changes, we change the capacity of the aperiodic deferrable server to achieve
suitable CPU utilization. The priority of the aperiodic deferrable server is fixed to be the
lowest priority, thus pas is fixed and cas will be adjusted.

3.1 Admission Test

During the adjusting of the utilization of servers, the situation may happen. At the begin-
ning, the period of the backup deferrable server is larger than the aperiodic deferrable

A Feedback-Based Adaptive Algorithm for Combined Scheduling 105

server; Later, the period of the backup deferrable server may become smaller than the
aperiodic deferrable server. In the admission test, when pbs > pas, Equation 4 is used,
otherwise, Equation 5 is used.

n∑
i=1

ci

pi
+

cas

pas
+

cbs

pbs
+

cas

pbs
≤ (n + 2)(21/(n+2) − 1) (4)

n∑
i=1

ci

pi
+

cbs

pbs
+

cas

pas
+

cbs

pas
≤ (n + 2)(21/(n+2) − 1) (5)

All the utilization adjustments must satisfy Equation 4 or Equation 5. That is, every
time we change the period of the backup deferrable server, we need to use Equation 4
or Equation 5 to decide the value of cas.

3.2 Feedback Control Mechanism

The system architecture is shown in Figure 3. The measured variable is recovery rate
of failed periodic tasks. The set point is desired value of the recovery rate. The control
variable is the utilization of backup sever. The regulated variable is the recovery rate.
However, we notice that if we assign the set point to a desired value of 100%, the
period of the backup deferrable server will not change when the fault rate decreases. To
avoid such undesired situation, we also measure the failure rate of the periodic tasks and
feedback this information to the controller to adjust the period of the backup deferrable
server. The controller algorithm is shown in Equation 6. In Equation 6, when the recovery
rate at time instant k − 1 (RRk−1) is less than the set point (RRs = 100%), the term
−kr(RRs − RRk−1) contributes a negative part to the period at time instant k (pbsk)
and hence the period of the backup deferrable server will decrease. This means the
utilization allocated to the backup deferrable server increases. Therefore backup copies
will get more chances to be executed, and the recovery rate will increase. In Equation 6,
we also compare the measured failure rate (FRk−1) with the average failure rate (FRa)
in the past t intervals. If the failure rate is less than FRa, the term kf (FRa − FRk−1)
will contribute a positive part to the period. This will increase the period, and hence the
utilization allocated to the backup deferrable server will decrease.

pbsk = pbs(k−1) − kr(RRs −RRk−1) + kf (FRa − FRk−1) (6)

After getting pbs, cas can be calculated; when pbsk > pask, we use Equation 7,
otherwise, we use Equation 8. The subscript k is time instant and Urms is the utilization
bound of RMS.

cask =
Urms − up − ubsk

1
pas

+ 1
pbsk

(7)

cask = (Urms − up − ubsk − cbs

pas
)× pas (8)

Note that when we use controller to adjust the parameters of the two servers, negative
values of pbsk and cask should not appear. There may be two reasons of getting negative
values: One is that the parameter of the controller is too large which results in the task
parameters going to negative values; The other reason is that the fault rate is very high,
and the system resource does not have enough capacity to execute all the tasks. We

106 S. Lin and G. Manimaran

&

PI Controller

Unit Negative Feedback

FR −FR

PI Controller

a

−

+

D
es

ire
d

R
ec

ov
er

y
R

at
e

&
Schedulability Test

C Actuationas

P Actuationbs

Actuator

DS

&
RMS

Scheduling System

R
ec

ov
er

y
R

at
e

Fig. 3. System architecture

assume low fault rate, so the latter case will not appear. To deal with the formal case, we
need to choose the controller parameters carefully such that the task parameters will not
go out of their reasonable ranges. When faults occur, the period of backup deferrable
server decreases. According to Equation 5, if the period decreases to a value that cas has
to be zero such that Equation 5 can still be satisfied, pbs can not be decreased any more.
From Equation 5, we get Equation 9.

cbs

pbs
+

cas

pas
= Urms − up − cbs

pas
(9)

We require that cas ≥ 0, then we have Equation 10.

pbs ≥ cbs

Urms − up − cbs

pas

(10)

In order to let pbs satisfy Equation 10, we must be careful with selecting kr and kf .
If these two values are too large, it will cause large fluctuation and unreasonable task
parameters before the system becomes stable. Thus, we need to confine the value of kr

and kf such that pbs will be greater than pbst = cbs

Urms−up− cbs
pas

. The maximum change

in pbs is pbsmax = pbso − pbst, where pbso is the original period assigned to the backup
deferrable server. Thus we have Equation 11.

− krΔRR + kfΔFR ≤ pbsmax (11)

ΔRR and ΔFR are the change in RR and FR respectively in the corresponding
situation. Assume ΔRR = −1 and ΔFR = 1, we have a conservative restriction on kr

and kf as shown in Equation 12, where kr > 0 and kf > 0.

kr + kf ≤ pbsmax (12)

When we choose the parameters for the controller, Equation 12 must be satisfied.

4 Simulation Studies

The simulation studies were conducted in two parts. The first part shows the effect of
feedback adjustment by injecting fault at the beginning. The second part shows the steady
state performance for different fault rate.

The periodic tasks used for the simulation are generated as follows:

• The computation time (ci) is uniformly chosen between 10 and 20.

A Feedback-Based Adaptive Algorithm for Combined Scheduling 107

• The period of task Ti is uniformly chosen between (6 ∗ ci) and (8 ∗ ci).
• The backup copies have identical characteristics of their primary copies.

The aperiodic tasks used for the simulation are generated as follows:

• The computation time (ci) of task Ti is uniformly chosen between 10 and 20.
• The deadline of Ti is uniformly chosen between (ri + 30 ∗ ci) and (ri + 40 ∗ ci).
• The inter-arrival time of tasks is exponentially distributed with mean θ = 50.

4.1 Part 1: Fault Injection at Time 0

In the first part of the simulation, we generate three periodic tasks and inject fault at time
instant 0. Fault rate for task T1, T2 and T3 are 0.01, 0.02 and 0.01 respectively.

Figure 4 shows that the period for the backup server decreases due to the fault
injection. Then the period curve becomes flat after the fluctuation at the beginning.

140

160

180

200

220

240

260

280

300

0 20 40 60 80 100 120 140 160 180 200

P
er

io
ds

 o
f b

ac
ku

p
de

fe
rr

ab
le

 s
er

ve
r

Time Instant

Fig. 4. Periods of backup deferrable server

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160 180 200

U
til

. o
f a

pe
rio

di
c

de
fe

rr
ab

le
 s

er
ve

r

Time Instant

Fig. 5. Utilization of aperiodic deferrable server

Figure 5 shows the utilization allocated for the aperiodic deferrable server. At the
beginning, the utilization is lower, this is due to the preassigned budget. Then the utiliza-
tion goes up since the utilization of the backup server has not gone up very much. Then,
when the utilization of the backup server increases more, the utilization of the aperiodic
deferrable server decreases.

Figure 6 shows the utilization allocated for the backup deferrable server. The curve
increases at the beginning and then becomes stable due to the injection of fault.

Figure 7 shows the recovery rate of the failed periodic tasks. It reaches 100% soon.
This means failed periodic tasks can be recovered after the curve reaches 100%.

4.2 Part 2: Steady State Performances

In the second part of the simulation, we measure the system performances for different
average fault rate of tasks. In the steady state, the recovery rate is 100%. We plot the
utilization of the aperiodic server instead of the schedulability of aperiodic tasks.

Figure 8 shows the periods of the backup deferrable server for different fault rates.
The period of the backup server decreases when the fault rate increases.

108 S. Lin and G. Manimaran

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160 180 200

U
til

. o
f b

ac
ku

p
de

fe
rr

ab
le

 s
er

ve
r

Time Instant

Fig. 6. Utilization of backup deferrable server

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

R
ec

ov
er

y
ra

te
 o

f f
ai

le
d

pe
rio

di
c

ta
sk

s

Time Instant

Fig. 7. Recovery rate of failed periodic tasks

50

100

150

200

250

300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

P
er

io
ds

 o
f b

ac
ku

p
de

fe
rr

ab
le

 s
er

ve
r

Fault Rate

Fig. 8. Periods of backup deferrable server

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

U
til

. o
f a

pe
rio

di
c

de
fe

rr
ab

le
 s

er
ve

r

Fault Rate

Fig. 9. Utilization of aperiodic deferrable server

Figure 9 shows the final values of the utilization allocated to the aperiodic deferrable
server. The utilization decreases when the fault rate increase, since the aperiodic de-
ferrable server needs to give some utilization to the backup server so that the recovery
rate of the backup copies will reach 100%.

A Feedback-Based Adaptive Algorithm for Combined Scheduling 109

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

U
til

. o
f b

ac
ku

p
de

fe
rr

ab
le

 s
er

ve
r

Fault Rate

Fig. 10. Utilization of backup deferrable server

Figure 10 shows the final values of the utilization allocated to the backup deferrable
server. The utilization increases when the fault rate increase since more utilization needs
to be allocated to the backup server when the fault rate increases.

5 Related Work

In [10][11], authors proposed a new methodology for automatically adapting the rate
of a periodic task set by using feedback control technique. The rate adaptation is good
to achieve correct behavior of the system and high resource utilization. In [12][13], the
authors present a feedback control EDF scheduling algorithm for real-time uniprocessor
systems. The adaption is applied on tasks’ service level. In [14][15][16], authors present
a closed-loop scheduling algorithm based on execution time estimation. [17] assumes
that each task consists of n sequential replicable sub-tasks. The controller adjusts the
number of the replicas of sub-tasks to achieve low MR and high resource utilizations
when the system is overloaded.

The above papers adopt the feedback control technique, but they do not address the
issue of fault tolerance, which is important for periodic tasks in real-time systems. Our
paper is the first one which addresses the combined scheduling with fault-tolerant issue.

There are several papers [6][7][8] which use PB approach to address fault tolerant
scheduling problems in real-time systems, however, these papers do not use feedback
technique, thus do not have the flexibility to allocate suitable utilization for tasks.

6 Conclusions

In this paper, we proposed a feedback-based fault-tolerant scheduling algorithm for
real-time uniprocessor systems. The system has both periodic tasks and aperiodic tasks.
Each periodic task can have a primary copy and a backup copy. The rate monotonic
scheduling algorithm and deferrable server algorithm are used to schedule tasks. Two
deferrable servers are created, one for aperiodic tasks and one for the backup copies of

110 S. Lin and G. Manimaran

periodic tasks. The recovery rate and failure rate of periodic tasks are fed back to the
controller, and the utilization capacity of the backup deferrable server is adjusted using
feedback control theory. Suitable utilization capacity is allocated to backup deferrable
server and the remaining utilization capacity is used for the aperiodic deferrable server.
The simulation studies show that the algorithm can guarantee 100% recovery rate for
periodic tasks with a balanced utilization for backup tasks.

References

1. K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and operating systems support
for real-time systems”, in Proc. IEEE, vol.82, no.1, pp.55-67, Jan. 1994.

2. D. K. Pradhan, “Fault Tolerant Computing: Theory and Techniques”, Prentice Hall, NJ, 1986.
3. J. K. Strosnider, J. P. Lehoczky and L. Sha, “The deferrable server algorithm for enhanced

aperiodic responsiveness in hard real-time environments”, IEEE Trans. on Computers, vol.44,
no.1, pp.73-91, Jan. 1995.

4. Katsuhiko Ogata, “Modern Control Engineering”, Prentice Hall, Upper Saddle River, New
Jersey, 2002.

5. C. Liu and J. Layland, “ Scheduling algorithms for multiprogramming in a hard real-time
environment”, Journal of ACM, vol.20, no.1, pp.45-61, Jan. 1973.

6. A. L. Liestman and R. H. Campbell, “A fault-tolerant scheduling problem”, IEEE Trans.
Software Engineering, vol.12, no.11, pp.1089-1095, Nov. 1988.

7. S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerance through scheduling of aperiodic tasks
in hard real-time multiprocessor systems”, IEEE Trans. on Parallel and Distributed Systems,
vol.8, no.3, pp.272-284, Mar. 1997.

8. G. Manimaran and C. Siva Ram Murthy, “A fault-tolerant dynamic scheduling algorithm for
multiprocessor real-time systems and its analysis”, IEEE Tran. on Parallel and Distributed
Systems, vol.9, no.11, pp.1137-1152, Nov. 1998.

9. C. Siva Ram Murthy and G. Manimaran,“Resource Management in Real-Time Systems and
Networks”, MIT Press, April 2001.

10. G. Buttzaao, G. Lipari and L. Abeni, “Elastic task model for adaptive rate control”, in Proc.
IEEE Real-Time Systems Symposium, pp.286-295, 1998.

11. G. Buttazzo and L. Abeni, “ Adaptive workload management through elastic scheduling”,
Real-Time Systems, vol.23, no.1-2, pp.7-24, July-September, 2002.

12. C. Lu, J. A. Stankovic, G. Tao, and S.H. Son, “Design and evaluation of feedback control
EDF scheduling algorithm”, In Proc. IEEE Real-Time System Symposium, pp.56-67, 1999.

13. J. A. Stankovic, Chenyang Lu, S. H. Son, and G. Tao, “The case for feedback control real-time
scheduling”, in Proc. Euromicro Conference on Real-Time Systems, pp.11-20, 1999.

14. D. R. Sahoo, S. Swaminathan, R.Al-Omari, M.V. Salapaka, G. Manimaran, andA. K. Somani,
“Feedback control for real-time scheduling”, in Proc. American Controls Conference, vol.2,
pp.1254-1259, 2002.

15. R. Al-Omari, G. Manimaran, M. V. Salapaka, and A. K. Somani, “Novel algorithms for open-
loop and closed-loop scheduling of real-time tasks based on execution time estimation”, in
Proc. IEEE Intl. Parallel and Distributed Processing Symposium, pp.7-14, 2003.

16. S. Lin, S. Sai Sudhir and G. Manimaran, “ConFiRM-DRTS: A certification framework for
dynamic resource management in distributed real-time systems,” in Proc. Intl. Workshop on
Parallel and Distributed Real-Time Systems, pp.110-117, 2003.

17. B. Ravindran, P. Kachroo, and T. Hegazy, “Adaptive resource management in asynchronous
real-time distributed systems using feedback control functions”, in Proc. Intl. Symposium on
Autonomous Decentralized Systems, pp.39-46, 2001.

A Shared Memory Dispatching Approach for
Partially Clairvoyant Schedulers

K. Subramani1 and Kiran Yellajyosula�,2

1 LCSEE,
West Virginia University,

Morgantown, WV
ksmani@csee.wvu.edu

2 CSE,
University of Minnesota,

Minneapolis, MN
kiran@cs.umn.edu

Abstract. It is well known that in a typical real-time system, certain
parameters, such as the execution time of a job, are not fixed numbers.
In such systems, it is common to characterize the execution time as a
range-bound interval, say, [l, u], with l indicating the lower bound on the
execution time and u indicating the upper bound on the same. Such in-
tervals can be determined with a high degree of confidence in state of the
art operating systems, such as MARUTI [7, 5] and MARS [2]. Secondly,
jobs within a real-time system are often constrained by complex timing
relationships. In hard real-time applications, it is vital that all such con-
straints are satisfied at run time, regardless of the values assumed by
environment-dependent parameters, such as job execution times. As de-
scribed in [11], there are two fundamental issues associated with real-time
scheduling, viz., the schedulability query and dispatchability. A positive
answer to the schedulability query may not by itself guarantee that all
the imposed constraints will be met at run-time; indeed the phenomenon
in which the dispatcher fails to dispatch a schedulable job set, is called
Loss of Dispatchability. This paper is concerned with techniques to ad-
dress this phenomenon in Partially Clairvoyant schedulers; we primarily
focus on distributing the dispatch computations across the processors of
a shared-memory computer.

1 Introduction

Real-time systems have gained importance in a number of applications ranging
from safety-critical systems such as nuclear reactors and automotive controllers,
to gaming software and internet routing. There are two primary issues in real-
time scheduling that distinguish this form of scheduling from the more traditional
scheduling models, considered in [8] and [1], viz., the non-constant nature of job

� This work was conducted while the author was a graduate student at West Virginia
University.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 111–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

112 K. Subramani and K. Yellajyosula

execution time and the existence of temporal constraints between jobs. When
the execution times are non-constant and there are timing relationships between
jobs, it is not obvious as to when a set of jobs can be declared schedulable. Ac-
cordingly, the E-T-C scheduling model was proposed in [11]; this model formally
addresses the notion of schedulability in a real-time system. Within the frame-
work of this model, we focus on Partially Clairvoyant scheduling with relative
timing constraints [12].

As was pointed out in [11], schedulability and dispatchability are two distinct
issues, with the former being conducted offline and latter being conducted online.
It is the job of the scheduler to examine the constraints and check whether a
feasible schedule exists, under the given schedulability query. If such a schedule
exists, then it is the job of the dispatcher to compute the actual time at which a
job is to be placed on the time line. In case of Partially Clairvoyant scheduling,
computing the dispatch time of a job is a nontrivial task and it is possible that
the time taken to perform this computation may cause constraint violation at
run time. This phenomenon has been referred to as the Loss of Dispatchability
phenomenon [10].

One technique to address Loss of Dispatchability in a scheduling system is to
distribute the computation of the dispatch functions of jobs. This paper examines
the benefits of this approach, by using a shared memory cluster to perform the
dispatching and contrasting its performance with a sequential dispatcher. The
detailed performance profile clearly demonstrates the superiority of the multiple
processor approach.

2 Statement of Problem

Consider a set of ordered, hard real-time jobs J = {J1, J2, . . . , Jn}. These
jobs are non-preemptive and occur exactly once in each scheduling window. Let
�s = [s1, s2, . . ., sn]T denote the start time vector of the jobs and let �e = [e1,
e2, . . ., en]T denote the corresponding execution time vector. The execution
time of the job Ji is known to vary in the interval [li, ui]. There exist relative
timing relationships between pairs of jobs, which can be represented by simple
difference constraints between the start (or finish) times of jobs. For instance,
the constraint: Start job J2 six units after job J1 finishes, can be expressed as:
s1 + e1 + 6 ≤ s2. The set of all constraints can be thought of as a network, as
described in [12]. Note that there is a strict ordering in job execution in that J1
starts and finishes before J2, which in turn starts and finishes before J3 and so on.

In a Partially Clairvoyant schedule, the start time of a job can depend upon
the execution times of jobs that are sequenced before it. Accordingly, the schedu-
lability query is:

∃s1 ∀e1 ∈ [l1, u1] ∃s2 ∀e2 ∈ [l2, u2], . . .∃sn ∀en ∈ [ln, un] A · [�s �e]T ≤ �b? (1)

where A · [�s �e]T ≤ �b is the matrix representation of the constraint network.
Familiarity with the contents of [12] is strongly recommended for a clear under-
standing of this paper.

A Shared Memory Dispatching Approach 113

Note that s1 is numeric, since J1 is the first job in the sequence, while si,
i > 1, is a function of e1, e2, . . . , ei−1, in the above formulation.

The algorithm in [12] takes System (1) as input and proceeds by eliminating
execution time variables and start time variables of jobs, beginning with Jn. For
the purpose of saving space, we relegate the discussion of this algorithm to the
journal version of the paper.

Consider a four job set J1, J2, J3, J4, with execution times e1 ∈ [3, 7], e2 ∈
[5, 6], e3 ∈ [2, 7] and e4 ∈ [8, 12] respectively, with the following set of temporal
constraints imposed on them:

(a) J1 finishes at least 2 units before J2 starts: s1 + e1 + 2 ≤ s2.
(b) J3 starts after the completion of J2: s2 + e2 ≤ s3.
(c) J3 starts at least 5 units after, but within 10 units of J1 completing:

s1 + e1 + 5 ≤ s3, s3 ≤ s1 + e1 + 10.
(d) J3 finishes at least 5 units before J4 starts: s3 + e3 + 5 ≤ s4.
(e) J4 completes within 40 units of time: s4 + e4 ≤ 40.

The Partially Clairvoyant schedule for the above example can be obtained
by applying the algorithm in [12].

(i) 0 ≤ s1 ≤ 1
(ii) s1 + e1 + 2 ≤ s2 ≤ min(10, s1 + e1 + 4)
(iii) max(s1 + e1 + 5, s2 + e2) ≤ s3 ≤ min(s1 + e1 + 10, 16)
(iv) s3 + e3 + 5 ≤ s4 ≤ 28

In general, the dispatch function for si will have the following form:

max(f1, f2, . . . , fi−1) ≤ si ≤ min(f ′
1, f ′

2, . . . , f ′
i−1).

where fj and f ′
j are functions depending on the start and execution times of

job Jj (j < i). Further, each fj is either a constant or a function of the form
sj(+ej) + k1, for some positive k1.

Definition 1. A safety interval for a job is the time interval during which the
job can be started without violating any of the constraints imposed by the con-
straint system in (1).

Thus, in order to determine the safety interval of Ji, we must know ej ,∀j < i.

Definition 2. A feasible Partially Clairvoyant schedule is said to be dispatch-
able on a machine M, if for every job Ji, M can start executing Ji in its safety
interval.

For the example above, assuming that s1 = 0 and e1 = 6, the safety interval
for s2 is [8, 10].

The machine M computes the dispatch functions and obtains the safety in-
terval during which each job can be dispatched without violating the constraints.
The job Ji cannot be dispatched, if the time taken by M to perform this compu-
tation, exceeds its safety interval. Our goal in this paper is to determine safety
intervals for jobs, such that Loss of Dispatchability does not occur.

114 K. Subramani and K. Yellajyosula

3 Motivation and Related Work

The issues raised by execution time variability and complex timing constraints
in real-time systems have been formalized in [11], where the E-T-C framework
was proposed. Within this framework, we are interested in Partially Clairvoyant
scheduling, as far as this paper is concerned. This problem was first discussed
in [3], where an O(n3) algorithm was proposed for answering query (1). They
also discuss a dispatching scheme, which could take as much as Ω(n) time on
an n-job set, in the worst case. This computation cost suffered by the online
dispatcher can cause constraint violation, i.e., the time after the computation
of the safety interval of Jb, viz., [lb, rb] could exceed rb and hence Jb cannot be
dispatched. For the example in Section §2, assume that the first two jobs take
the maximum time to execute. Let J1 start at time t = 0; it follows that the
safety interval of J3 is [15, 16]. If the dispatcher takes more than one unit of time
to compute this safety interval, then J3 cannot be dispatched.

[10] provides a theoretical discussion of a parallel online algorithm for elimi-
nating Loss of Dispatchability. This algorithm provides O(1) dispatch time per
job and uses O(n) space per processor; unfortunately, it uses one processor per
job. We combine the design ideas in [10], with a comprehensive implementation
profile in this paper; our approach uses a fixed number of processors, regardless
of the number of jobs. One of the important consequences of our work is that
we now have a smooth tradeoff between processors and quality of service, in
that a greater level of quality can be guaranteed, by increasing the number of
processors in the scheduling system.

4 Architecture and Algorithm

We use the Concurrent Read Exclusive Write (CREW) shared memory archi-
tecture, the details of which can be found in [4]. Each processor has a separate
local memory in addition to the common shared memory and maintains a copy
of the data it requires in its local memory. Changes to the shared data are made
in the local memory first and then flushed to the shared memory, to achieve
coherence. A shared data variable present in the memory of multiple processors
is invalidated once a processor updates the shared data in the central memory.
A processor requires far less time to access data from its memory than data in
the memory of another processor. While reading a shared variable, the value
resulting from the most recent write is loaded into the local memory.

4.1 Architecture

We assume that there is a central processor that runs the jobs and a number of
satellite processors that are involved in the computation of dispatch functions.
The processors share data with each other through the shared memory as in-
dicated in Figure (1). The variables of interest, which are stored in the shared
memory include (si, ei) and (lbi+1 , rbi+1). The central processor C executes Job
Ji and stores (si, ei) in the memory. It then updates a flag f1 and waits on

A Shared Memory Dispatching Approach 115

Shared Memory

Central
Processor

S1 S2 Si Sk

(si,ei)
(l
i+1
b ,r

i+1
b)

(si,ei) (si,ei) (si,ei)(si,ei)

(l
i+1
b ,r

i+1
b) (l

k+1
b ,r

k+1
b)(l

3
b,r

3
b)(l

2
b,r

2
b)

Fig. 1. Shared Memory Dispatcher Architecture

another flag f2 to be updated by a satellite processor. Each satellite processor
Sj updates and reports the safety intervals for the class of jobs Cj assigned to
it. The satellite processor Sm, to which Ji+1 ∈ Cm has been assigned, writes
the safety interval (lbi+1 , rbi+1) in the memory and updates the flag f2. After
updating the safety intervals of all the remaining jobs in their class, the satellite
processors wait on flag f1 to be updated by C.

In this implementation, there are no communication costs as compared to a
network distributed model but there is a cost for achieving memory coherence.

4.2 Algorithms

In [3], a sequential algorithm for dispatching was proposed; this algorithm has a
dispatch complexity of Ω(n), since in the worst case, sn may depend upon the
execution times of all the jobs in the sequence.

Algorithm (4.2) describes the shared memory dispatcher. In this algorithm,
each processor relaxes at most four constraints (see [12]), to determine the safety
interval of si+1, after Ji has finished execution on the central processor. As stated
in [10], relaxing 4 constraints takes at most four additions and four comparisons,
i.e., 4 · (Tadd + Tcomp), where Tadd and Tcomp are the times taken to perform
an addition and a comparison respectively. Let w1 be the cost of writing a
floating point number to the shared memory such that the data is coherent
throughout the memory. C is required to flush the present values of (si, ei, f1)
to the memory, while Sk writes (lbi+1 , rbi+1 , f2) into the shared memory. The
time required to compute the safety interval is at most 4 · (Tadd +Tcomp)+6 ·w1
and hence Algorithm (4.2) takes at most O(1) time, for computing the safety
interval of a job.

Algorithm (4.2) updates the dispatch functions in parallel with the execution
of the current job. Each processor updates constraints between the completed
job and a fraction (= 1

k) of the remaining jobs, where k is the number of satellite
processors. When n is very large, the time required to update the constraints is
larger than the execution time of a current job and this leads to loss of dispatch-
ability on a sequential dispatcher. Increasing the number of processors helps in
dispatching the schedule, as long as the memory coherence cost is not large.

116 K. Subramani and K. Yellajyosula

Algorithm 4.1: Shared-Memory Dispatcher for a Partially Clairvoyant Scheduler

Function Shared-Online-Dispatcher-for-Ja (G =< V, E >)
1: Let [lbi , rbi], (lbi < rbi) denote the current safety interval of Ji.
2: Let P denote the number of satellite processors.
3: for (i = 1 to n) in parallel do
4: if (central processor) then
5: if (current-time < lbi) then
6: Sleep (lbi -current-time)
7: end if
8: if (current-time ∈ [lbi , rbi]) then
9: Execute job Ji

10: Save (si, ei) to memory
11: Update f lag1 and save to memory
12: Wait till f lag2 is updated
13: Read (lbi+1 , rbi+1) from memory
14: else
15: Return (Schedule is not dispatchable)
16: end if
17: end if
18: if (satellite processor Sm) then
19: Compute Sk, the satellite processor to which the safety interval computation

is to be reported
20: Wait till f lag1 is updated
21: Read (si, ei)
22: if (Sk = Sm) then
23: Update-constraints(i, i + 1)
24: Write safety interval to memory
25: Update f lag2 and write to memory
26: Update-constraints(i, q) for each Job Jq ∈ Ck

27: else
28: Update-constraints(i, q) for each Job Jq ∈ Cm

29: end if
30: end if
31: if (i = n) then
32: return(schedule is dispatchable)
33: end if
34: end for

Algorithm 4.2: Update function of Shared-Memory Dispatcher

Function Update-constraints(i, q)
1: Relax constraints between Ji and Jq into absolute constraints of Jq.
2: Compare each absolute constraint with the existing safety interval for Jq

3: if (new constraint is not redundant) then
4: Update Safety Interval ([lbq , rbq])
5: else
6: Leave the Safety Interval unchanged
7: end if

A Shared Memory Dispatching Approach 117

5 Empirical Analysis

5.1 Machine Description

We tested an implementation of the dispatcher on the SGI Origin2000 machine
of the National Computational Science Alliance (NCSA). The hardware specifi-
cation of the machine and environment are listed in Tables 1 and 2 respectively.

Table 1. Machine specifications of SGI Origin2000 of NCSA

Component Description

Architecture Distributed Shared Memory
Processors MIPS R10000
Available number of processors 64 (or 128)
Clock Speed 250 MHz or 195 MHz
Instruction Cache Size 32Kbytes
Data Cache Size 32 Kbytes
User Virtual Address Space 4 GB
Interconnect between machines Gigabit Ethernet

Table 2. Software

Component Description

Operating System Irix 6.5
Compiler C
Programming Models OpenMP
Floating Point Format IEEE
Batch System Load Sharing batch system

Due to space constraints, we omit the details of schedule generation in the
experimental suites.

5.2 Results

In our experiments, we attempted to maximize the degree of parallelism, in that
threads executed in parallel, whenever possible.

Our first focus was on measuring the update time of the sequential and the
shared memory dispatchers. The sequential dispatcher updates all the existing
constraints, depending on the start and execution time of a completed job before
starting the next job. Figure (2) plots the update time in seconds against the
number of jobs, for the sequential dispatcher and the shared dispatcher with two
processors. The plot shows that the update time of the sequential dispatcher
increases with size of the schedule, while that of the shared dispatcher with two
processors is almost constant (= 2.5× 10−5s).

118 K. Subramani and K. Yellajyosula

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9
x 10

−3 Update time for 1 processor and 2 processor

number of jobs

 U
pd

at
e

T
im

e

1
2

Fig. 2. Plot of update time of single processor dispatcher and 2-processor dispatcher
versus number of jobs

It is not hard to see that after approximately 165 jobs, the shared memory
dispatcher with two processors is superior to the uni-processor dispatcher.

We tested the shared-memory and sequential dispatcher with schedules of
different sizes using three different random seeds. Similar results were observed
in all three cases, i.e., schedules were not dispatchable using a single processor,
but were dispatchable using multiple processors. Table 3 summarizes the results
of the experiments performed.

Table 3. Results of dispatching job sets of different size using single and multiple
processors.

√
indicates that the schedule was successfully dispatched and × indicates

that it was not

Processors Number of Jobs
250 500 750 1000 2000 3000 4000 5000

1
√ √ √ √ × × × ×

2
√ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √

5.3 Scalability

In this section, we observe the behaviours of dispatchers, as the size of the sched-
ules (i.e., number of jobs) varies. We generated Partially Clairvoyant schedules
with the number of jobs in each schedule increasing from 1000 to 9750. All the
jobs in the schedules had execution time periods varying from one to five mil-
liseconds and the spacing time between two adjacent jobs was between one-tenth
and one-half of a millisecond.

A Shared Memory Dispatching Approach 119

Figure (3) shows the size of the largest schedule successfully dispatched with
a certain number of processors and clearly demonstrates the scalability of the
shared memory dispatcher. We observed that as the size of the schedule in-
creased, additional processors were needed by the shared memory dispatcher to
prevent loss of dispatchability. This is easily explained, since increasing the size
of the schedule increases the update time required by the satellite processors.
Consequently, the satellite processors need additional time to read the start and
execution times of the current job, after it has been computed by the central
processor. This increase in computing time in the satellite processors eventually
results in the schedule breaking down. With 10 processors, all the generated
schedules created were successfully dispatched.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 jo

bs

number of processors

Scalability of Shared Memory Dispatcher

"scalability"

Fig. 3. The number of jobs that can be successfully dispatched by a given number
of processors, where the job execution time was between 1 to 5 milliseconds and the
spacing time was between 0.1 to 0.5 milliseconds. The area under the curve shows the
schedules which can be successfully dispatched

In Figure (3), we observe that the slope of the curve decreases for large
schedules, even as the number of processors is increased. As the size of the job set
increases, the satellite processors need to access memory locations in the central
memory for every constraint they relax. This causes frequent cache misses and
page faults, thereby increasing the number of read and write operations to the
main memory and slowing down the updating process. After a certain number of
jobs, the time taken for constraint relaxation is significantly high and this causes
delays in the reading of data, by the concerned satellite processor. We thus see
that the memory to processor latency is a bottleneck for updating constraints
and increasing the number of processors does not help when the latency and
the spacing time are of the same order. A second reason for the increase in
the latency is the increased number of read/write requests to the memory, as

120 K. Subramani and K. Yellajyosula

the number of processors increases. There is limited bandwidth between the
shared memory and the processors; this limitation prevents all the processors
from accessing and updating the memory at the same time, necessitating high
speed connections and high memory bandwidth to ensure dispatchability of the
schedules.

We also observed an interesting paradox, viz., that a given processor set
successfully dispatched schedules of sizes larger than the size of the schedule on
which it failed. In our opinion, this observation merits a serious investigation into
the unpredictable nature of memory flushes; note that improving predictability
is one of the fundamental concerns of real-time systems.

5.4 Effect of Execution Time

Increasing the execution times of the jobs gives the satellite processors additional
time to compute their safety intervals. In most cases, this results in the satellite
processors waiting for the central processor to update the flag f1, which upholds
our assumption in Section §4.1. On the other hand, decreasing the execution
times of jobs voids our assumption, since the satellite processors would be up-
dating safety intervals, even as the central processor completes a job and writes
the corresponding values to memory. It follows that larger the job execution
time, larger is the job set that can be dispatched.

0

1000

2000

3000

4000

5000

5 10 15 20 25 30

nu
m

be
r

of
 jo

bs

number of processors

 Effect of varying execution time for the Shared Memory Dispatcher

5-10 ms
1-5 ms

0.5-1 ms
0.1-0.5 ms

Fig. 4. The plot shows the effect of varying the execution time of jobs on the dispatch-
ability of a job set by a certain number of processors. The spacing time was assumed
to be between 0.1 to 0.5 milliseconds

In the test cases created, the spacing time between two adjacent jobs was set
between one-tenth and one-half of a millisecond and job execution time was var-
ied in the intervals [0.1ms, 0.5ms], [0.5ms, 1ms], [1ms, 5ms] and [5ms, 10ms].

A Shared Memory Dispatching Approach 121

The number of jobs in the schedule ranged from 250 to 5000. Experiments were
conducted by varying the number of processors used by the dispatcher and find-
ing the size of the largest schedule successfully dispatched. Figure (4) plots the
size of the largest schedule successfully dispatched, with a given number of pro-
cessors for the four different execution time intervals. From this figure, we con-
clude that greater the execution times of jobs, greater is the number of jobs
that can be dispatched by the shared memory dispatcher. We also observed that
schedules with higher execution time intervals can be dispatched using fewer
processors, than the identical schedule with smaller execution time intervals.
The sequential dispatcher was not able to dispatch any schedule used in these
experiments.

6 Conclusion

In this paper, we implemented a shared memory dispatcher for a Partially Clair-
voyant scheduler and empirically demonstrated its superiority over a sequential
dispatcher. Whereas previous work had been confined to theoretical analysis,
our work here conclusively establishes the need for a multi-processor approach
to dispatching. We note that our strategy succeeds principally in situations when
the time taken to compute the safety interval of a job exceeds the the time re-
quired to achieve memory coherence across a collection of satellite processors.
On the whole, our approach is targeted to power up the controller by providing
it with more processing power.

The principal conclusions that can be drawn from our work are as follows:

(a) Increasing the number of processors permits the dispatching of larger sized
schedules and therefore the shared memory approach is highly scalable.

(b) When the execution times of the jobs are high, fewer processors are required
to achieve successful dispatching.

From our perspective, the following issues merit further study:

(i) How does using non-blocking reads and writes in the dispatching algorithm
(see [13]), affect its correctness and performance?

(ii) Can we construct a theoretical model to find the minimum number of
processors that dispatches a given constraint set? We believe that this
model and its solution, will have an immediate bearing on practical real-
time systems.

Acknowledgements

The implementation effort involved in this project was supported by a grant from
the National Computational Science Alliance (NCSA) under ASC30006N and
utilized the account [kirany]. Their contributions are gratefully acknowledged.

122 K. Subramani and K. Yellajyosula

References

1. P. Brucker. Scheduling Algorithms. Springer, 1998. 2nd edition.
2. A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The Real-Time Operating

System of MARS. ACM Special Interest Group on Operating Systems, 23(3):141–
157, July 1989.

3. R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-Time
Tasks. IEEE Transactions on Computers, 1995.

4. Joseph Ja’Ja’. An introduction to parallel algorithms (contents). SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and Computability The-
ory), 23, 1992.

5. S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The Maruti Hard
Real-Time Operating System. ACM Special Interest Group on Operating Systems,
23(3):90–106, July 1989.

6. Aloysius K. Mok, Chan-Gun Lee, Honguk Woo, and Konana. P. The monitoring of
timing constraints on time intervals. In Proceedings of the 23rd IEEE Real-Time
Systems Symposium (RTSS’02), pages 191–200. IEEE Computer Society Press,
2002.

7. D. Mosse, Ashok K. Agrawala, and Satish K. Tripathi. Maruti a hard real-time
operating system. In Second IEEE Workshop on Experimental Distributed Systems,
pages 29–34. IEEE, 1990.

8. M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall, Englewood
Cliffs, 1995.

9. Manas Saksena. Parametric Scheduling in Hard Real-Time Systems. PhD thesis,
University of Maryland, College Park, June 1994.

10. K. Subramani. Duality in the Parametric Polytope and its Applications to a
Scheduling Problem. PhD thesis, University of Maryland, College Park, August
2000.

11. K. Subramani. A specification framework for real-time scheduling. In W.I. Grosky
and F. Plasil, editors, Proceedings of the 29th Annual Conference on Current Trends
in Theory and Practice of Informatics (SOFSEM), volume 2540 of Lecture Notes
in Computer Science, pages 195–207. Springer-Verlag, November 2002.

12. K. Subramani. An analysis of partially clairvoyant scheduling. Journal of Mathe-
matical Modelling and Algorithms, 2(2):97–119, 2003.

13. Philippas Tsigas and Yi Zhang. Non-blocking data sharing in multiprocessor real-
time systems. In Proceedings of the Sixth International Conference on Real-Time
Computing Systems and Applications, page 247. IEEE Computer Society, 1999.

Data Redistribution Algorithms for
Homogeneous and Heterogeneous Processor

Rings

Hélène Renard, Yves Robert, and Frédéric Vivien

LIP, UMR CNRS-INRIA-UCBL 5668
ENS Lyon, France

{Helene.Renard, Yves.Robert, Frederic.Vivien}@ens-lyon.fr

Abstract. We consider the problem of redistributing data on homoge-
neous and heterogeneous processor rings. The problem arises in several
applications, each time after a load-balancing mechanism is invoked (but
we do not discuss the load-balancing mechanism itself). We provide al-
gorithms that aim at optimizing the data redistribution, both for uni-
directional and bi-directional rings. One major contribution of the paper
is that we are able to prove the optimality of the proposed algorithms
in all cases except that of a bi-directional heterogeneous ring, for which
the problem remains open.

1 Introduction

In this paper, we consider the problem of redistributing data on homogeneous
and heterogeneous rings of processors. The problem typically arises when a
load balancing phase must be initiated. Because either of variations in the
resource performances (CPU speed, communication bandwidth) or in the sys-
tem/application requirements (completed tasks, new tasks, migrated tasks, etc.),
data must be redistributed between participating processors so that the current
(estimated) load is better balanced. We do not discuss the load-balancing mech-
anism itself: we take it as external, be it a system, an algorithm, an oracle, or
whatever. Rather we aim at optimizing the data redistribution induced by the
load-balancing mechanism.

We adopt the following abstract view of the problem. There are n participat-
ing processors P1, P2, . . . , Pn. Each processor Pk initially holds Lk atomic data
items. The load-balancing system/algorithm/oracle has decided that the new
load of Pk should be Lk − δk. If δk > 0, this means that Pk now is overloaded
and should send δk data items to other processors; if δk < 0, Pk is under-loaded
and should receive −δk items from other processors. Of course there is a conser-
vation law:

∑n
k=1 δk = 0. The goal is to determine the required communications

and to organize them (what we call the data redistribution) in minimal time.
We assume that the participating processors are arranged along a ring, either

unidirectional or bidirectional, and either with homogeneous or heterogeneous
link bandwidths, hence a total of four different frameworks to deal with. There

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 123–132, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

124 H. Renard, Y. Robert, and F. Vivien

are two main contexts in which processor rings are useful. The first context is
those of many applications which operate on ordered data, and where the order
needs to be preserved. Think of a large matrix whose columns are distributed
among the processors, but with the condition that each processor operates on
a slice of consecutive columns. An overloaded processor Pi can send its first
columns to the processor Pj that is assigned the slice preceding its own slice;
similarly, Pi can send its last columns to the processor which is assigned the
next slice; obviously, these are the only possibilities. In other words, the ordered
uni-dimensional data distribution calls for a uni-dimensional arrangement of the
processors, i.e., along a ring.

The second context that may call for a ring is the simplicity of the program-
ming. Using a ring, either uni- or bi-directional, allows for a simpler management
of the data to be redistributed. Data intervals can be maintained and updated to
characterize each processor load. Finally, we observe that parallel machines with
a rich but fixed interconnection topology (hypercubes, fat trees, grids, to quote
a few) are on the decline. Heterogeneous cluster architectures, which we target
in this paper, have a largely unknown interconnection graph, which includes
gateways, backbones, and switches, and modeling the communication graph as
a ring is a reasonable, if conservative, choice.

As stated above, we discuss four cases for the redistribution algorithms. In the
simplest case, that of a unidirectional homogeneous ring, we derive an optimal
algorithm. Because the target architecture is quite simple, we are able to provide
explicit (analytical) formulas for the number of data sent/received by each pro-
cessor. The same holds true for the case of a bidirectional homogeneous ring, but
the algorithm becomes more complicated. When assuming heterogeneous com-
munication links, we still derive an optimal algorithm for the unidirectional case,
but we have to use an asynchronous formulation. However, we have to resort to
heuristics based upon linear programming relaxation for the bidirectional case.
We point out that one major contribution of the paper is the design of optimal
algorithms, together with their formal proof of correctness: to the best of our
knowledge, this is the first time that optimal algorithms are introduced.

Due to the lack of space, the detailed proofs of correctness and optimality of
the algorithms are not provided: please see the extended version [6]. Similarly,
please refer to [6] for a survey of related work.

2 Framework

We consider a set of n processors P1, P2, . . . , Pn arranged along a ring. The
successor of Pi in the ring is Pi+1, and its predecessor is Pi−1, where all indices
are taken modulo n. For 1 ≤ k, l ≤ n, Ck,l denotes the slice of consecutive
processors Ck,l = Pk, Pk+1, . . . , Pl−1, Pl.

We denote by ci,i+1 the capacity of the communication link from Pi to Pi+1.
In other words, it takes ci,i+1 time-units to send a data item from processor Pi

to processor Pi+1. In the case of a bidirectional ring, ci,i−1 is the capacity of the
link from Pi to Pi−1. We use the one-port model for communications: at any

Data Redistribution Algorithms 125

given time, there are at most two communications involving a given processor,
one sent and the other received. A given processor can simultaneously send and
receive data, so there is no restriction in the unidirectional case; however, in
the bidirectional case, a given processor cannot simultaneously send data to its
successor and its predecessor; neither can it receive data from both sides. This
is the only restriction induced by the model: any pair of communications that
does not violate the one-port constraint can take place in parallel.

Each processor Pk initially holds Lk atomic data items. After redistribution,
Pk will hold Lk−δk atomic data items. We call δk the imbalance of Pk. We denote
by δk,l the total imbalance of the processor slice Ck,l: δk,l = δk + δk+1 + . . . +
δl−1 + δl. Because of the conservation law of atomic data items,

∑n
k=1 δk = 0.

Obviously the imbalance cannot be larger than the initial load: Lk ≥ δk. In fact,
we suppose that any processor holds at least one data, both initially (Lk ≥ 1)
and after the redistribution (Lk ≥ 1 + δk): otherwise we would have to build a
new ring from the subset of resources still involved in the computation.

3 Homogeneous Unidirectional Ring

In this section, we consider a homogeneous unidirectional ring. Any processor Pi

can only send data items to its successor Pi+1, and ci,i+1 = c for all i ∈ [1, n]. We
first derive a lower bound on the running time of any redistribution algorithm.
Then, we present an algorithm achieving this bound (hence optimal), and we
prove its correctness.

Lemma 1. Let τ be the optimal redistribution time. Then:

τ ≥
(

max
1≤k≤n, 0≤l≤n−1

|δk,k+l|
)
× c.

Proof. The processor slice Ck,k+l = Pk, Pk+1, . . . , Pk+l−1, Pk+l has a total im-
balance of δk,k+l = δk +δk+1+ . . .+δk+l−1+δk+l. If δk,k+l > 0, δk,k+l data items
must be sent from Ck,k+l to the other processors. The ring is unidirectional, so
Pk+l is the only processor in Ck,k+l with an outgoing link. Furthermore, Pk+l

needs a time equal to δk,k+l×c to send δk,k+l data items. Therefore, in any case,
a redistribution scheme cannot take less than δk,k+l × c to redistribute all data
items. We have the same type of reasoning for the case δk,k+l < 0.

Theorem 1. Algorithm 1 is optimal.

4 Heterogeneous Unidirectional Ring

In this section we still suppose that the ring is unidirectional but we no longer
assume the communication paths to have the same capacities. We build on the
results of the previous section to design an optimal algorithm (Algorithm 2 be-
low). In this algorithm, the amount of data items sent by any processor Pi is

126 H. Renard, Y. Robert, and F. Vivien

Algorithm 1 Redistribution algorithm for homogeneous unidirectional rings
1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)
2: Let start and end be two indices such that the slice Cstart,end is of maximal im-

balance: δstart,end = δmax.
3: for s = 1 to δmax do
4: for all l = 0 to n − 1 do
5: if δstart,start+l ≥ s then
6: Pstart+l sends to Pstart+l+1 a data item during the time interval [(s − 1) ×

c, s × c[

exactly the same as in Algorithm 1 (namely δstart,i). However, as the communi-
cation links have different capabilities, we no longer have a synchronous behavior.
A processor Pi sends its δstart,i data items as soon as possible, but we cannot
express its completion time with a simple formula. Indeed, if Pi initially holds
more data items than it has to send, we have the same behavior than previously:
Pi can send its data items during the time interval [0, δstart,i × ci,i+1[. On the
contrary, if Pi holds less data items than it has to send (Li < δstart,i), Pi still
starts to send some data items at time 0 but may have to wait to have received
some other data items from Pi−1 to be able to forward them to Pi+1.

Algorithm 2 Redistribution algorithm for heterogeneous unidirectional rings
1: Let δmax = (max1≤k≤n,0≤l≤n−1 |δk,k+l|)
2: Let start and end be two indices such that the slice Cstart,end is of maximal im-

balance: δstart,end = δmax.
3: for all l = 0 to n − 1 do
4: Pstart+l sends δstart,start+l data items one by one and as soon as possible to

processor Pstart+l+1

The asynchronousness of Algorithm 2 implies that it is correct by construc-
tion: we wait for receiving a data item before sending. Furthermore, when the
algorithm terminates, the redistribution is complete.

Lemma 2. The running time of Algorithm 2 is

max
0≤l≤n−1

δstart,start+l × cstart+l,start+l+1.

The result of Lemma 2 is surprising. Intuitively, it says that the running time
of Algorithm 2 is equal to the maximum of the communication times of all the
processors, if each of them initially stored locally all the data items it will have
to send throughout the execution of the algorithm. In other words, there is no
forwarding delay, whatever the initial distribution.

Theorem 2. Algorithm 2 is optimal.

Data Redistribution Algorithms 127

5 Homogeneous Bidirectional Ring

In this section, we consider a homogeneous bidirectional ring. All links have the
same capacity but a processor can send data items to its two neighbors in the
ring: there exists a constant c such that, for all i ∈ [1, n], ci,i+1 = ci,i−1 = c.
We proceed as for the homogeneous unidirectional case: we first derive a lower
bound on the running time of any redistribution algorithm, and then we present
an algorithm achieving this bound.

Lemma 3. Let τ be the optimal redistribution time. Then:

τ ≥ max
{

max
1≤i≤n

|δi|, max
1≤i≤n,1≤l≤n−1

⌈ |δi,i+l|
2

⌉}
× c. (1)

The new (rightmost) term in this lower bound just states that a slice of pro-
cessor can send (or receive) simultaneously at most two data items. Algorithm 3
is a recursive algorithm which defines communication patterns designed so as to
decrease the value of δmax (computed at Step 1) by one from one recursive call
to another. The intuition behind Algorithm 3 is the following:

1. Any non trivial slice Ck,l such that |δk,l|
2 � = δmax and δk,l ≥ 0 must send

two data items per recursive call, one through each of its extremities.

2. Any non trivial slice Ck,l such that |δk,l|
2 � = δmax and δk,l ≤ 0 must receive

two data items per recursive call, one through each of its extremities.
3. Once the mandatory communications specified by the two previous cases

are defined, we take care of any processor Pi such that |δi| = δmax. If Pi is
already involved in a communication due to the previous cases, everything
is settled. Otherwise, we have the freedom to choose whom Pi will send a
data item to (case δi > 0) or whom Pi will receive a data item from (case
δi < 0). To simplify the algorithm we decide that all these communications
will take place in the direction from Pi to Pi+1.

Algorithm 3 is initially called with the parameter s = 1. For any call to
Algorithm 3, all the communications take place in parallel and exactly at the
same time, because the communication paths are homogeneous by hypothesis.
One very important point about Algorithm 3 is that this algorithm is a set of
rules which only specify which processor Pi must send a data item to which
processor Pj , one of its immediate neighbors. Therefore, whatever the number
of rules deciding that there must be some data item sent from a processor Pi to
one of its immediate neighbor Pj , only one data item is sent from Pi to Pj to
satisfy all these rules.

Theorem 3. Algorithm 3 is optimal.

128 H. Renard, Y. Robert, and F. Vivien

Algorithm 3 Redistribution algorithm for homogeneous bidirectional rings (for
step s)

1: Let δmax = max{max1≤i≤n |δi|, max1≤i≤n,1≤l≤n−1� |δi,i+l|
2 �}

2: if δmax ≥ 1 then
3: if δmax 	= 2 then
4: for all slice Ck,l such that δk,l > 1 and � |δk,l|

2 � = δmax do
5: Pk sends a data item to Pk−1 during the time interval [(s − 1) × c, s × c[.
6: Pl sends a data item to Pl+1 during the time interval [(s − 1) × c, s × c[.
7: for all slice Ck,l such that δk,l < −1 and � |δk,l|

2 � = δmax do
8: Pk−1 sends a data item to Pk during the time interval [(s − 1) × c, s × c[.
9: Pl+1 sends a data item to Pl during the time interval [(s − 1) × c, s × c[.

10: else if δmax = 2 then
11: for all slice Ck,l such that δk,l ≥ 3 do
12: Pl sends a data item to Pl+1 during the time interval [(s − 1) × c, s × c[.
13: for all slice Ck,l such that δk,l = 4 do
14: Pk sends a data item to Pk−1 during the time interval [(s − 1) × c, s × c[.
15: for all slice Ck,l such that δk,l ≤ −3 do
16: Pk−1 sends a data item to Pk during the time interval [(s − 1) × c, s × c[.
17: for all slice Ck,l such that δk,l = −4 do
18: Pl+1 sends a data item to Pl during the time interval [(s − 1) × c, s × c[.
19: for all processor Pi such that δi = δmax do
20: if Pi is not already sending, due to one of the previous steps, a data item

during the time interval [(s − 1) × c, s × c[then
21: Pi sends a data item to Pi+1 during the time interval [(s − 1) × c, s × c[.
22: for all processor Pi such that δi = −(δmax) do
23: if Pi is not already receiving, due to one of the previous steps, a data item

during the time interval [(s − 1) × c, s × c[then
24: Pi receives a data item from Pi−1 during the time interval [(s−1)×c, s×c[.
25: if δmax = 1 then
26: for all processor Pi such that δi = 0 do
27: if Pi−1 sends a data item to Pi during the time interval [(s − 1) × c, s × c[

then
28: Pi sends a data item to Pi+1 during the time interval [(s − 1) × c, s × c[.
29: if Pi+1 sends a data item to Pi during the time interval [(s − 1) × c, s × c[

then
30: Pi sends a data item to Pi−1 during the time interval [(s − 1) × c, s × c[.
31: Recursive call to Algorithm 3 (s + 1)

6 Heterogeneous Bidirectional Ring

In this section, we consider the most general case, that of a heterogeneous bidi-
rectional ring. We do not know any optimal redistribution algorithm in this case.
However, if we assume that each processor initially holds more data than it needs
to send during the whole execution of the redistribution (what we call a light
redistribution), then we succeed in deriving an optimal solution.

Data Redistribution Algorithms 129

Throughout this section, we suppose that we have a light redistribution: we
assume that the number of data items sent by any processor throughout the
redistribution algorithm is less than or equal to its original load. There are two
reasons for a processor Pi to send data: (i) because it is overloaded (δi > 0); (ii)
because it has to forward some data to another processor located further in the
ring. If Pi initially holds at least as many data items as it will send during the
whole execution, then Pi can send at once all these data items. Otherwise, in
the general case, some processors may wait to have received data items from a
neighbor before being able to forward them to another neighbor.

Under the “light redistribution” assumption, we can build an integer linear
program to solve our problem (see System 2). Let S be a solution, and denote
by Si,i+1 the number of data items that processor Pi sends to processor Pi+1.
Similarly, Si,i−1 is the number of data items that Pi sends to processor Pi−1. In
order to ease the writing of the equations, we impose in the first two equations
of System 2 that Si,i+1 and Si,i−1 are nonnegative for all i, which imposes to
use other variables Si+1,i and Si−1,i for the symmetric communications. The
third equation states that after the redistribution, there is no more imbalance.
We denote by τ the execution time of the redistribution. For any processor Pi,
due to the one-port constraints, τ must be greater than the time spent by Pi

to send data items (fourth equation) or spent by Pi to receive data items (fifth
equation). Our aim is to minimize τ , hence the system:

Minimize τ, subject to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Si,i+1 ≥ 0 1 ≤ i ≤ n
Si,i−1 ≥ 0 1 ≤ i ≤ n
Si,i+1 + Si,i−1 − Si+1,i − Si−1,i = δi 1 ≤ i ≤ n
Si,i+1ci,i+1 + Si,i−1ci,i−1 ≤ τ 1 ≤ i ≤ n
Si+1,ici+1,i + Si−1,ici−1,i ≤ τ 1 ≤ i ≤ n

(2)

Lemma 4. Any optimal solution of System 2 is feasible, for example using the
following schedule: for any i ∈ [1, n], Pi starts sending data items to Pi+1 at time
0 and, after the completion of this communication, starts sending data items to
Pi−1 as soon as possible under the one-port model.

We use System 2 to find an optimal solution to the problem. If, in this
optimal solution, for any processor Pi, the total number of data items sent is
less than or equal to the initial load (Si,i+1 + Si,i−1 ≤ Li), we are under the
“light redistribution” hypothesis and we can use the solution of System 2 safely.
But even if the “light redistribution” hypothesis holds, one may wish to solve
the redistribution problem with a technique less expensive than integer linear
programming (which is potentially exponential). An idea would be to first solve
System 2 to find an optimal rational solution, which can always be done in
polynomial time, and then to round up the obtained solution to find a “good”
integer solution. In fact, it turns out that one of the two natural ways of rounding
always lead to an optimal (integer) solution [6]. The complexity of the light
redistribution problem is therefore polynomial.

130 H. Renard, Y. Robert, and F. Vivien

If we no longer assume the light redistribution hypothesis, we can still derive
a lower bound, and use some heuristics [6]. However, we point out that the
design of an optimal algorithm in the most general case remains open. Given the
complexity of the lower bound, the problem looks very difficult to solve.

7 Experimental Results

To evaluate the impact of the redistributions, we used the SimGrid [5] simulator
to model an iterative application, implemented on a platform generated with the
Tiers network generator [2, 3]. We use the platform represented in Figure 1. The
capacities of the edges are assigned using the classification of the Tiers generator
(local LAN link, LAN/MAN link, MAN/WAN link,. . .). For each link type, we
use values measured using pathchar [4] between some machines in ENS Lyon
and some other machines scattered in France (Strasbourg, Lille, Grenoble, and
Orsay), in the USA (Knoxville, San Diego, and Argonne), and in Japan (Nagoya
and Tokyo).

We randomly select p processors in the platform to build the execution ring.
The communication speed is given by the slowest link in the route from a pro-
cessor to its successor (or predecessor) in the ring. The processing powers (CPU
speeds) of the nodes are first randomly chosen in a list of values corresponding
to the processing powers (expressed in MFlops and evaluated thanks to a bench-
mark taken from LINPACK [1]) of a wide variety of machines. But we make
these speeds vary during the execution of the application.

We model an iterative application which executes during 100 iterations. At
each iteration, independent data are updated by the processors. We may think
of a m×n data matrix whose columns are distributed to the processors (we use
n = m = 1000 in the experiment). Ideally, each processor should be allocated a
number of columns proportional to its CPU speed. This is how the distribution
of columns to processors is initialized. To motivate the need for redistributions,
we create an imbalance by letting the CPU speeds vary during the execution.
The speed of each processor changes two times, first at some iteration randomly
chosen between iterations number 20 and 40, and then at some iteration ran-
domly chosen between iterations number 60 and 80 for each node (see Figure 2
for an illustration). We record the values of each CPU speed in a SimGrid trace.

In the simulations, we use the heterogeneous bidirectional algorithm for light
redistributions, and we test five different schemes, each with a given number of
redistributions within the 100 iterations. The first scheme has no redistribution
at all. The second scheme implements a redistribution after iteration number 50.
The third scheme uses four redistributions, after iterations 20, 40, 60 and 80.
The fourth scheme uses 9 redistributions, implemented every 10 iterations, and
the last one uses 19 redistributions, implemented every 5 iterations. Given the
shape of the CPU traces, some redistributions are likely to be beneficial during
the execution. The last parameter to set is the computation-to-communication
ratio, which amounts to set the relative (average) cost of a redistribution versus
the cost of an iteration. When this parameter increases, iterations take more
time, and the usefulness of a redistribution becomes more important.

Data Redistribution Algorithms 131

Jacquelin

Boivin
Ethernet

Louis

St_Bruno

Jean_Yves

TeX

Geoff

Wright

Rubin
Lachapelle

Disney

iRMX

McGee Jamie

Kansas

Drouin

Gatien

Laroche

Marcoux

Pointe_Claire

Robert

Europe

Tanguay

Morin

Bellemarre

St_Jean

Lessard

Fraser

Kuenning

Gaston

Harry

Bousquet

Paul

Jill

LaTeX

Fafard

Marcel

Jackson

Victoria

Julien

Doyon

Fernand

Soucy

Ste_Julie

Browne

Florient

Gavrel

Bescherelle

Pierre

Olivier

Boucherville

Jocelyne

Croteau

King

Lapointe

Audy

Papineau

Dodge

Julian

SPICE

Lafontaine

Gordon

Juneau

Stephen

Provost

Casavant

St_Antoine

Varennes

St_Paul

Mathematica

Sirois

Monique

Bourassa

OHara

Boston

SunOS

Jacques Thierry

kV Intel

Yolande

Pronovost

Roy

Amadeus

Cambridge

Tremblay

UNIX

Domey

Jean_Claude

36

39

34

32

6

8

3

23

24

262

7

51

27

15

14

16

60

18

75

70

17

50

52

53

59

57

58

25

21

0

42

5

145

45

47

46

20

100

31

40

44

140

155

22

Fig. 1. The platform is composed of 90
machine nodes, connected through 192
communication links

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

P
ro

ce
ss

in
g

po
w

er
s

Number of iterations

Processor Amadeus
Processor Cambridge

Fig. 2. Processing power of 2 sample
machine nodes

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
in

 s
ec

.

Computation-to-communication ratio

no redistribution
1 redistribution

4 redistributions
9 redistributions

19 redistributions

Fig. 3. Normalized execution time as a function of the computation-to-communication
ratio, for a ring of 8 processors

In Figures 3 and 4, we plot the execution time of different computation
schemes. Both figures report the same comparisons, but for different ring sizes:
we use 8 processors in Figures 3, and 32 in Figures 4. As expected, when the
processing power is high (ratio = 10 in the figures), the best strategy is to use
no redistribution, as their cost is prohibitive. Conversely, when the processing
power is low (ratio = 1 in the figures), it pays off to uses many redistributions,
but not too many! As the ratio increases, all tradeoffs can be found.

8 Conclusion

In this paper, we have considered the problem of redistributing data on rings
of processors. For homogeneous rings the problem has been completely solved.
Indeed, we have designed optimal algorithms, and provided formal proofs [6]
of correctness, both for unidirectional and bidirectional rings. The bidirectional
algorithm turned out to be quite complex, and requires a lengthy proof [6].

132 H. Renard, Y. Robert, and F. Vivien

 35

 40

 45

 50

 55

 60

 65

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
in

 s
ec

.

Computation-to-communication ratio

no redistribution
1 redistribution

4 redistributions
9 redistributions

19 redistributions

Fig. 4. Normalized execution time as a function of the ratio computation-to-
communication, for a ring of 32 processors

For heterogeneous rings there remains further research to be conducted. The
unidirectional case was easily solved, but the bidirectional case remains open. Still,
we have derived an optimal solution for light redistributions, an important case in
practice. The complexity of the bound provided for the general case shows that
designing an optimal algorithm is likely to be a difficult task.

All our algorithms have been implemented and extensively tested. We have
reported some simulation results for the most difficult combination, that of het-
erogeneous bi-directional rings. As expected, the cost of data redistributions may
not pay off a little imbalance of the work in some cases. Further work will aim at
investigating how frequently redistributions must occur in real-life applications.

References

1. R. P. Brent. The LINPACK Benchmark on the AP1000: Preliminary Re-
port. In CAP Workshop 91. Australian National University, 1991. Website
http://www.netlib.org/linpack/.

2. K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling internet topol-
ogy. IEEE Communications Magazine, 35(6):160–163, June 1997. Available at
http://citeseer.nj.nec.com/calvert97modeling.html.

3. M. Doar. A better model for generating test networks. In Proceedings of Globecom
’96, Nov. 1996. Available at http://citeseer.nj.nec.com/doar96better.html.

4. A. B. Downey. Using pathchar to estimate internet link characteristics. In Mea-
surement and Modeling of Computer Systems, pages 222–223, 1999. Available at
http://citeseer.nj.nec.com/downey99using.html.

5. A. Legrand, L. Marchal, and H. Casanova. Scheduling Distributed Applications: The
SimGrid Simulation Framework. In Proceedings of the Third IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’03), May 2003.

6. H. Renard, Y. Robert, and F. Vivien. Data redistribution algorithms for heteroge-
neous processor rings. Research Report RR-2004-28, LIP, ENS Lyon, France, May
2004. Also available as INRIA Research Report RR-5207.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 133–143, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Effect of Optimizations on Performance of
OpenMP Programs

Xinmin Tian and Milind Girkar

Intel Compiler Labs, Software and Solutions Group, Intel Corporation,
3600 Juliette Lane, Santa Clara, CA 95052, USA

{Xinmin.Tian, Milind.Girkar}@intel.com

Abstract. In this paper, we describe several compiler optimization techniques
and their effect on the performance of OpenMP programs. We elaborate on the
major design considerations in a high performance OpenMP compiler and pre-
sent experimental data based on the implementation of the optimizations in the
Intel® C++ and Fortran compilers for Intel platforms. Interactions of the
OpenMP translation phase with other sequential optimizations in the compiler
are discussed. The techniques in this paper are responsible for achieving sig-
nificant performance improvements on the industry standard SPEC*
OMPM2001 and SPEC* OMPL2001 benchmarks, and these results are pre-
sented for Intel® Pentium® and Itanium® processor based systems.

1 Introduction

The OpenMP* specification [7][11] for shared memory parallel programming has a
rich set of features that allows the user to write parallel programs with a modest de-
velopment effort using directives. These directives are translated by the compiler to
generate threaded code that will usually show increased performance on shared mem-
ory multiprocessor systems. Performance can also be gained on processors that allow
simultaneous execution of multiple threads (e.g. IBM* Power 5 [1] or Intel® proces-
sors with Hyper-Threading Technology [6]). The principle behind the OpenMP speci-
fication is to shift most of the complex tasks of thread management from the user to a
compiler, freeing the user to concentrate on the expression of parallelism through the
OpenMP directives. The Intel C++/Fortran95 compilers support the OpenMP 2.0
specification on Windows and Linux platforms on the IA-32 and Itanium® Processor
Family (IPF) architectures [4][5].

There have been several papers discussing OpenMP parallelization in the compil-
ers [2][3][4][5]. Various OpenMP implementations are possible. An OpenMP pre-
processor [2][3] accepts C/C++ and Fortran95 OpenMP programs and translates them
to C++/Fortran95 programs (without OpenMP directives) that are subsequently com-
piled with a native compiler (one that generates machine code). A more integrated
approach is to have an internal OpenMP translation phase in the native compiler
[5][10] itself eliminating the preprocessor. In most cases an auxiliary runtime library
for thread management is used with the compiler generated code making many calls
to this library. All implementations have to worry about the OpenMP translation

134 X. Tian and M. Girkar

phase adversely affecting the other optimization phases in the native compiler. As a
simple example, when implementing OpenMP through a preprocessor, the preproces-
sor may require the generation of calls to the OpenMP runtime library and passing of
addresses of variables as parameters in such calls. However, taking the addresses of
variable can significantly affect the ability of the compiler to determine accurately
which variables are read (or written) at various points in the program. In this paper
we study the interaction between other optimization phases and the OpenMP* transla-
tion phase and show the cooperation that is required between the two to generate
optimized code.

The remainder of this paper is organized as follows. The Section 2 presents an
overview of the Intel® C++/Fortran95 compiler. Section 3 describes the phase im-
plemented in the Intel compiler for generating multithreaded code from OpenMP
directives. Section 4 presents techniques to make the parallelizer interact tightly with
other optimizations. In Section 5, we discuss the quantitative effect of optimizations
on the industry standard SPEC OMPM2001 benchmarks [9][10] on Intel Pentium-
and Itanium-processor based systems. In Section 6, we report industry leading per-
formance results of SPEC OMPL2001 on the Itanium 2 (1.5GHz) processor based
SGI* Altix* system with 128 processors obtained by an application of the ideas pre-
sented in this paper. Finally, concluding remarks can be found in Section 7.

2 Intel Compiler Architecture

A high-level overview of the Intel C++ and Fortran95 compilers is shown in Fig.1.
The compiler incorporates many well-known and advanced optimization techniques
[5][8][12] that are designed and extended to fully leverage Intel processor features for
higher performance. The code transformations and optimizations in the compiler can
be classified as below:

Fig. 1. Compiler Architecture Overview

C++/C Front-End

IL0 code restructuring and IPO

IA-32 code generation and
optimizations

HLO and Scalar Optimization

OpenMP/Automatic Parallelization & Vectorization

Fortran95 Front-End

IPF code generation and
optimizations

IA-32 Windows NT/ Linux IPF Windows NT/Linux

Effect of Optimizations on Performance of OpenMP Programs 135

− Code restructuring, inter-procedural optimizations (IPO), and OpenMP directive-guided
parallelization, automatic parallelization and automatic vectorization

− High-level optimizations (HLO) and scalar optimizations including memory optimiza-
tions such as loop control and data transformations, partial redundancy elimination
(PRE), and partial dead store elimination (PDSE).

− Low-level machine code generation and optimizations such as register allocation, instruc-
tion scheduling and software pipelining.

The Intel compiler has a common intermediate representation, called IL0, which
has been extended to represent OpenMP directives and clauses, so that OpenMP di-
rective guided parallelization and a majority of optimizations are applicable through
high-level code transformations on IL0. Implementing the OpenMP translation phase
at the IL0 level allows the same implementation to be used across languages (C++/C,
Fortran95) and architectures (IA-32 and IPF). The Intel® compiler generated code
has references to a high-level library API. The library implements this API in terms
of the threading functionality provided by the OS; the use of such an API thus allows
the compiler OpenMP* translation phase to be independent of the underlying operat-
ing systems. Our compiler architecture makes it possible to have one OpenMP im-
plementation that covers differing language (C++ and Fortran95), differing architec-
tures (IA-32 and IPF) and differing operating systems (Windows* and Linux*).

3 Threaded Code Generation

In order to support the OpenMP programming model, various components in the Intel
compiler have been extended. First, the IL0 intermediate representation was extended to
represent OpenMP directives/pragmas and clauses. The compiler front-end parses
OpenMP directives in the source program to generate an IL0 representation of the
OpenMP source code for the parallelizer and optimizer. The parallelizer generates multi-
threaded code based on IL0 representation corresponding to OpenMP constructs.

The multithreaded code generator consists of many modules such as variable clas-
sification, privatization, array lowering, loop analysis, enclosing-while-loop genera-
tion for runtime, dynamic and guided scheduling, post-pass threadprivate handler and
stack optimization. Essentially, it converts the OpenMP constructs to multithreaded
code at the IL0 level. For the example shown in Fig. 2, with the worksharing loop in
the routine parwork with the scheduling type dynamic, multithreaded code generation
involves: (i) generating a runtime dispatch and initialization (__kmpc_dispatch_init)
routine call to pass global loop lower-bound, upper-bound, stride, and all other neces-
sary information to the runtime system; (ii) generating an enclosing while loop to
dispatch loop-chunk at runtime through the __kmpc_dispatch_next routine supported
in the library; (iii) localizing the loop lower-bound, upper-bound, and privatizing the
loop control variable ‘k’ and local defined stack variable ‘x’. With the MET technol-
ogy [5], one threaded entry, or T-entry1, is created within the parwork() routine for

1 In [5], T-entry refers strictly to the entry point of a threaded region, or T-region, which is the

section of code enclosed between a T-entry and its matching T-return. In this paper, we use
T-entry to refer to the threaded entry or region, as this use is unambiguous from the context
and often interchangeable.

136 X. Tian and M. Girkar

each parallel region. The function call __kmpc_fork_call spawns a team of threads to
execute the threaded codes in parallel.

Fig. 2. Pseudo-code after Threaded code Generation for a simple OpenMP program

4 Enabling Advanced Optimizations

The OpenMP* implementation in the Intel compiler strives to generate multithreaded
code which gains speedup over optimized uniprocessor code by integrating paralleli-
zation tightly with advanced inter-procedural, scalar and loop optimizations such as
vectorization [8] and memory hierarchy oriented optimizations [5][12] to achieve
better cache locality and minimize the overhead of data-sharing among threads. In
this section, we describe some of the techniques for generating efficient threaded
code.

4.1 Effective Ordering of Optimization Phases

The phase ordering of optimizations in the compiler is critical for achieving optimal
performance. It is difficult to architect an effective ordering to achieve speedups over
well-optimized serial code through parallelization if significant sequential optimiza-
tions are affected adversely by the parallelization. Our design consideration includes:

void parwork() /* OpenMP C code sample */
{ double a[1000], b=1000; int k;
#pragma omp parallel shared(a, b) private(k)
 { int x = 7;
#pragma omp for schedule(dynamic)
 for (k=0; k<16; k++) { x = x + b*b; a[k] = a[k] + b * x; }
 }
}
entry extern void _parwork() /* IL0 pseudo-code after MT-code generation */
{
 b = 1000.00 (F64) /* F64 denotes the 64-bit float type */
 __kmpc_fork_call(…, __parwork_par_region, &a, &b) ; goto L46;
 T-entry __parwork_par_region(ap, bp)
 { prv_x = 7; prv_k = 0
 if (1000 > prv_k) {
 t0 = (* F64)bp; lower = 0; upper = 999; stride = 1;
 __kmpc_dispatch_init(..., lower, upper, stride, ...)
 L33: t3 = __kmpc_dispatch_next(..,, &lower, &upper, &stride)
 if ((t3 & upper>=lower) != 0(SI32)) {
 prv_k = lower
 L17:
 prv_x = prv_x + t0 * t0
 ((* F64)ap)[prv_k] = ((* F64)ap)[prv_k] + t0 * prv_x
 prv_k = prv_k + 1
 if (upper >= prv_k) goto L17
 goto L33
 }
 }
 __kmpc_barrier(...) ; T-return;

}

Effect of Optimizations on Performance of OpenMP Programs 137

− leverage classical peephole optimizations fully within basic-block, and perform
inlining and OpenMP construct-aware constant propagation, and memory dis-
ambiguation before parallelization and multithreaded code generation.

− perform high-level optimizations (HLO) such as loop tiling, loop unroll, loop
distribution, loop fusion, vectorization [8], software prefetching, scalar replace-
ment, complex type lowering after parallelization and multithreaded code
generation.

− enable advanced optimizations such as Partial Redundancy Elimination (PRE),
Partial Dead-Store Elimination (PDSE), Dead Code Elimination (DCE) after
high-level optimization (HLO).

4.2 Reducing Side-Effects of Privatization

Privatization is one of key components when generating threaded code. Privatizing a
local stack variable, static variable or global variable is straight forward - the com-
piler can simply create its clone on the stack. Some Fortran95 arrays (unknown-size,
assumed-size and assumed-shape) can be allocated on the stack or heap. Sometimes
heap allocation is preferred for large objects in the sequential case as stack space is
limited. However, in the case of parallel programs, heap allocation may cause per-
formance slowdowns, as thread-safe memory allocation routines usually have critical
sections guarded by a locking mechanism. Our solution takes advantage of the proper
nesting structure of OpenMP directives to limit the lifetime of such allocations by
judiciously allocating and freeing up stack space in a LIFO (last in first out) manner.
The parallelization pass generates stack allocation and free intrinsics, _vla_alloc(size)
and _vla_free(p, size). The _vla_alloc and _vla_free are lowered to stack adjustment
instructions in the machine code generation. This is an efficient scheme for privatiz-
ing an object for each thread.

 subroutine foo(arr, n) threaded-entry par_region_foo()
 integer arr(n) …
 !$omp parallel private(arr, k) dv_clone_arr_size = n
 do k=1, 100 dv_clone_arr_baseaddr = vla_alloc(dv_clone_arr_size)
 arr(k) = omp_get_thread_num() do clone_k = 1, 100
 end dv_clone_arr_baseaddr(k) = … …
 !$omp end parallel end do
 arr = 10000 _vla_free(dv_clone_baseaddr, dv_clone_arr_size)
 end threaded-return
 (a) An unknown size array example (b) Pesudo threaded-code with _vla_alloc/_vla_free

In the above example, the size of array ‘arr’ is unknown, so the Front-End creates
a structure (called the dope-vector) for it to fill the array size, base address, stride,
array bounds information at runtime, During privatization phase, the compiler clones
the original dope-vector by creating dv_clone_ar, and substituting the original array
‘arr’ with dv_clone_arr_baseaddr for each thread. The memory alloca-
tion/deallocation on stack is done by the intrinsic _vla_alloc/_vla_free through in-
crementing/decrementing the stack pointer of each thread for short lifetime private
objects.

138 X. Tian and M. Girkar

4.3 Preserving Memory Disambiguation Tokens

As we mentioned in Section 4.1, in the Intel® compiler, the memory disambiguation
phase is invoked before the OpenMP* translation phase. The disambiguation phase
annotates each memory reference with DISAM tokens that are used later by other
optimizations.

common /ccc/ a(100), b(100), c(100)
common /eee/ d(100)
!$omp threadprivate(/ccc/, /eee/)
do … …
 do k = … …
 a(k) = d1 +b(k)
 b(k) = d2
 c(k) = d3 + d(k)
 d(k) = d4
 end do
end do

In the simple kernel above from a real large application, with the array ‘a’, ‘b’, ‘c’,
‘d’ members of common block ‘ccc’ and ‘eee’, those optimizations relying on
DISAM information such as the loop distribution and software pipelining are disabled
if threaded code generation phase does not preserve DISAM token information in the
new array referencing expression e.g. *(P32 *)(tpv_ccc_base+0)(k) of the threaded-
code, since tpv_ccc_base and tpv_eee_base are allocated at runtime, it would be hard
for compiler to figure out if those point to distinct memory areas.

By preserving the DISAM token for each expression during the parallelization,
other optimizations know that there is no memory overlap among those memory
reference expressions *(P32 *)(tpv_ccc_base+0)(k), *(P32 *)(tpv_ccc_base+400)(k),
and *(P32 *)(tpv_ccc_base+800)(k), and *(P32 *)(tpv_eee_base+0)(k) by simply
querying the DISAM tokens. In addition, the threaded code generation phase propa-
gates the original attributes (e.g. address_taken, no_pointer_aliasing) of variable ‘a’
to ‘_tpv_ccc_base’, and annotates the _threadprivate_cached call statements. For
example, the annotation tells other optimizations that there is no aliasing between “a”
and ‘_tpv_ccc_base’, as thread local storage allocated by the call is disjoint from that
with the original ‘a’. Proper representation and propagation of such information is
necessary for not disabling optimizations that happen later.

5 Effect of Optimizations on SPEC OMPM2001 Performance

SPEC* OMPM2001 suite consists of a set of OpenMP* based application programs
[9][10]. The input data sets of the SPEC OMPM2001 suite (also referred to as the
medium suite) are derived from state-of-the-art computations on modern medium-
scale (4- to 16-way) shared-memory multiprocessor systems. This benchmark suite

 … …
tpv_ccc_base = _threadprivate_cached(tid, &a, size1, ccc_cache)
tpv_eee_base = _threadprivate_cached(tid, &d, size2, eee_cache)
… … ! DISAM tokens for ‘a’, ‘b’, ‘c’, ‘d’ are preserved in expr nodes
do k = … …
 *(P32 *)(tpv_ccc_base+0)(k) = d1 + … …
 *(P32 *)(tpv_ccc_base+400)(k) = d2
 *(P32 *)(tpv_ccc_base+800)(k) = d3 + … …
 *(P32 *)(tpv_eee_base+0)(k) = d4
… …

Effect of Optimizations on Performance of OpenMP Programs 139

consists of 11 large application programs, which represent the type of software used
in scientific technical computing. Table 1 provides an overview of SPEC*
OMPM2001 benchmarks. Of the 11 application, 8 applications are written in
FORTRAN, and 3 applications are written in C.

Table 1. Overview of SPEC OMPM2001 Benchmark Suite

Code Applications
Lan-

guage
of Lines

310.wupwise_m Quantum chromodynamics Fortran 2200

312.swim_m Shallow water modeling Fortran 400

314.mgrid_m Multigrid solver Fortran 500

316.applu_m Fluid dynamics and physics Fortran 4000

318.galgel_m Fluid dynamics Fortran 15300

320.equake_m Earthquake modeling and simulation C 1500

324.apsi_m Air pollution modeling and computation Fortran 7500

326.gafort_m Genetic algorithm Fortran 1500

328.fma3d_m Crash simulation Fortran 60000

330.art_m Image Recognition neural networks C 1300

332.ammp_m Chemistry and biology C 13500

Those benchmarks require a virtual address space of about 2GB to run. The data-
sets are significantly larger than those of the SPEC CPU2000 benchmarks, while still
fitting in a 32-bit address space. Our results show that the performance of single-
thread run of the threaded code generated by the compiler with base options for each
SPEC* OMP benchmark shows less than 2% overhead comparing with the serial
code with same set of base options by disabling all OpenMP* directives. The next
section shows the performance gain of SPEC OMPM2001 due to hyper-threading
technology.

5.1 Effect of Hyper-Threading Technology

This performance study of SPEC OMPM2001 benchmarks is conducted on a single
processor system with Hyper-Threading Technology enabled Intel Pentium® 4 proc-
essor built with 90nm technology running at 2.8GHz, with 2GB memory, an 8K L1-
Cache, and 1M L2-Cache. For our performance measurement, all SPEC OMPM2001
benchmarks are compiled by the Intel 8.0 C++/Fortran compilers with the option set
of our base performance run: –Qopenmp –Qipo –O3 –QxP (OMP w/ QxP) under
Windows* XP on a Hyper-Threading enabled Pentium 4 processor. The -QxP
switch enables the compiler to generate SSE3 instructions available on the more re-
cent Intel® Pentium 4 processors.

140 X. Tian and M. Girkar

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

31
0.
wu

pw
ise

_m

31
2.
sw

im
_m

31
4.
m
gr
id
_m

31
6.
ap

plu
_m

31
8.
ga

lge
l_
m

32
0.
eq

ua
ke

_m

32
4.
ap

si_
m

32
6.
ga

fo
rt_

m

32
8.
fm

a3
d_

m

33
0.
ar
t_
m

33
2.
am

m
p_

m

G
eo

m
ea

n

SPEC OMPM2001 Benchmarks

N
o
rm

al
iz

ed
 S

p
ee

d
u
p

OMP 1T w/ QxP OMP 2T w/ QxP

Fig. 3. Performance Gain from Hyper-Threading Technology

The normalized speedup of the SPEC OMPM2001 benchmarks is shown in the Fig. 3
that demonstrates the performance gain attributed to the Hyper-Threading Technol-
ogy. The hyper-threading performance scaling is derived from the baseline perform-
ance of single thread binary with OMP 1T w/ QxP, and two threads execution under
OMP 2T w/ QxP, respectively. As we see, Hyper-Threading Technology enabled
Intel® Pentium® 4 processor to achieve a performance improvement of 4.3% to
28.3% (OMP 2T w/ QxP) on 9 out of 11 benchmarks except 316.applu_m (0.0%) and
312.swim_m (-7.4%). The 312.swim_m slowdown under two thread execution mode
is due to the 312.swim_m being a memory bandwidth bound application. Overall, the
improvement in geomean with OMP 2T w/ QxP is 9.1% due to Hyper-Threading.
Considering that Hyper-Threading Technology does not add significant extra hard-
ware execution (engine) resources, the gain of 9.1% illustrates that sequential optimi-
zations are also triggered in the OpenMP threaded code.

5.2 Effect of Optimizations on SPEC OMPM2001 Performance

In this section, we examine the effect of compiler optimizations on generating multi-
threaded code of SPEC OMPM2001 application programs with different optimization
sets. Ideally, given a fixed number (we used 4 threads in our performance study as the
4-way system is the most common used system,) of threads or processors, it would be
more interesting to study the effect of each compiler optimizations one-by-one to
demonstrate their effectiveness on performance improvement. However, given the
complexity of interaction among compiler optimizations and the length limitation of
the paper, we decided to study the effect of a few optimizations. In our performance
study, all SPEC* OMPM2001 benchmarks are compiled by the latest Intel 8.0
C++/Fortran compilers with four sets of base options: (i) -openmp -O2 (used as a
baseline performance measurement); (ii) –openmp –O2 –ipo; (iii) –openmp –O3; and
(iv) –openmp –O3 –ipo. The experiments were done on a 4-way 1.5GHz Itanium 2
based system with 6MB L3 cache. Fig.4 illustrates the performance gain with differ-
ent higher level optimizations vs. the performance measured at a default optimization
level –openmp –O2.

The O2 level optimization includes many traditional optimizations such as peep-
hole optimization, constant propagation, copy propagation, dead code elimination,

Effect of Optimizations on Performance of OpenMP Programs 141

partial-dead store elimination, partial redundancy elimination, etc.; the O3 level opti-
mization includes advanced loop transformations (loop tiling, loop fusion, loop dis-
tribution, etc.), scalar replacement, software-prefetching, array contraction, etc.; the
IPO flag enables Inter-Procedural (IP) optimizations such as function inlining, IP
mod-ref analysis, etc. Fig. 4 provides the performance results at different optimization
levels. As is evident from the graph, the performance gain from OMP+O2 to
OMP+O2+IPO is 3% on Geomean, which is relatively small. This is because many
advanced optimizations that can exploit the inter-procedural information such as
mod-ref analysis are run only at O3. The results of OMP+O3 showed 22% perform-
ance gain vs. the performance of OMP+O2, and 19% performance gain over vs.
OMP+O2+IPO performance. This result reveals that the high-level optimizations are
effectively enabled for multithreaded-code generated for OpenMP programs.

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

31
0.

wup
wise

_m

31
2.

sw
im

_m

31
4.
m
gr

id
_m

31
6.

ap
plu

_m

31
8.

ga
lge

l_m

32
0.
eq

ua
ke

_m

32
4.

ap
si_

m

32
6.

ga
rfo

rt_
m

32
8.

fm
a3

d_
m

33
0.
ar

t_
m

33
2.
am

m
p_

m

G
eo

m
ea

n

SPEC OMPM2001 Benchmarks

N
or

m
al

iz
ed

 P
ef

or
m

an
ce

 G
ai

n OMP O2 OMP O2 IPO OMP O3 OMP O3 IPO

Fig. 4. Effect of Compiler Optimizations on SPEC OMPM Performance

As expected, the best performance is achieved with OMP+O3+IPO, Fig. 4 shows a
31% performance gain over the baseline performance (OMP+O2). For example, the
performance of 310.wupwise_m is dominated by a few hot loops with unknown trip
count, at OMP+O3 the compiler needs to be conservative without knowing those trip-
counts, in this case, OMP+O3 actually causes a 16% performance slow down on
310.wupwise. However, the addition of IPO provides a 49% performance gain with
known trip-counts through IPO constant propagation. Overall, 10 out of 11 bench-
marks in SPEC* OMPM2001 benchmark suite achieved a performance gain ranging
from 7% to 98% with OMP+O3+IPO. An anomaly is 332.ammp which shows a
slowdown at OMP+O3+IPO; this needs to be investigated further.

6 SPEC OMPL2001 Performance Results

SPEC* OMPL2001 shares most of the application code base with SPEC OMPM2001,
and consists of 9 application programs from SPEC OMPM2001. However, the code
and the data sets are modified to achieve better scaling and also to reflect the class of
computation regularly performed on large-scale systems (32-way and larger).

142 X. Tian and M. Girkar

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

31
1.
w
up

w
is
e-
1

31
3.
sw

im
_l

31
5.
m
gr
id
_l

31
7.
ap
pl
u_

l

32
1.
eq
ua
ke
_l

32
5.
ap
si
_l

32
7.
ga
fo
rt_

l

32
9.
fm

a3
d_

1

33
1.
ar
t_
l

G
eo
m
ea
n

SPEC OMPL2001 Benchmarks

SP
E
C
 P

er
fo

rm
an

ce
 R

at
io

64 Threads 128 Threads

Fig. 5. SPEC OMPL2001 Performance on 64- and 128-CPU SGI Altix System

Fig.5 shows SPEC OMPL2001 performance results measured on SGI* Altix*
3000 (using Intel® 1500MHz Itanium® 2 processors) with 256KB L2 cache, 6MB
L3 cache, 512GB memory (16*1024MB per core). Performance is measured on 64-
and 128-CPU system configurations using the latest Intel® 8.0 C++ and Fortran
compilers with OpenMP* support which incorporate the ideas and solutions discussed
in this paper. At the time of writing this paper, these results were the best published
SPEC* OMPL2001 results on www.spec.org. 315.mgrid_l and 321.equake_l are
sparse matrix calculations, which do not scale well beyond 64 processors.

7 Conclusions

Exploiting effective parallelism for multithreaded processors and multiprocessor
systems adds one more dimension of difficulty of the compiler development for gen-
erating optimized code. We tackled this performance challenge in our OpenMP de-
sign and implementation by developing techniques that produce well-defined and
annotated IL to ensure that all classical optimizations are enabled seamlessly for In-
tel® Pentium® and Itanium® processor based systems. In this paper, we also studied
the interaction between other optimization phases in the compiler and the OpenMP
translation phase and show that cooperation that is required between the two to gen-
erate optimized threading code. The main contributions of this paper are:

− Several practical compiler techniques and solutions are proposed to ensure the
generation of efficient threaded-code for OpenMP programs while interacting with
other compiler optimizations phases. The implementation of these techniques in
the Intel compilers is discussed.

− The effect of compiler optimizations on OpenMP programs is studied experimen-
tally based on industry standard SPEC OMPM2001 and SPEC OMPL2001
benchmark suites on Intel® Pentium® 4 and Itanium® 2 processor based systems.
This paper also reported the best performance results (published on www.spec.org)

of SPEC∗ OMPL2001 delivered by the Intel® compilers on SGI* Altix* system.

∗Other brands and names may be claimed as the property of others.

Effect of Optimizations on Performance of OpenMP Programs 143

Acknowledgements

The authors thank all members of the Intel compiler team for developing the Intel C++/Fortran
compilers. In particular, we thank Aart Bik, Ernesto Su, Hideki Saito, Dale Schouten for their
contributions in PAROPT projects, Diana King and Michael Ross for OpenMP C++/Fortran
FE support. Thanks also go to the library group at KSL for tuning OpenMP runtime library.

References

1. Ron Kalla, Balaram Sinharoy, Joel Tendler, “Simultaneous Multi-threading Implementa-
tion in POWER5 – IBM’s Next Generation POWER Micorprocessor”, Hot Chips Confer-
ence 15, August, 2003, http://www.hotchips.org/archive/hc15/pdf/11.ibm.pdf.

2. Feng Liu, Vipin Chaudhary, A Practical OpenMP Compiler for System on Chips, in proc.
of International Workshop on OpenMP Applications and Tools, WOMPAT 2003, Toronto,
Canada, June 26-27, 2003. LNCS 2716, pp.54-68.

3. Dan Quinlan, Markus Schordan, Qing Yi, Bronis R. de Supinski, “A C++ Infrastructure
for Automatic Introduction and Translation of OpenMP Directives”, in proc. of Interna-
tional Workshop on OpenMP Applications and Tools, WOMPAT 2003, Toronto, Canada,
June 26-27, 2003, LNCS 2716, pp.13-25

4. Xinmin Tian, Yen-Kuang Chen, Milind Girkar, Steven Ge, Rainer Lienhart, and Sanjiv
Shah, “Exploring the Use of Hyper-Threading Technology for Multimedia Applications
with Intel OpenMP Compiler”, In Proc. of IEEE International Parallel and Distributed
Processing Symposium, Nice, France, April 22-26, 2003.

5. Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, Ernesto Su, “Intel OpenMP
C++/Fortran Compiler for Hyper-Threading Technology: Implementation and Performance”,
Intel Technology Journal, http://www.intel.com/technology/itj, V6, Q1 issue, 2002.

6. Debbie Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan Miller,
and Michael Upton, “Hyper-Threading Technology Microarchitecture and Architecture”,
http://www.intel.com/technology/itj, Intel Technology Journal, Vol. 6, Q1, 2002.

7. OpenMP Architecture Review Board, “OpenMP C and C++ Application Program Inter-
face,” Version 2.0, March 2002, http://www.openmp.org

8. Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian, “Automatic Intra-Register Vectori-
zation for the Intel® Architecture”, International Journal of Parallel Programming, Vol-
ume 30, page.65-98, April 2002.

9. Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B Jones and
Bodo Parady, “SPEComp: A New Benchmark Suite for Measuring Parallel Computer Per-
formance”, in proc. of International Workshop on OpenMP Applications and Tools,
WOMPAT 2001, West Lafayette, Indiana, July 30-31, 2001, LNCS 2104, pp.1-10

10. Hidetoshi Iwashita, Eiji Yamanaka, Naoki Sueyasu, Matthijs van Waveren, Ken Miura,
“SPEC OMP2001 Benchmark on the Fujitsu PRIMEPOWER System”, in proc. of Third
European Workshop on OpenMP, EWOMP’01 Barcelona, Spain, September 8-9th, 2001

11. OpenMP Architecture Review Board, “OpenMP Fortran Application Program Interface,”
Version 2.0, November 2000, http://www.openmp.org

12. Michael J. Wolfe, High Performance Compilers for Parallel Computers, Addison-Wesley
Publishing Company, Redwood City, California, 1996.

®Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and

other countries.

Sparse Matrices in Matlab*P:
Design and Implementation �

Viral Shah and John R. Gilbert

Department of Computer Science,
University of California, Santa Barbara

{viral, gilbert}@cs.ucsb.edu

Abstract. Matlab*P is a flexible interactive system that enables com-
putational scientists and engineers to use a high-level language to pro-
gram cluster computers. The Matlab*P user writes code in the Mat-
lab language. Parallelism is available via data-parallel operations on
distributed objects and via task-parallel operations on multiple objects.
Matlab*P can store distributed matrices in either full or sparse for-
mat. As in Matlab, most matrix operations apply equally to full or
sparse operands. Here, we describe the design and implementation of
Matlab*P’s sparse matrix support, and an application to a problem in
computational fluid dynamics.

1 Introduction

Matlab is a widely used tool in scientific computing. It began in the 1970s as an
interactive interface to EISPACK, and LINPACK. Today, Matlab encompasses
several modern numerical libraries such as ATLAS, and FFTW, rich graphics
capabilities for visualization, and several toolboxes for such domains as control
theory, finance, and computational biology.

Almost all of today’s supercomputers are based on parallel architectures.
Companies such as IBM, Cray, SGI sell supercomputers with proprietary inter-
connects. Commodity clusters are omnipresent in research labs today. However,
the tools used to program them are still predominantly Fortran and C with MPI
or OpenMP.

Matlab*P brings interactivity to supercomputing. There have been sev-
eral efforts in the past to parallelize Matlab. The parallel Matlab survey [6]
discusses most of these projects. Perhaps the most notable project that pro-
vides a large scale integration of parallel libraries with a Matlab interface is
NetSolve [2]. NetSolve provides an interfaces by invoking RPC calls through a

� This material is based on research sponsored by Air Force Research Laboratories
under agreement number AFRL F30602-02-1-0181. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes not withstanding any
copyright notation thereon.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 144–155, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Sparse Matrices in Matlab*P: Design and Implementation 145

special Matlab function, as opposed to Matlab*P which takes a unique ap-
proach to parallelization. The Matlab*P language is a superset of the Matlab
language, and parallelism is propagated through programs using the the dlayout
object – p. In the case where these systems use the same underlying packages,
we believe that they can all achieve similar performance. However, we believe
that the systems have different design goals otherwise and it is unfair to compare
them.

Sparse matrices may have dimensions that are often in millions and enough
non–zeros that they cannot fit on one workstation. Sometimes, the sparse ma-
trices are themselves not too large, but due to the fill–in caused by intermediate
operations (for eg. LU factorization), it becomes necessary to distribute the fac-
tors over several processors. Iterative methods maybe a better way to solve such
large sparse systems. The goal of sparse matrix support in Matlab*P is to allow
the user perform operations on sparse matrices in the same way as in Matlab.

2 User’s View

In addition to Matlab’s sparse and dense matrices, Matlab*P provides sup-
port for distributed sparse (dsparse) and distributed dense (ddense) matrices.
The system design of Matlab*P and operations on ddense matrices are de-
scribed elsewhere [12, 7].

The p operator provides for parallelism in Matlab*P. For example, a random
parallel dense matrix (ddense) distributed by rows across processors is created
as follows:

>> A = rand (100000*p, 100000)

Similarly, a random parallel sparse matrix (dsparse) also distributed across pro-
cessors by rows is created as follows: (An extra argument is required to specify
the density of non-zeros.)

>> S = sprand (1000000*p, 1000000, 0.001)

We use the overloading facilities in Matlab to define a dsparse object. The
Matlab*P language requires that all operations that can be performed in Mat-
lab be possible with Matlab*P. Our current implementation provides a work-
ing basis, but is not quite a drop–in replacement for existing Matlab programs.

Matlab*P achieves parallelism through polymorphism. Operations on ddense
matrices produce ddense matrices. But once initiated, sparsity propagates. Oper-
ations on dsparse matrices produce dsparse matrices. An operation on a mixture
of dsparse and ddense matrices produces a dsparse matrix unless the operator
destroys sparsity. The user can explicitly convert a ddense matrix to a dsparse
matrix using sparse(A). Similarly a dsparse matrix can be converted to a ddense
matrix using full(S). A dsparse matrix can also be converted into a Matlab
sparse matrix using S(:,:) or p2matlab(S). In addition to the data–parallel
SIMD view of distributed data, Matlab*P also provides a task–parallel SPMD
view through the so–called “MM–mode”.

146 V. Shah and J.R. Gilbert

Fig. 1. Matlab and Matlab*P Spy plots of a web crawl dsparse matrix

Matlab*P currently also offers some preliminary graphics capabilities to
help users visualize dsparse matrices. This is based upon the parallel rendering
for ddense matrices [5]. Again, this demonstrates the philosophy that Matlab*P
should feel like Matlab. Figure 2 shows the spy plots (showing the non–zeros
of a matrix) of a web crawl matrix in Matlab*P and in Matlab.

3 Data Structures and Storage

Matlab stores sparse matrices on a single processor in a Compressed Sparse
Column (CSC) data structure [10]. The Matlab*P language allows for matrices
to be distributed by block rows or block columns. This is already the case for
ddense matrices [12, 7]. The current implementation supports only one distri-
bution for dsparse matrices – by block rows. This is a design choice to prevent
the combinatorial explosion of argument types. Block layout by rows makes the
Compressed Sparse Row data structure a logical choice to store the sparse ma-
trix slice on each processor. The choice to use a block row layout is not arbitrary,
but based on the following observations:

– The iterative methods community largely uses row based storage. Since we
believe that iterative methods will be the methods of choice for large sparse
matrices, we want to ensure maximum compatibility with existing code.

– A row based data structure also allows efficient implementation of matvec
(sparse matrix dense vector product) which is the workhorse of several itera-
tive methods such as Conjugate Gradient and Generalized Minimal Residual.

By default, a dsparse matrix in Matlab*P has the block row layout which
would be obtained by ScaLAPACK [3] for a ddense matrix of the same dimen-
sions. This allows for roughly the same number of rows on each processor. The
user can override this block row layout in a couple of ways. The Matlab sparse

Sparse Matrices in Matlab*P: Design and Implementation 147

function takes arguments specifying a vector of row indices i, a vector of column
indices j, a vector of non–zero values v, the number of rows m and the number
of columns n as follows:

>> S = sparse (i, j, v, m, n)

By using a vector layout which specifies the number of rows on each processor
instead of the scalar m which is simply the number of rows, the user can create
a dsparse matrix with the desired layout:

>> S = sparse (i, j, v, layout, n)

The block row layout of a dsparse matrix can also be changed after creation
with:

>> changelayout (S, newlayout)

The CSR data structure stores whole rows contiguously in a single array on
each processor. If a processor has nnz non–zeros, CSR uses an array of length nnz
to store the non–zeros and another array of length nnz to store column indices,
as shown in Figure 2. Row boundaries are specified by an array of length m+ 1,
where m is the number of rows on that processor.

0 a01 a02 0

0 a11 0 a13

a20 0 0 0

0 2

0

4 5

1 2 1 3

a20a01 a02 a11 a13

Row Pointers

Column Indices

Non-zeros

Fig. 2. Compressed Sparse Row (CSR) data structure

Assuming a 32–bit architecture and using double precision floating point
values for the non–zeros, an m × n real sparse matrix with nnz non-zeros uses
up 12nnz + 4m bytes of memory. Support for complex sparse matrices will be
available very soon in Matlab*P.

It would be simple to modify this data structure to allow some slack in each
row so that element–wise insertion, for example, could be efficient. However, the
current implementation uses the simplest possible data–structure for robustness
and efficiency in matrix and vector operations.

4 Operations and Implementation

In this section, we describe the implementation of several sparse matrix op-
erations in Matlab*P. All experiments are performed on a cluster of 2.6GHz
Pentium IV Xeon processors with 3GB RAM and a gigabit ethernet interconnect.

148 V. Shah and J.R. Gilbert

15

10

60

15

15

25

25

25

25

10

25

20

5

10

15

Fig. 3. Starching

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Processors

T
im

e
(S

ec
s)

1e7 nnz(4/row)
1e6 nnz(32/row)

Fig. 4. Scalability of sparse (Altix)

4.1 Parallel Sorting

Sorting of ddense vectors is an important building block for several parallel sparse
matrix operations in Matlab*P. Sorting is an extremely important primitive for
parallel irregular data structures in general. Several parallel sorting algorithms
have been surveyed in the literature [4, 8]. Cluster computers have distributed
memory, and the interconnect typically has high latency and low bandwidth com-
pared to shared memory computers. As a result, it is extremely important to
minimize the communication while sorting. We are experimenting with Sample-
Sort with different sampling techniques, and other median–based sorting ideas.
Although we have an efficient parallel sorting algorithm already in Matlab*P,
we are still trying to improve it, given the importance of having fast sorting. We
will describe results from our efforts in a future paper.

Several sorting algorithms produce a data distribution that is different from
the input distribution. Hence a reshuffling of the sorted data is often required.
We refer to this process as Starching, as shown in Figure 4.1. The distribution
after sorting is on the left, whereas the desired distribution is on the right in
the bipartite graph. The weights on the edges of the bipartite graph show the
communication required between pairs of processors during starching. This step
is required to ensure consistency of Matlab*P’s internal data structures.

4.2 Constructors

There are several ways to construct parallel sparse matrices in Matlab*P:

1. matlab2pp converts a sequential Matlab matrix to a distributed Mat-
lab*P matrix. If the input is a sparse matrix, the result is a dsparse matrix.

2. sparse – sparse works with [i, j, v] triples, which specify the row value,
the column value and the non–zero value respectively. If i, j, v are ddense
vectors with nnz non–zeros, then sparse assembles a sparse matrix with
nnz non–zeros. If there are duplicate [i, j] indices, the corresponding values
are summed. The pseudocode for sparse is shown in Figure 4.1. However, in
our implementation, we implement this by sorting the vectors simultaneously

Sparse Matrices in Matlab*P: Design and Implementation 149

function s = sparse (i, j, v)

[j, perm] = sort(j);
i = i(perm); v = v(perm);

[i, perm] = sort(i);
j = j(perm); v = v(perm);

starch (i, j, v);
s = assemble (i, j, v);

Fig. 5. Implementation of sparse

using row numbers as the primary key, and column numbers as the secondary
key.
The starch phase here is similar to the starching used in the parallel sort,
except that it redistributes the vectors so that row boundaries do not over-
lap among processors and the required block row distribution for the sparse
matrix is achieved. The assemble phase actually constructs a dsparse ma-
trix and fills it with the non–zero values. Figure 4 shows the scalability of
sparse on an SGI Altix 350. Although performance for commodity clusters
cannot be as good as that of an Altix, our initial experiments do indicate
good scalability on commodity clusters too. We will report more detailed
performance comparisons in a future paper.

3. spones, speye, spdiag, sprand etc. – Some basic functions implicitly
construct dsparse matrices.

4.3 Matrix Arithmetic

One of the goals in designing a sparse matrix data structure is that, wherever
possible, it should support matrix operations in time proportional to flops. As a
result, arithmetic on dsparse matrices is performed using a sparse accumulator
(SPA). Gilbert, Moler and Schreiber [10] discuss the design of the SPA in detail.
Matlab*P uses a separate SPA for each processor.

4.4 Indexing, Assignment and Concatenation

The syntax of matrix indexing in Matlab*P is the same as in Matlab. It is
of the form A(p, q). p and q can each be either a range (1 : n), or a permutation
vector or scalars. Depending on the context, however, this can mean different
things.

>> B = A(p,q)

In this case, the indexing is done on the right side of “=” which specifies that
B is a submatrix of A. This is the subsref operation in Matlab.

>> B(p,q) = A

150 V. Shah and J.R. Gilbert

On the other hand, indexing on the left side of “=” specifies that A should
be stored in a submatrix of B. This is the subsasgn operation in Matlab.

If p and q are both integers, A(p, q) directly accesses the dsparse data struc-
ture. If p or q are vectors or a range, A(p, q) calls find and sparse. find is the
reverse of sparse – it converts the matrix from CSR to [i, j, v] format. In this
format, it is very easy to find [i, j] pairs which satisfy the indexing criteria. The
resulting submatrix is then assembled by simply calling sparse .

Matlab also supports horizontal and vertical concatenation of matrices. The
following code, for example, concatenates A and B horizontally, C and D hori-
zontally, and finally concatenates the results of these two operations vertically.

>> S = [A B; C D]

The basic primitives, find and sparse are used to provide support for con-
catenation operations in Matlab*P.

4.5 Matvec

The matvec operation multiplies a dsparse matrix with a ddense column vector,
producing a ddense column vector as a result. Matvec is the kernel for many
iterative methods.

For the matvec, y = Ax, we have A and x distributed across processors by
rows. The submatrix of A at each processor will need a piece of x depending upon
its sparsity structure. When matvec is invoked for the first time on a dsparse
matrix A, Matlab*P computes a communication schedule for A and caches it.
When more matvecs are performed using A, this communication schedule does
not need to be recomputed, which saves some computing and communication
overhead, at the cost of extra space required to save the schedule. Matlab*P
also overlaps the communication and computation during matvec. This way,
each processor starts computing the result of the matvec whenever it receives a
piece of the vector from any other processor. Figure 6 also shows how matvec
scales in Matlab*P, since it forms the main computational kernel for conjugate
gradient.

Communication in matvec can be reduced by performing graph partitioning
of the graph of the sparse matrix. If fewer edges cross processors, lesser commu-
nication is required during matvec. Matlab*P can use several of the available
tools for graph partitioning. However, by default, Matlab*P does not perform
graph partitioning during matvec. The philosophy behind this decision is sim-
ilar to that in Matlab, that reorganizing data to make later operations more
efficient should be possible, but not automatic.

4.6 Solutions of Linear Systems

Matlab solves the linear system Ax = b with the matrix division operator,
x = A\b. In sequential Matlab, A\b is implemented as a polyalgorithm [10],
where every test in the polyalgorithm is cheaper than the next one.

Sparse Matrices in Matlab*P: Design and Implementation 151

40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
im

e
pe

r
ite

ra
tio

n
of

 C
G

 (
se

cs
)

Problem Size (grid3d)

Matlab
Matlab*P

Fig. 6. Time per iteration of CG, scalability of matvec

1. If A is not square, solve the least squares problem.
2. Otherwise, if A is triangular, perform a triangular solve.
3. Otherwise, test whether A is a permutation of a triangular matrix (a “morally

triangular” matrix), permute it, and solve it if so.
4. Otherwise, if A is Hermitian and has positive real diagonal elements, find

a symmetric minimum degree ordering p of A, and perform the cholesky
factorization of A(p, p). If successful, finish with two sparse triangular solves.

5. Otherwise, find a column minimum degree order p, and perform the LU
factorization of A(:, p). Finish with two sparse triangular solves.

Different issues arise in parallel polyalgorithms. For example, morally trian-
gular matrices and symmetric matrices are harder to detect in parallel. One also
expects to be able to use iterative methods. Design for the right polyalgorithm
for \ in parallel is an active research problem. For now, Matlab*P uses a par-
allel general direct sparse solver for \, which is SuperLU DIST [14] by default,
although a user can choose to use MUMPS [1] too.

The open question at this point is, should Matlab*P use preconditioned
iterative methods to solve sparse linear systems instead of direct methods. Cur-
rently, iterative methods are not usable as a black box, and not yet suitable for
Matlab*P.

4.7 Iterative Methods - Conjugate Gradient

Conjugate Gradient is an iterative method used to solve a symmetric, posi-
tive definite system of equations. The same code is used for Matlab*P and
matlab, except that the input is dsparse in the Matlab*P case. In Fig 6,
grid3d(k) is a routine used from the meshpart [9] toolbox, which returns a
k3× k3 symmetric positive definite matrix A with the structure of the k× k× k
7–point grid.

152 V. Shah and J.R. Gilbert

5 An Application in Computational Fluid Dynamics

We are using a prototype version of Matlab*P in collaboration with a number
of domain scientists for applications in computational science and engineering.
We describe an application here.

Goyal and Meiburg [11] are studying the influence of viscosity variations on
the density–driven instability of two miscible fluids. The two fluids, of different
density and viscosity are in a vertical Hele–Shaw cell as shown in figure 7. This
problem is used to model porous media flows and finds applications in enhanced
oil recovery, fixed bed regeneration and groundwater flows.

2 2

ρ , μ 11

ρ , μ

1

2

x

y

z

g

c =1

c =0

Fig. 7. Geometry of the Hele-Shaw cell (left). The heavier fluid is placed above the
lighter one. Either one of the fluids can be the more viscous one. Mesh point distribution
in the computational domain (right). A Chebyshev grid is employed in the y–direction,
and compact finite differences in the z–direction

Fig. 7 shows the discretization of the problem, which yields an algebraic
system of the form Aφ = σBφ. The eigenvalue σ represents the growth rate of the
perturbations, while the eigenvector φ reflects the shape of the perturbations. A
positive (negative) eigenvalue indicates unstable (stable) behavior. The system
has a 5 × 5 block structure reflecting the 5 variables at each mesh point (3
velocity components u, v and w, relative concentration of the heavier fluid c,
and pressure p).

A discretization of 165 × 25 points turns out to be sufficient for this prob-
lem. Since we solve for 5 variables at each grid point, the matrix A is of the
size 20, 625× 20, 625. The number of non–zeros is 3, 812, 450. The matrix is un-
symmetric, both in values and nonzero structure, as shown in the spy plots in
Figure 5. In order to calculate the largest eigenvalue, we use the power method
with shift and invert in Matlab*P.

Sparse Matrices in Matlab*P: Design and Implementation 153

Fig. 8. Spy plots of the matrices A and B

function lambda = peigs (A, B, sigma, iter)

[m n] = size (A);
C = A - sigma * B;
y = rand (n*p, 1);

for k=1:iter
q = y ./ norm (y);
v = B * q;
y = C \ v;

theta = dot (q, y);
res = norm (y - theta * q);
if res <= 0.0001, break; end

end

lambda = 1 / theta + sigma;

Fig. 9. Matlab*P code for power method with shift and invert

The original non–Matlab*P code used LAPACK with ARPACK [13], while
the Matlab*P code is using SuperLU DIST with the power method as shown
in figure 5. We use a guess of 0.1 to initialize the power method and it converges
to 0.0194 which is enough precision for linear stability analysis. We use a cluster
with 16 processors to solve the generalized eigenvalue problem. Each node has
a 2.6GHz Pentium Xeon CPU, 3GB of RAM and a gigabit ethernet connection.
Results are presented in Table 1.

As a next step we want to incorporate a variable viscosity net flow through the
Hele–Shaw cell to incorporate the potentially destabilizing effects of viscous fin-
gering into play, so that the possibility of complex interactions between density-
and viscosity-driven instabilities arises. The existence of a more complex flow field
necessitates a finer grid and a larger domain size for the linear stability calcula-
tions as compared to the previous case discussed where the two fluids were essen-
tially at rest with respect to each other. We expect that we will require about 10
times more computing resources (CPU and memory) to tackle these challenges.

154 V. Shah and J.R. Gilbert

Table 1. Time to solve the generalized eigenvalue problem

No. of processors Time (seconds)
4 90
8 39
16 33

6 Conclusion

The implementation of sparse matrices in Matlab*P is work in progress. Cur-
rent available functionality includes being able to construct sparse matrices,
perform element–wise arithmetic and indexing operations on them, multiply a
sparse matrix with a dense vector and solve linear systems. This level of func-
tionality allows us to implement several algorithms such as conjugate gradient
and the power method.

Much remains to be done. A complete implementation of sparse matrices
requires matrix–matrix multiplication and several factorizations (Cholesky, QR,
SVD etc). Improvements in the sorting code can lead to general improvements in
many parts of Matlab*P. It is also important to make existing graph partition-
ers available in Matlab*P – Meshpart and ParMetis. Several preconditioning
methods also need to be implemented for Matlab*P, since iterative methods
might possibly be the way to solve large linear systems.

The goal of sparse matrix support in Matlab*P is to provide an interactive
environment for users to perform operations on large sparse matrices in parallel,
while being compatible with Matlab. Our current implementation is ready to
be used for simple real life problems.

Acknowledgements

David Cheng made useful contributions to the sorting code. We had several useful
discussions with Parry Husbands, Per–Olof Persson, Ron Choy, Alan Edelman,
Nisheet Goyal and Eckart Meiburg.

References

1. Patrick Amestoy, Iain S. Duff, and Jean-Yves L’Excellent. Multifrontal solvers
within the PARASOL environment. In PARA, pages 7–11, 1998.

2. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing
Dept. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN,
June 2002.

3. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

Sparse Matrices in Matlab*P: Design and Implementation 155

4. Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton,
Stephen J. Smith, and Marco Zagha. A comparison of sorting algorithms for the
connection machine cm-2. In Proceedings of the third annual ACM symposium on
Parallel algorithms and architectures, pages 3–16. ACM Press, 1991.

5. Oskar Bruning, Jack Holloway, and Adnan Sulejmanpasic. Matlab *p visualization
package. 2002.

6. Long Yin Choy. Parallel Matlab survey. 2001. http://theory.csail.mit.edu/
∼cly/survey.html.

7. Long Yin Choy. MATLAB*P 2.0: Interactive supercomputing made practical. M.S.
Thesis, EECS, 2002.

8. D. E. Culler, A. Dusseau, R. Martin, and K. E. Schauser. Fast parallel sorting under
LogP: from theory to practice. In Proceedings of the Workshop on Portability and
Performance for Parallel Processing, Southampton, England, July 1993. Wiley.

9. John. R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh partition-
ing: Implementation and experiments. SIAM Journal on Scientific Computing,
19(6):2091–2110, 1998.

10. John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB:
Design and implementation. SIAM Journal on Matrix Analysis and Applications,
13(1):333–356, 1992.

11. Nisheet Goyal and Eckart Meiburg. Unstable density stratification of miscible fluids
in a vertical hele-shaw cell: Influence of variable viscosity on the linear stability.
Journal of Fluid Mechanics, (To appear), 2004.

12. P. Husbands and C. Isbell. MATLAB*P: A tool for interactive supercomputing.
The Ninth SIAM Conference on Parallel Processing for Scientific Computing, 1999.

13. R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users Guide: Solution of
Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM,
Philadelphia, 1998.

14. Xiaoye S. Li and James W. Demmel. Superlu dist: A scalable distributed–memory
sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw.,
29(2):110–140, 2003.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 156–165, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Architecture and Early Performance of the New IBM HPS
Fabric and Adapter

Rama K Govindaraju, Peter Hochschild*, Don Grice, Kevin Gildea,
Robert Blackmore, Carl A Bender, Chulho Kim, Piyush Chaudhary,

Jason Goscinski, Jay Herring, Steven Martin, and John Houston

Server Development Lab, IBM Poughkeepsie, NY, 12533
*T. J. Watson Research Center, IBM Research, Hawthorne, 10954

{ramag, phoch}@us.ibm.com

Abstract. In this paper we describe the architecture, design, and performance of
the new cluster switch fabric and adapter called HPS (High Performance
Switch). HPS delivers very low latency and very high bandwidth. We
demonstrate latency of less than 4.3us MPI library; 1.8GB/s of delivered
unidirectional bandwidth and 2.9GB/s of bidirectional bandwidth between 2
MPI tasks running on 1.9GHz Power 4+ IH based nodes. HPS also supports
RDMA (remote direct memory access capability). A unique capability of
RDMA over HPS is that reliable RDMA is supported over an underlying
unreliable transport (unlike Infiniband and other RDMA transport protocols
which depend on the underlying transport being reliable). We profile the
performance of RDMA and its impact on striping for systems in which multiple
network adapters are available to tasks of parallel jobs.

1 Introduction

IBM has been one of the leaders in the development of High Performance Computing
Systems and Supercomputers since 1993 [15]. At the heart of IBM’s supercomputers
have been the development of high speed switches along with an integrated and
complete integrated suite of software.

Table 1 above shows a high level overview of the evolution of “IBM’s High
Performance Supercomputer products.” In this paper we discuss the architecture,
design and scaling elements (number of tasks in a single parallel job, number of end
points supported by the HPS switch network) of the HPS based supercomputers. The
rest of the paper is organized as follows: In Section 2, we provide an overview of the
high level architecture and design of the HPS switch and adapter. In Section 3, we
discuss the software architecture that drives communication over the HPS switch. In
Section 4, we describe the design of the unreliable datagram mode (also called FIFO
mode) and its performance at the MPI level. In Section 5, we highlight the importance
of RDMA; describe the design of a reliable RDMA protocol over an unreliable
datagram service and early performance data. We discuss some of the usage models of
RDMA and cases where it can show improved application performance. In Section 6,
we briefly touch on emerging technologies and the efforts in the standards body to
exploit emerging networking technologies like RDMA and our thoughts on where the
industry is headed, and the key questions that remain.

Architecture and Early Performance of the New IBM HPS Fabric and Adapter 157

Table 1. Historical Performance of user space MPI on IBM interconnects

Year Hardware Configuration CPU MHz MPI
latency

Peak MPI
Bandwidth

1994
590 uni-processor nodes/TB2 adapter,
hPS switch

66 49us 34MB/s

1995
591 uni-processor nodes/TB2 adapter,
hPS switch

77 43us 35MB/s

1996
P2SC uni-processor nodes/TB3 adapter,
TBS switch

120 29us 102MB/s

1997
P2SC uni-processor nodes/TB3 adapter,
TBS switch

160 28us 110MB/s

1998
Silver 4-way SMP nodes/TBMX adapter,
TBS switch

332MHz 24us 83MB/s

1999
WH-2 way SMP nodes/TBMX adapter,
TBS switch

375MHz 22us 139MB/s

2000
WH-4 way SMP nodes/TBMX adapter,
TBS switch

375MHz 20us 140MB/s

2001
NH-16way SMP nodes/Colony adapter
& switch

375MHz 15us 330MB/s

2004
Power4+ - 8 way SMP nodes/ HPS
adapter & switch

1.9GHz 4.3us 1.8GB/s

2 Architecture and Design of the HPS Switch and Adapter

HPS is IBM’s fourth generation switch and adapter technology. It incorporates new link
technology with the ability to drive 2GB/s peak performance in each direction. The new
switch is based on a building block of an 8 port switch chip. Key enhancements to the
switch include higher bandwidth, lower latency capabilities, automatic link level retry,
flit-level flow control, support for both copper and optical cables, and multiple virtual
channels per link. Very low latency is achieved by using cut-through routing and source
routing tables. Each switch chip adds only around 59ns of latency.

The HPS switch and adapters support Power 4 and Power 5 processor based servers.
The HPS switch adapters attach to the nodes through the GX (IO bus for Power 4 and
Power 5). The GX interface is the closest IO interface to the CPU and hence ideally
suited for attachment of a high performance switch adapter like HPS. Most commodity
switch adapters are PCI based but in order to exploit the performance of the GX
interface, proprietary HPS like technology is necessary. The switch adapters then
connect to the switch through the LDC (Link driver chips). The switch architecture
remains a multi-stage Omega based network which has excellent scaling and bisection
bandwidth properties and has proven to be a very robust architecture for scalable high
performance supercomputing systems as evidenced by the success of such cluster based
supercomputers in the last 10 years [2, 15]. 8 switch chips are typically packaged into a

158 R.K. Govindaraju et al.

switch board providing a scaling of 16 adapter ports and 16 link ports per switch board.
Two stages of the switch boards are capable of supporting up to 512 end points and
three stages of cascading allow for a maximum of 4096 end points. Each additional
cascading stage of switch board increases the end to end latency between the farthest
points by approximately 0.4us. The switch provides multiple paths between any two end
points. The adapter uses up to four different paths from among them.

switch
board

10 meter copper cables
or

80 meter fiber cables

GX bus

Power4 and Power5
based servers

 link drivers
copper driver
fiber optics
driver

adapter

L DC

GX bus

RAM

GX bus RAM
Canopus

Canopus

LDC

GX bus

RAM

GX bus RAM
Cano pus

Cano pus

LDC

G X bus

RAM

G X busRAM
Canopu s

Canopu s

HPS
switch
chip

LDC chipHPS Adapters Optics

12 meter copper cables
or

40 meter fiber cables

LDC

GX bus

RAM

GX bus RAM
Can opus

Can opus

Fig. 1. Federation components: Nodes, the adapters and the switch elements

Figure 2 shows the high level HPS switch adapter hardware architecture. The
Protocol processor is a sequencer engine supporting 16 task threads that can be
programmed to activate the various hardware engines. The transport macro engines are
used to move data from the host to the adapter and then to switch and vice versa. The
link macros drive packets from the adapter into the switch and vice versa. Remaining
engines are used for interrupts, user space and privileged MMIO (memory mapped IO)
access to the adapter, error handling and other miscellaneous functions. The jtag hooks
are used to service the switch and adapter and also set up the path and route tables
necessary. The internal buffers and the SRAM are used by the protocol engine to
maintain state to effect message passing. The multi-threaded protocol processor is

GX bus
GX+ bus

GX(+) bus
interface

Interrupt

Internal
Buffers

Protocol
Processor
(Microcode)

HPS
Transport
Macros

Echo
Processing

Service
Buffer

Path & Route
tables

Arbitration
and
switch

HPS
Link
macro

HPS
Transport
Macros

Link
sync

HPS
Link
macro

service

Off-Chip SRAM

10.2mm CMOS 8SF ASCI chip

HPS
Link 1

HPS
Link 2

Jtag

Fig. 2. Federation Adapter Hardware Architecture

Architecture and Early Performance of the New IBM HPS Fabric and Adapter 159

programmed with microcode to effect efficient message passing. 4 tasks are reserved for
send processing and 4 tasks for receive processing. Each of the 8 packet processing
tasks is equipped with an on-chip packet buffer. This provides sufficient concurrency to
achieve full utilization of the transport engines and IO buses. .

3 HPS Software Architecture

IBM provides a complete software stack that exploits the HPS switch. Figure 3 shows
the high level software architecture. Application tasks executing on the node can make
file system calls to IBM’s GPFS (General Parallel File Systems) [4], or a socket call, or
an MPI/LAPI based message passing [7] call over user space. All of these calls from the

HMC

DD
HYP

Switch (HPS)

Adapter (HPS)

C
S
M

L
L

User Space Kernel Space

LAPI

IBM’s MPI

Parallel ESSL

VSD

GPFS SOCKETS

TCP UDP

IP

APPLICATION

E
S

S
L

IF_LSHAL

Service
Processor

Fig. 3. HPC Software Architecture

end user application can result in communication over the HPS switch. The MPI library
is supported over both user space and UDP. The architecture figure shows the layering
for user space. MPI is layered on top of LAPI [9] which is IBM’s proprietary interface
for a low level communication API and presents a one-sided programming model to end
users as well. LAPI supports reliable point to point message passing capability.
Collective calls in MPI are broken down into point to point LAPI calls. LAPI ensures
that the messages submitted to it are delivered to the target in a reliable fashion. LAPI
maintains state to ensure packets which are not acknowledged are retransmitted by
LAPI. LAPI also handles failure of adapters by re-driving pending messages through
other adapters available on the node. LAPI is layered on top of HAL (the hardware
abstraction layer) which is a packet interface. The HAL layer interfaces with the adapter
microcode to exchange packets between the host side software and the adapter. HAL is
stateless with respect to the upper layer protocols. The application can make file system
calls which are fielded by GPFS (IBM’s cluster and parallel file system). GPFS is built
on shared disk architecture. For file data that is not on a disk that is locally attached to
the node making the file system request, VSD (Virtual Shared Disk) traps those requests
and gets the data shipped from the appropriate server. LL (Loadleveler)is the scheduler,
CSM (cluster systems management), HMC (hardware management console), DD
(device driver) and HYP (hyper-visor) are the other key components.

160 R.K. Govindaraju et al.

In Section 4 and Section 5, we discuss the details of how user space packet mode and
RDMA capabilities are enabled and the performance of the various components. Details
of IP performance, GPFS, and other components will be the subject of future papers
currently in preparation.

4 HPS FIFO Mode

The implementation of LAPI [8] and MPI over LAPI [9] have been covered in earlier
papers. Mapping a two-sided programming model like MPI on top of a one-sided
programming model like LAPI requires efficient hooks to ensure an efficient
implementation. The main data structures that allow the adapter and HAL to exchange
packets are the send and receive FIFOs that reside in system memoryand are mapped to
the address space of the user process. These send and receive buffers are pinned and
mapped onto AIX large pages (16M each). Depending on the size of the parallel job, the
receive FIFO could be mapped onto multiple large pages. The mapping of these large
pages is maintained by the adapter.

The protocol (LAPI) constructs the packet in the send FIFO and then issues an
MMIO (memory mapped IO) request to the adapter. The adapter then DMAs the
header, and the rest of the data from the FIFO slot (accomplished by a single DMA read
operation with pre-fetch hints), adds the route header and injects the packet into the
network. For multi-packet messages LAPI initially primes the FIFO with one packet,
two packets and subsequently 4 or 8 packets. This allows the pipeline to be primed and
started (with the first and second packets) and subsequent packets are bunched into
groups of 8 before the adapter is notified to minimize the handshake between the
adapter and host side software.

When a packet arrives from the network, the adapter first DMAs the data portion of
the packet into the receive FIFO (which is all but the first cache line of the packet which
contains the header). Once all the data portions of the packet have reached the point of
coherence the first cache line containing the header is DMA-ed into the receive FIFO
slot to signal completion of the receipt of the packet and that the protocol can now
absorb the packet. This staging of first cache line is important since DMA transactions
may complete out of order. A critical design goal was to minimize bus transactions in
the transfer of data. The MMIO commands are also used by the adapter and HAL to
ensure that the fill and available counts of packets in the FIFO are kept in synch. Packet
arrival interrupts are controlled by the protocol by a simple thresholding mechanism.

4.1 Cache Effects and Bus Crossings

A typical send operation would result in the CPU loading from memory the data buffer,
and storing it in the network send buffer. At first glance, it may appear that this results
in 2 memory bus crossings. The CPU would then tap the adapter (via MMIO) to DMA
the data from the network buffer resulting in an IO bus crossing. An important design
choice we made greatly helped improve performance. The send FIFO network buffer
was kept small (256K to hold 128 – 2K sized packets) so that it is usually in cache.
Typically the user program prepares the buffers to be sent and it is reasonable to assume
that the user buffer is likely in cache. So the copy from the user buffer to the network
send buffer is often a cache to cache transfer not visible on the memory bus. Power

Architecture and Early Performance of the New IBM HPS Fabric and Adapter 161

architecture supports the satisfaction of DMA reads from cache. Therefore on the send
side, typically the only bus crossing is the DMA across the IO bus. In the case of
RDMA (discussed later) also there is one IO bus crossing.

The receive FIFOs are larger and scale with the number of user space tasks in the
parallel job that the process must communicate with. This allows the receive FIFOs to
absorb (buffer) packets from the network from multiple sources. The receive FIFO can
be sized according to the number of tasks in the parallel job allowing the LAPI no loss
of flow-control policy. This is crucial for performance so that the packets are not left
clogging the network stalling packets belonging to different tasks, if the task for which
the packets are designated for, is not actively pulling packets from the network (for e.g.
it is busy in its compute loop or is de-scheduled for some reason). On the receive side
the adapter DMAs packets into the receive FIFO. The CPU has to fetch the data from
memory into its cache to absorb the newly arrived data into its on going computation. A
future enhancement that is envisioned is to enable the adapter and the memory
subsystem with smarts to allow cache injection for received messages into the processor
cache running the relevant task. In most cases therefore, it is probably reasonable to
assume that a well designed FIFO mode transport protocol can reduce unnecessary bus
crossings which impact performance.

We have achieved less than 4.3us MPI level latency across 2 tasks that are
communicating over the switch (across a single switch chip for the latency
measurement). This implies that the MPI latency includes the locking overhead on both
the ‘send’ and ‘receive’ sides. Currently, due to our layering, we incur two locks on the
send side and two locks on the receive side in the critical path. To achieve this latency
we designed an elegant mechanism to share locks between MPI and LAPI layers to
remove two of the locks in the critical path. Simple smarts were put into the
acknowledgement processing to remove it from the critical path to save up to 1us in our
latency. The bandwidth profile for unidirectional bandwidth is shown in Figure 4. We
have been able to achieve 1.8GB/s of unidirectional bandwidth between 2 tasks running
on 2 different nodes across the switch. All these measurements were performed on
1.9GHz Power4+, 8way SMP nodes using HPS switch and adapter. The slight inflection
at 64K message size is due to the switching over from eager mode of transport to

Unidirectional MPI BW Profile

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

1.
7E

+0
7

Message Size bytes

B
an

d
w

id
th

 M
B

/s

Unidi: MPI BW: 1.9GHz Power4, HPS

Fig. 4. MPI Unidirectional Performance

162 R.K. Govindaraju et al.

rendezvous protocol [MPIP]. Existing solutions typically use a PCI-X attachment which
has a bandwidth limit of around 800MB/s.

5 HPS RDMA Mode

RDMA Definition and Terminology: RDMA is the transport capability that allows
processes executing on one node to be able to “directly” access (execute reads or writes
against) the memory of processes executing on a different node connected by an RDMA
capable network. By “directly” we mean the capability of the network adapters at both
ends to affect the transfer of data without any protocol processing by the CPU on the
slave side of the transfer operation. “Master” is the one that initiates the operation and
“slave” is the other target end point of the transport operation. RDMA is sometimes
referred to as “memory semantics” for communication across a cluster network, or as
“hardware put/get,” or as “remote read/write.”

5.1 Significance of RDMA Transport Protocols

We list some of the reasons why RDMA is an important emerging transport model: a)
Overlap value: RDMA de-couples the CPU from the communication work of moving
data. This allows for the computation on the CPU to be overlapped with
communication. Many existing and emerging new applications are being written to
exploit potential overlap between computation and communication [5]; b) Memory
subsystem bottleneck: A critical bottleneck for improved sustained performance is
memory system performance. RDMA can minimize the number of bus transactions and
helps reduce the stress on the memory system for applications that can take advantage
of overlap; c) One-sided programming model: Many applications are more ideally
mapped on to a one-sided programming model. RDMA is a very natural and efficient
mechanism to enable such a programming model [3]; d) Striping: Since the adapters are
shared by multiple processors on the SMP node, and each node can have multiple
adapters (typically one adapter for every 4 CPUs), striping of protocol messages may

FIFO with copy/RDMA Read Message sz vs BW profile (unidirectional)

0

200

400

600

800

1000

1200

1400

1600

1800

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

1.
7E

+0
7

Message Size bytes

B
an

d
w

id
th

 M
B

/s

FIFO ucode with copy unidrectional BW ucode only RDMA unidirectional

Fig. 5. FIFO Mode vs. RDMA performance (Power 1.7Ghz system with HPS)

Architecture and Early Performance of the New IBM HPS Fabric and Adapter 163

provide some performance benefits. RDMA plays a critical role in how we do efficient
striping of messages by a single task across multiple network adapters; e) Interrupts:
RDMA offloads fragmentation and reassembly of the messages on to the adapter and
this also helps reduce the number of per-packet interrupts that need to be processed by
the protocol to absorb packets arriving from the network. This benefit can only be
realized if the application is tuned to take advantage of the overlap possibilities with
RDMA. Due to lack of space the details of the RDMA implementation will be the
subject of another paper.

5.2 RDMA Performance

Figure 6 shows the performance of RDMA as compared to FIFO mode on 1.7GHz
Power 4+ nodes. Note that the overheads associated with the setup cost (pinning and
mapping of buffers) is not factored into the plots shown in Figure 5. Figure 6 shows the
bidirectional performance using RDMA. Figure 6 and Figure 7 show the performance
when striping using RDMA. Figure 6 shows that the unidirectional bandwidth using
RDMA allows very close to linear scaling with multiple network interfaces. A single
CPU can issue multiple RDMA requests to different network adapters in a pipelined
fashion. This mechanism avoids unnecessary synchronization (since one CPU is
submitting the requests) while still allowing the data transfer via RDMAs’ across
multiple network interfaces to proceed in parallel.

Unidirectional bandwidth, 1.7 GHz Power 4

0

2000

4000

6000

8000

10000

12000

14000

65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

Message Size (bytes)

B
an

d
w

id
th

 (M
B

/s
)

Unidi FIFO MPI BW RDMA Unidi 1 link RDMA Unidi 2 links RDMA Unidi 4 links RDMA Unidi 8 links

'

Fig. 6. Unidirectional bandwidth using RDMA and striping

Figure 7 shows the corresponding bidirectional data using RDMA and striping.
Figures 6 and 7 show remarkable performance can be achieved using RDMA and
efficient software striping models. Details of the implementation of the striping in
software will be part of a different paper. The data in Figure 6 and 7 are plotted
starting from 64K because that is the approximate cut-off point where RDMA crosses
over the FIFO mode performance as seen in Figure 5. It is clear from Figures 6 and 7

164 R.K. Govindaraju et al.

that RDMA provides very good scaling of bandwidth across multiple network
interfaces. With striping across 8 links between 2 tasks executing on different nodes,
the unidirectional bandwidth was over 12GB/s (~83% striping efficiency since a
single link is capable of 1.8GB/s unidirectional bandwidth) and the bidirectional
bandwidth was over 20.5GB/s (~87% striping efficiency since a single link is capable
of 2.9GB/s bidirectional bandwidth). RDMA is however not without significant
challenges which will be addressed in a future paper.

Bidirectional bandwidth, 1.7 GHz, Power 4

0

5000

10000

15000

20000

25000

65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

Message Size (bytes)

B
an

d
w

id
th

 (M
B

/s
)

Bidi FIFO MPI BW RDMA Bidi 1 link RDMA Bidi 2 links RDMA Bidi 4 links RDMA Bidi 8 links

Fig. 7. Bidirectional bandwidth, using RDMA and multiple network interfaces

6 Conclusions and Future Work

HPS has demonstrated a significant increase in performance as compared to the
previous network adapter and switch from IBM. Current work is underway to improve
the bidirectional bandwidth, exploiting the use of the RDMA capability by MPI, LAPI
and the IP transport protocols. Striping enablement is also currently underway. Future
work also includes enabling HPS for Power 5 based systems, and adding additional
capabilities into our high speed network hardware and software to ensure that a
complete system offering is delivered. RDMA is an emerging technology that should
spur more interest in new problems on how best to exploit it. RDMA also brings a lot of
difficult problems that need further investigation to overcome many of the challenges
discussed in Section 5. Addressing the challenges detailed with RDMA is a subject of
active future research. IBM is engaged in the definition of API definitions in the
standards body [5] and one of our focus areas has been to ensure we use our early
experience with RDMA to help influence the standard so that the future API definitions
lend themselves to efficient implementations and exploitation of RDMA capability.

Acknowledgements

A large number of people contributed to the architecture, design, development, tuning
and testing of the HPS based system. Some of the many people who contributed to the

Architecture and Early Performance of the New IBM HPS Fabric and Adapter 165

development of this HPS based system are: Fu-Chung Chang, Amy Chen, Jennifer
Doxtader, Bill Helmer, Su Huang, Patricia Heywood, Bin Jia, Doug Joseph, Chulho
Kim, Eric Lais, Skip Lundin, Brett Patane, Aruna Ramanan, Nick Rash, Kevin J Reilly,
Rajeev Sivaram, Carol Soto, Richard Treumann, William Tuel, Theodore Will,
Hanhong Xue, and others we have surely missed.

References

1. [DGSMP] Richard Treumann, “DGSM: Data Gather Scatter Machine,” IBM Internal
Report.

2. [FPGS] Daniel Frye, Kevin Gildea, Peter Hochschild, Marc Snir, “The communication
software and Parallel Environment for the IBM SP2,” IBM Systems Journal, 34(2), pp. 205-
221, 1995.

3. [GA] Jarek Nieplocha, Jialin Ju, Manoj Kumar Krishnan, Bruce Palmer, Vinod Tipparaju,
“The Global Arrays User Manual,” http://www.emsl.pnl.gov/docs/global/user.html.

4. [GPFSP] GPFS White Paper: http://www-1.ibm.com/servers/eserver/pseries/software/
sp/gpfs.html

5. [ITAPI] IT-API: Open group consortium on API definition for RDMA capable networks.
http://www.opengroup.org

6. [IBTA] Infiniband Architecture, http://www.infinibandta.org/ibta/
7. [LAPIP] IBM’s LAPI Documentation http://rs6ktech.dfw.ibm.com/sp/docs/pssp3.4/

pssphtml/cmdsv2/am0trmst02.html.
8. [LAPIP2] Gautam Shah, Jarek Nieplocha, Jamshed Mirza, Chulho Kim, Robert J Harrison,

Rama K. Govindaraju, Kevin Gildea, Paul DiNicola, Carl A Bender, “Performance and
Experience with LAPI – A New High Performance Communication Library for the IBM
RS/6000 SP, In Proceedings of IPPS (International Parallel Processing Symposium) 1998.

9. [MPILAPIP] Mohammad Banikazemi, Rama K Govindaraju, Robert Blackmore, D. B.
Panda, MPI-LAPI: An Efficient implementation of MPI for RS/6000 SP Systems, in IEEE
Transactions for Parallel and Distributed Computing, Vol. 12, Issue 10, pp. 1081-1093, Oct.
2001

10. [RDMAP] An Efficient reliable RDMA mechanism over an unreliable network transport
protocol. IBM Patent submitted in April 2004.

11. [RDMAX] Brett M. Bode, Jason J. Hill, and Troy R. Benjegerdes, “Cluster Interconnect
Overview,” USENIX 2004.

12. [REVIB] Troy R. Benjegerdes, Brett M. Bode, “Infiniband Performance Review,” USENIX
2004.

13. [VIBPCIEX] Jiuxing Liu, Amith Mamidala, Abhinav Vishnu, Dhabaleswar K. Panda,
“Performance Evaluation of Infiniband with PCI Express,” Hot Interconnect 12, August,
2004

14. [VMPI] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High Performance RDMA-
Based MPI implementation over Infiniband,” 17th International Conference on
Supercomputing, June 2003.

15. [YNET] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M.
Welcome, and K. Yelick, “An evaluation of current high-performance networks,”
International Parallel and Distributed Processing Symposium, April 2003.

Scheduling Many-Body Short Range MD
Simulations on a Cluster of Workstations and

Custom VLSI Hardware

J.V. Sumanth, David R. Swanson, and Hong Jiang

Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE, USA

{sumanth, dswanson, jiang}@cse.unl.edu

Abstract. Molecular dynamics is a powerful technique used to
obtain static or dynamic properties of liquids and solids. The sheer
computational intensity of many of these simulations demands more
computational power than what any uniprocessor system can provide.
Fortunately, these simulations can be parallelized, allowing faster exe-
cution times on a cluster of workstations. Of late, custom VLSI chips
have been designed to provide an alternative to parallel techniques. The
MD-GRAPE 2 is one such solution, offering a peak performance of 64
Gflops. We evaluate the performance and cost-effectiveness of various
methods used in sequential and parallel molecular dynamics and the
MD-GRAPE 2. We then illustrate how MD simulations involving more
complex potential functions can be scheduled on parallel machines and
the MD-GRAPE 2 simultaneously.

1 Introduction

The complexity of MD simulations are overcome either by using parallel super-
computers [1] [2] or employing special purpose hardware such as the MD-GRAPE
2 [3]. Clusters of workstations are more general purpose architectures since it is
possible to implement any kind of potential on them. On the other hand, the
MD-GRAPE 2 board is more restrictive since it can perform simulations based
only on selected 2-body potentials. We combine the advantages of both these
techniques and perform simulations involving a composite 3-body potential on
a combination of the two architectures.

In the next section, the computational aspects of a typical MD simulation
are discussed, in section 3, we briefly explain and evaluate the performance1 of
basic MD techniques and in sections 4 and 5, parallel MD techniques and special
purpose hardware like the MD-GRAPE 2 [4] to speed-up MD simulations are
outlined. In section 6, we evaluate the performance of combining a cluster of
workstations and special purpose hardware.

1 The parallel code was executed on Prairiefire, a 256 processor cluster. Each processor
was an 1800MHz Athlon MP. Each node contains 2 processors and 2GB of PC 2300
RAM. The nodes were interconnected by a 2 Gbit/sec Myrinet network. The peak
performance of this cluster was 512 Gflops.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 166–175, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Scheduling Many-Body Short Range MD Simulations 167

2 Computational Aspects of MD Simulations

2.1 Basic Equations

The computational task of a MD simulation [5] is to perform the time integration
of the differential equation 1 with given initial atom positions and velocities i.e.
{−→r i(0),−→v i(0)|i = 1, 2, . . . , N} and obtain the positions and velocities at a later
time i.e. {−→r i(t),−→v i(t)|i = 1, 2, . . . , N}.

∂2−→r k(t)
∂t2

= −→a k(t) =
∑
i<j

−→r ij(t)
(
−1

r

∂u(r)
∂r

)∣∣∣∣
r=rij(t)

· (δik − δjk) (1)

where,

δik =
{

1, i = k
0, i �= k

(2)

is the kronecker delta function and u(r) is the potential function.
Forces are computed as the negative gradient of the potential as

Fk = −∂V (−→r N)
∂−→r k

= −
(

∂V

∂xk
,
∂V

∂yk
,
∂V

∂zk

)
(3)

where V (−→r k) =
∑

i<j u(−→r ij) and −→r ij = −→r i −−→r j .
We use the velocity-verlet integration algorithm [5].

2.2 Lennard-Jones Potential - A 2-Body Potential

The Lennard-Jones(LJ) 2-body potential is commonly used to model weak, long
range interactions. The LJ potential and force equations are computed by equa-
tions 4 and 5, where σ and ε are experimentally determined constants, related
to atom size and potential strength, respectively.

V (r) = 4ε
[(σ

r

)12
−

(σ

r

)6
]

(4)

−→
Fk = 24ε

[
2
(σ

r

)12
−

(σ

r

)6
](

1
r

)
(5)

2.3 REBO Potential - A 3-Body Potential

The Reactive Empirical Bond Order (REBO) Potential computes the potential
energy of a system of N atoms by equation 6 [6]. The functions called from this
expression are detailed in table 1. rij is the scalar interatomic separation between
atoms i and j. The function fc(rij) restricts the range of the potential. The
attractive forces are modelled by VA(rij) and the repulsive forces are modelled
by VR(rij). The weak van der Waals forces are modelled by a LJ potential
VvdW (rij). The bond order function Bij ≡ (Bij+Bji)

2 , is a many-body term that
models bond breaking and formation.

Eb =
N∑
i

N∑
j>i

{fc(rij)
[
VR(rij)−BijVA(rij)

]
+ VvdW (rij)} (6)

168 J.V. Sumanth, D.R. Swanson, and H. Jiang

Table 1. REBO components and parameters used

VR(r) =
De

S − 1
exp

[
−α

√
2S(r − re)

]

VA(r) =
SDe

S − 1
exp

[
−α

√
2
S

(r − re)

]

Bij =

⎧⎨
⎩1 + G

∑
k �=i,j

fc(rik)exp [m(rij − rik)]

⎫⎬
⎭

−n

fc(r) =

⎧⎨
⎩

1 r < re + δ
1
2 {1 + cos [βπ(r − (re + δ))]} re + δ ≤ r < re + δ + β−1

0 re + δ + β−1 ≤ r

MassA,B = 14.0 amu; DAB
e = 2.0eV ; DAA

e = DBB
e = 5.0eV ; S = 1.8; α = 2.7Å−1; G =

5.0; m = 2.25Å−1; n = 0.5

AB Model I: re = 1.2Å, δ = 0.467Å; β = 1.2Å−1

AB Model II: re = 1.0Å, δ = 0.400Å; β = 1.0Å−1

AB Model III: re = 1.0Å, δ = 1.000Å; β = 1.0Å−1

3 Basic MD Techniques

The all-pairs method [5] and the link-cell method are the two most commonly
used techniques. For a 2-body potential, the all-pairs method involves computing
all N2 interatomic interactions at every time-step and updating the new atomic-
positions. For a 3-body potential the time complexity is O(N3).

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
T

im
e

(S
ec

s)

Density

Pairs Method
Link Cell Method

Fig. 1. Effect of density on all-pairs method and link-cell method

Scheduling Many-Body Short Range MD Simulations 169

The link cell method [5] makes the complexity of the MD simulation nearly
linear provided the system being simulated is not dense. The effect of density on
the performance is illustrated in Fig. 1. The simulation space is divided into cubic
cells each dimension. A link list is maintained for each cell containing the atoms in
that cell. To determine the cell a particular atom belongs to, all that needs to be
done is to inspect its position co-ordinates and no distances need to be computed.

4 Parallel MD Methods and Their Performance

The key to parallel MD algorithms is that the force computations and the inte-
gration algorithm can operate independently on each atom. The atom and force
decomposition methods can be used for long range as well as short range poten-
tials, while the spatial-decomposition algorithm can be used effectively only for
short range potentials.

4.1 Atom Decomposition

The atom-decomposition method divides the N atoms into sets of N/P atoms
and assigns each set to one of P processors. Each processor computes the forces
on, and updates the positions and velocities of, its N/P atoms and hence the
name atom-decomposition. At every time-step, two global communication op-
erations [7] are required. The first is to ensure that all the processors have the
updated positions of all the atoms in the system. The second is to ensure that
every processor receives the forces computed on its atoms by other processors.
These partial forces are summed to obtain the total force on each atom. When
simulating a very dense system incorporating long-range potentials, this method
is as effective as other sophisticated algorithms.

Fig. 2 illustrates the performance of this method when implemented on a
cluster of workstations and on the MD-GRAPE 2. Clearly, the overall perfor-
mance scales as O(N2). Fig. 3 illustrates the efficiency of the atom-decomposition

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

T
im

e
(S

ec
s)

Number of atoms

16 procs
32 procs
64 procs
MD-GRAPE2

Fig. 2. Performance of atom-decomposition

170 J.V. Sumanth, D.R. Swanson, and H. Jiang

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

100.5

101.0

 0 5 10 15 20 25 30 35

E
ffi

ci
en

cy

Number of Processors

Fig. 3. Efficiency of atom-decomposition

0

50

100

150

200

250

300

350

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

E
xe

cu
tio

n
T

im
e

(S
ec

s)

Number of atoms

8 Processors
27 Processors
MD-GRAPE2

Fig. 4. Performance of Spatial Decompo-
sition and MD-GRAPE link cell method

method on half a million atoms with up to 32 processors. The efficiency gradu-
ally falls off from 100%. The reason for the perfect efficiency despite the presence
of global communication operations twice at every time-step is the computation
time is more dominant.

4.2 Spatial Decomposition

This method [2] the most effective for short-range molecular dynamics, involves
dividing the simulation box into domains. Each processor is assigned a domain
and computes the forces and updates the positions and velocities of the atoms in
its domain. Each processor is also responsible for informing other processors if an
atom leaves its domain and enters that of the other processors. This technique is
most effective if the distribution of the atoms in the system is uniform. For highly
localized distributions, this method can perform many times worse than the
previous method. Fig.4 illustrates the performance of the spatial-decomposition
algorithm on 8 and 27 processors.

Fig. 5 illustrates the efficiency of the spatial-decomposition algorithm using
4 million atoms. It can be seen that the efficiency does not scale as well as
in the atom-decomposition algorithm, but the execution time of the spatial-
decomposition for a given system of atoms is far superior. The reason for the
fluctuations in this plot and the plot in Fig.4 is due to the fact that the actual
number of processors per dimension is not always a perfect cube leading to
imperfect load balancing.

5 MD-GRAPE 2 for MD Simulations

The MD-GRAPE(GRAvity PipE) 2 is a parallel pipelined special purpose hard-
ware [3] designed to compute non-bonding forces.The bond-forces and time-
integration of atom accelerations are performed on the host machine. The forces

Scheduling Many-Body Short Range MD Simulations 171

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35

E
ffi

ci
en

cy

Number of Processors

Fig. 5. Plot of efficiency of spatial-
decomposition algorithm using 4M atoms

0.0e+00

5.0e-06

1.0e-05

1.5e-05

2.0e-05

2.5e-05

3.0e-05

3.5e-05

4.0e-05

4.5e-05

 0 50 100 150 200 250 300 350 400 450 500

R
el

at
iv

e
E

rr
or

Time Step

Fig. 6. Relative Error in computing Total
Energy using MD-GRAPE 2

are computed using a function evaluator whose relative accuracy is of the order
of 10−7. The MD-GRAPE 2 chip computes forces exerted by all atoms on 24
different atoms in 6 clock cycles. In force mode, the force on atom i is computed
by equation 7 and in the potential mode, the potential contribution by atom i
is computed as in equation 8.

Fi =
∑

j

bjG(ajr
2)(−→rj −−→ri) (7)

φi =
∑

j

bjG(ajr
2) (8)

where, G(x) is any arbitrary smooth function that is evaluated by a segmented
4-th order polynomial, −→ri is the vector position of the i−atom, −→rj is the vector
position of the j−atom and aj and bj are scaling factors. r2 is the square of the
distance between the two atoms.

The function G(x) is evaluated using a segmented 4th order polynomial in-
terpolation. Polynomial coefficients are stored in the RAM onboard. The range
[xmin, xmax) is divided into 1024 segments. If x ∈ [xk, xk+1), the function f(x)
is approximated by equation 9.

f(x) ≈
4∑

i=0

c
(k)
i (Δx)i (9)

where, Δx is the difference of x from the center of the segment.

5.1 All Pairs Method

The input to the MD-GRAPE 2 is the atom positions and the output is the forces
on the atoms or the potentials on each atom. Initially, the positions of the j-atoms
(atoms that exert forces on other atoms) are sent to the MD-GRAPE 2 board and
stored in RAM. The maximum number of j-atoms that can be stored at once is
roughly half a million. If the simulation involves more than half a million atoms,

172 J.V. Sumanth, D.R. Swanson, and H. Jiang

1: Divide simulation space into cells of side rc.
2: Create a Link List for each cell containing the atoms belonging to the cell.
3: for each cell i do
4: Place atoms belonging to cell i into a permuted position vector rp[].
5: end for
6: Send rp[] to the MD-GRAPE 2 board as j atoms.
7: for each cell i do
8: Determine the 27 neighboring cells of i
9: Send the base and size of the neighboring cells to the MD-GRAPE 2

board.
10: Send the positions of the atoms in cell i as the i atoms.
11: Compute the forces on the i atoms.
12: Apply an inverse permutation to determine the atoms in the original force

vector and add in the computed forces.
13: end for

Fig. 7. Link Cell Method on the MD-GRAPE 2

100

150

200

250

300

350

400

450

8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
T

im
e

(S
ec

s)

Number of Processors

1.2M atoms Parallel
1.0M atoms Parallel
0.8M atoms Parallel

1.2M atoms MD-GRAPE 2
1.0M atoms MD-GRAPE 2
0.8M atoms MD-GRAPE 2

Fig. 8. Plot of number of processors vs. Execution time for MD-GRAPE 2 link-cell
method and domain decomposition method

then the atom positions must be sent in batches of half a million each. Once the
j-atoms are sent to the board, the i-atoms (atoms on which forces are exerted)
are sent to the board. There is no effective limit on the number of i-atoms. Once
the above positions are sent to the board, forces that the j-atoms exert on the
i-atoms are computed. Fig. 2 illustrates the performance of this method.

5.2 Link Cell Method

While programming the MD-GRAPE 2 board to work in the link-cell method,
the host machine has to perform more computation than in the all-pairs method.
The host machine has to place all the atoms into cubic cells each of side at least

Scheduling Many-Body Short Range MD Simulations 173

rc. Finally, the host machine has to sort the atoms by their cell numbers. Further,
the host machine has to remember the permutation created by the sorting and
apply this to the forces returned by the MD-GRAPE 2 board. The algorithm is
illustrated in Fig. 7.

Fig. 8 illustrates the number of processors it takes to equal the performance of
the MD-GRAPE 2 board using the link-cell method by plotting the MD-GRAPE
2 execution time along with the execution times of the spatial-decomposition
algorithm using the same simulation parameters and varying the number of
processors. From the graph, we can conclude that it takes 12 processors to equal
the performance of the MD-GRAPE 2 board.

Fig. 6 illustrates that the error in computing the total energy using the MD-
GRAPE 2 board is 10−6.

6 Scheduling MD on a Parallel Architecture and the
MD-GRAPE 2 Simultaneously

It is possible to schedule a MD simulation involving a REBO potential on a
cluster of workstations and the MD-GRAPE 2 board simultaneously. We choose
to use the atom-decomposition method in parallel and the all-pairs method on
the GRAPE board, since many applications involving non-uniform atom distri-
butions will perform better using these techniques.

In table 1, we saw that the REBO potential comprises of three 2-body compo-
nents namely VR, VA and VvdW and a 3-body component Bij . There is no way of
implementing any 3-body potential on the MD-GRAPE 2 architecture. Further,
the custom function evaluation table does not allow for conditional statements
to be placed in the function. A conditional statement is required to evaluate
fc(rij), which is to be multiplied into VR and VA. Hence, we cannot compute
the VR and VA components on the MD-GRAPE 2 board, either.

We determined a second degree polynomial using data like that shown in
2 to predict the execution time of the all-pairs method on the MD-GRAPE 2
board. A second-degree polynomial can also be used to estimate the execution
time of the atom-decomposition method. We compute the 3-body component
of the REBO potential and the 2-body VR and VA components on a cluster
of workstations using the atom-decomposition method. The VvdW component is
computed on the MD-GRAPE 2 board using a custom function evaluation table.

To allow the MD-GRAPE 2 board to communicate with the cluster of work-
stations, we implement a server on the MD-GRAPE 2 board’s host machine
that accepts a position vector and outputs a partial force vector and a partial
potential energy. The forces and potential energies are called partial as they are
only due to the VvdW component and need to be added in with the forces and
potential energy of the other components which are computed on the cluster.

At every time-step, before the parallel code begins computing the forces and
potential energies, it sends a copy of the position vector to the MD-GRAPE 2
host machine. Now the cluster of workstations and the MD-GRAPE 2 board
compute the forces and potential energies simultaneously. At the end of the

174 J.V. Sumanth, D.R. Swanson, and H. Jiang

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0e+00 5e+05 1e+06 2e+06 2e+06

S
pe

ed
up

Number of Atoms

Fig. 9. Plot of additional speedup over 35 processors by including an MD-GRAPE 2
board

force computation, the MD-GRAPE 2 host machine returns the partial forces
and partial potential energy. These partial components are summed to give the
actual force vector and total potential energy.

Let the previously determined polynomials to estimate the execution time on
the cluster using a single processor be tc(N) and on the MD-GRAPE 2 board
be tg(N). Since the atom-decomposition has a nearly perfect efficiency, we can
assume the execution time of this method using p processors to be 1

p · tc(N).
Hence the total execution time using both the cluster and the MD-GRAPE 2
board Ttotal is given by equation 10.

Ttotal(N) = max

[
1
p
· tc(N), tg(N)

]
(10)

To optimally schedule the MD simulation in parallel, we need to solve equa-
tion 11 for a sufficiently large N to determine an optimal number of processors
p on which to run the atom-decomposition method.

p =
tc(N)
tg(N)

(11)

Experimentally, we have determined the two polynomials and used them to es-
timate an optimal p to be 35 which agrees with the value of p predicted by equation
11. Fig. 9 illustrates the additional speedup obtained when combining the cluster
andMD-GRAPE2.Theatom-decomposition componentwas runon35processors.

The speedup with respect to the cluster alone gradually reaches approxi-
mately 1.4 and remains constant from there on with N increasing.

7 Conclusion

We review the performance and trade-offs involved in the various techniques of
sequential and parallel classical MD. We also study the performance and trade-
offs involved in using the MD-GRAPE 2 board for MD simulations and determine

Scheduling Many-Body Short Range MD Simulations 175

it to equal the performance of 12 high end processors working in parallel using
the link-cell method. But in the all-pairs method, the MD-GRAPE 2 performs
as well as 61 processors working in parallel.

At the time of writing, the cost per cluster processor including the network was
around 1500 US dollars and the MD-GRAPE 2 board around 15000 US dollars.
The MD-GRAPE 2 is a very cost effective way to compute long-range potentials
such as the coulomb potential since the MD-GRAPE 2 board performs as well as
61 processors. But for short-range potentials like the Lennard-Jones potential, it
may be more cost-effective to use a cluster of workstations since the MD-GRAPE
2 board performs only as well as 12 processors in the link cell method.

We find that the relative accuracy of the MD-GRAPE 2 board for a typical
MD simulation board is of the order of 10E − 5 despite the function evaluator
having a relative accuracy of the order of 10E − 7. For most applications, this
accuracy is acceptable.

We then show that using a combination of parallel techniques and custom
hardware, we can perform MD simulations with significantly better execution
times when compared to using either technique in isolation. We choose to assume
a highly non-uniform distribution of atoms and hence choose to work with the
atom-decomposition and all-pairs technique. We determine that using this hybrid
technique, using 35 processors in parallel and a single MD-GRAPE 2 board is
optimal, performing 40% better than a cluster alone.

Acknowledgements

We thank ONR, RCF and SDI (NSF 0091900) for their support of this project.
We are grateful to Dr. Kenji Yasuoka, Dr. Takahiro Koishi and Mako Furukawa
for the useful discussions we had about the MD-GRAPE 2 board.

References

1. Sumanth J.V, D. R. Swanson, and H. Jiang. Performance and cost effectiveness of a
cluster of workstations and MD-GRAPE 2 for MD simulations. In 2nd International
Symposium on Parallel and Distributed Computing , IEEE, ACM, TFC, 2003.

2. S. Plimpton. Fast parallel algorithms for short-range molecular dynamics, Sandia
Report, SAND91-1144 (1993)., 1993.

3. Tetsu Narumi. Special-purpose computer for molecular dynamics simulations. PhD
thesis, Department of General Systems Studies, College of Arts and Sciences, Uni-
versity of Tokyo, 1998.

4. Tetsu Narumi, Atsushi Kawai, and Takahiro Koishi. An 8.61 tflop/s molecular dy-
namics simulation for nacl with a special-purpose computer: MDM. SC2001, 2001.

5. M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford University
Press, 1987.

6. C.T.White, D. R. Swanson, and D. H. Robertson. Molecular dynamics simulations
of detonations. In Chemical Dynamics in Extreme Environments , Ed. Rainer A.,
pages 546–592. Dressler, World Scientific, 2001.

7. G.C.Fox, M.A.Johnson, G.A.Lyzenga, S.W.Otto, J.K.Salmon, and D.W.Walker.
SolvingProblemsonConcurrentProcessors. PrenticeHall, EnglewoodCliffs,NJ, 1988.

Performance Characteristics of a Cosmology Package on
Leading HPC Architectures

Jonathan Carter, Julian Borrill and Leonid Oliker

CRD/NERSC,
Lawrence Berkeley National Laboratory,

Berkeley, CA 94720
{jtcarter, jdborrill, loliker}@lbl.gov

Abstract. The Cosmic Microwave Background (CMB) is a snapshot of the Uni-
verse some 400,000 years after the Big Bang. The pattern of anisotropies in the
CMB carries a wealth of information about the fundamental parameters of cos-
mology. Extracting this information is an extremely computationally expensive
endeavor, requiring massively parallel computers and software packages capa-
ble of exploiting them. One such package is the Microwave Anisotropy Dataset
Computational Analysis Package (MADCAP) which has been used to analyze
data from a number of CMB experiments. In this work, we compare MADCAP
performance on the vector-based Earth Simulator (ES) and Cray X1 architec-
tures and two leading superscalar systems, the IBM Power3 and Power4. Our
results highlight the complex interplay between the problem size, architectural
paradigm, interconnect, and vendor-supplied numerical libraries, while isolating
the I/O filesystem as the key bottleneck across all the platforms.

1 Introduction

About 400,000 years after the Big Bang the expansion of space had cooled the Universe
sufficiently for the charged electrons and protons to combine into neutral hydrogen atoms.
At this point the primordial photons, which had been scattering off the free electrons, were
suddenly able to propagate undisturbed through space, carrying with them a record of this
moment which we call the Cosmic Microwave Background. The details of this snapshot
— tiny variations in the photons’ temperatures and polarizations — are an exquisitely
sensitive probe of the fundamental parameters of cosmology, and measuring the detailed
statistical properties of the CMB has been a high priority ever since its serendipitous dis-
covery in 1965. The challenge lies in the fact that the continued expansion of the Universe
has reduced the mean temperature of the CMB from around 3000K at last-scattering to
only 3K today, and the anisotropies whose statistics we want to determine are at the
10−5 level in temperature, and anticipated to be at the 10−6–10−8 level in polarization.

Realizing the extraordinary scientific potential of the CMB requires making precise
measurements of the microwave sky temperature over a significant fraction of the sky at
very high resolution. Such measurements are made by scanning the sky for as long as pos-
sible with a cryogenically cooled telescope and as many microwave detectors as possible.
The reduction of the resulting datasets—first to a pixelized sky map, and then to an angu-
lar power spectrum—is a serious computational challenge, and one which is only getting

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 176–188, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

,

Performance Characteristics of a Cosmology Package on Leading HPC Architectures 177

worse with increasing dataset sizes, as we try to make ever more precise measurements.
It is therefore critical to choose the optimal algorithmic approach and supercomputing
platform; one approach is the Microwave Anisotropy Dataset Computational Analysis
Package (MADCAP) [1], which has been widely used on a variety of supercomputers.

Until recently, CMB analyses were performed almost exclusively on superscalar
cache-based microprocessors, due to their generality, scalability, and cost-effectiveness.
However, for many classes of applications, these architectural platforms suffer from a
growing gap between their sustained performance and claimed peak capabilities. Re-
cently, two innovative parallel-vector architectures have become available to the super-
computing community: the Japanese Earth Simulator (ES) and the Cray X1. In order to
quantify what these modern vector capabilities offer to scientists that rely on numerical
simulation and data analysis, it is critical to evaluate this architectural approach in the
context of demanding scientific computing algorithms [2–6]. Our research team was the
first international group to conduct a performance evaluation study of the Earth Simu-
lator, currently the world’s most powerful supercomputer [7]. As remote ES access is
not available, the study was performed during the authors’ visit to the Earth Simulator
Center located in Kanazawa-ku, Yokohama, Japan in December 2003.

In this work, we compare MADCAP performance on the vector-based ES and X1
architectures and two leading superscalar systems, the IBM Power3 and Power4. Two of
the architectures studied, the X1 and Power4, were only available as relatively small sys-
tems. This restricted the size of problem that we were able to use for the comparison to the
correspondingly small (15,000 pixel) CMB dataset from the MAXIMA balloon-borne
experiment [8] on at most 64 processors. However, MADCAP’s algorithmic develop-
ment has been targeted at analyzing much larger datasets on many more processors. In
particular, the recent introduction of gang-parallelism has enabled the dominant com-
ponent of MADCAP—a set of independent dense matrix-matrix multiplications—to
achieve near perfect scaling for a 100,000 pixel dataset on 1024, 2048, 3072 and 4096
Power3 processors. The results here show that the overheads associated with imple-
menting this optimization negate most of the performance benefits for our experimental
data set. Our analysis highlights the complex interplay between the problem size, archi-
tectural paradigms, interconnect fabric, and vendor-supplied numerical libraries, while
isolating the I/O filesystem as the key bottleneck across the suite of HPC platforms.

2 Architectural Platforms

Table 1 presents a summary of the architectural characteristics of the four supercom-
puters examined in our study. Observe that the vector systems are designed with higher
absolute performance and better architectural balance than the superscalar platforms.
The ES and X1 have high memory bandwidth relative to peak CPU (bytes/flop), allow-
ing them to continuously feed the arithmetic units with operands more effectively than
the superscalar systems in our study. Additionally, the custom vector interconnects show
superior characteristics in terms of measured latency [9, 10], point-to-point messaging
(bandwidth per CPU), and all-to-all communication (bisection bandwidth) — in both
raw performance (GB/s) and as a ratio of peak processing speed (bytes/flop).

178 J. Carter, J. Borrill, and L. Oliker

Table 1. Architectural highlights of the Power3, Power4, ES, and X1 platforms

Platform CPU/ Clock Peak Mem BW Peak MPI Lat Netwk BW Bisect BW Network
Node (MHz) (GF/s) (GB/s) bytes/flop (μsec) (GB/s/CPU) bytes/s/flop Topology

Power3 16 375 1.5 0.7 0.47 16.3 0.13 0.087 Fat-tree
Power4 32 1300 5.2 2.3 0.44 12.0 0.06 0.012 Fat-tree
ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar
X1 4 800 12.8 34.1 2.7 7.3 6.3 0.0881 2D-torus

The Power3 experiments reported here were conducted on the 380-node IBM pSeries
system running AIX 5.1 and located at Lawrence Berkeley National Laboratory. Each
375 MHz processor contains two floating-point units (FPUs) that can issue a multiply-
add (MADD) per cycle for a peak performance of 1.5 Gflop/s. Each SMP node consists
of 16 processors connected to main memory via a crossbar. Multi-node configurations
are networked via the SP Switch2 (Colony) switch using an omega-type topology. The
IBM distributed filesystem, GPFS, was used for all benchmarks. The filesystem was
configured with 16 GPFS servers (each 16 processor SMP nodes), each with 32GB of
main memory that can be used to cache files and metadata. The total size of the filesystem
was 30TB, with a block size of 256KB. In this model disk I/O uses the switch fabric,
sharing bandwidth with message-passing traffic.

The Power4 experiments were performed on the 27-node IBM pSeries 690 system
running AIX 5.2 and operated by Oak Ridge National Laboratory (ORNL). Each 32-way
SMP consists of 16 Power4 chips (organized as 4 MCMs), where a chip contains two
1.3 GHz processor cores. Each core has two FPUs capable of a fused MADD per cycle,
for a peak performance of 5.2 Gflop/s. Our benchmarks were run on a system employing
the Colony interconnect. As in the Power3 case, GPFS was used for all benchmarks. The
filesystem was configured with 8 GPFS servers (each a 4 CPU 1.7GHz Power4+) with
32GB of main memory. These servers support two 2TB filesystems, both with a block
size of 256KB. The benchmarks utilized only one of these filesystems.

The 640 node ES runs enhanced Super-UX, a 64-bit Unix-based operating system.
Each SMP node contains eight processors with 16 GB of memory, and are connected
through a custom single-stage crossbar. The 500 MHz ES processor contains an 8-way
replicated vector pipe (vector length = 256) capable of issuing a MADD each cycle,
for a peak performance of 8.0 Gflop/s per CPU. For scalar instructions, the ES contains
a 500 MHz scalar processor. Like traditional vector systems, the ES vector unit is a
cache-less architecture; memory latencies are masked by overlapping pipelined vector
operations with memory fetches. Each group of 16 nodes has a pool of RAID disk (720GB
per node) attached via fiber channel switch. The filesystem used for our experiments is
NEC’s Supercomputer Filesystem (SFS), with a block size of 4MB. Each node has a
separate filesystem, in contrast to the other architectures studied.

All Cray X1 benchmarks were performed on a 256-MSP system (several reserved
for OS services) running UNICOS/mp 2.4 and operated by ORNL. The computational
core, called the single-streaming processor (SSP), contains two vector (vector length =

1 X1 bisection bandwidth is based on a 2048 MSP configuration.

Performance Characteristics of a Cosmology Package on Leading HPC Architectures 179

64) pipes running at 800 MHz, giving a 3.2 Gflop/s peak for 64-bit data. The SSP also
contains a superscalar processor running at 400 MHz. The multi-streaming processor
(MSP) combines four SSPs into one logical computational unit, sharing a 2MB data
Ecache, that allows extremely high bandwidth (25–51 GB/s) for computations with
temporal data locality. An X1 node consists of four MSPs sharing a flat memory, and
large system configurations are networked through a modified 2D torus interconnect.
The X1 at ORNL has four nodes available for I/O processing; each node is connected
to a RAID array using fiber channel arbitrated loop protocol. Data transfer from a batch
MSP must travel over the interconnect to one of the I/O nodes. The filesystem used in
our study is a 4TB XFS filesystem, with a block size of 64KB.

3 MADCAP Overview

The analysis of a CMB dataset typically starts from the noise-dominated time-ordered
data, constructs a pixelized map of the observed region (typically with signal-to-noise
of around unity), and finally extracts the signal-dominated two-point angular correlation
function, or power spectrum, of the CMB signal together with the errors on this spectral
estimate (see Figure 1). The MADCAP approach is first to calculate the analytic maxi-
mum likelihood map and its residual pixel-pixel noise correlations, and then iteratively
estimates the maximum likelihood power spectrum and its fisher information matrix. In
this work we concentrate on the second step, which dominates the computational costs.

3.1 Methodology

The angular power spectrum is both a complete characterization of the CMB if its fluctu-
ations are Gaussian, and is the statistic which can most readily be predicted for candidate
cosmological models. MADCAP recasts the extraction of a CMB power spectrum from a
map of the sky into a problem in dense linear algebra, and exploits the ScaLAPACK [11]
libraries for its efficient parallel solution. The goal is to maximize the Gaussian log-

Fig. 1. The map and associated angular power spectrum of the part of the CMB sky measured by
the MAXIMA experiment, as calculated by MADCAP

180 J. Carter, J. Borrill, and L. Oliker

likelihood of the data d (a pixelized sky map of dimension Np) over all possible power
spectrum multipole coefficients Cl where L(d|Cl) = − 1

2

(
dT D−1 d− Tr lnD

)
and

D is the data correlation matrix
〈
ddT

〉
. In an ideal experiment, there would be an in-

dependent coefficient Cl for each multipole in the angular power spectrum. However,
because of finite beam size and incomplete sky coverage, the accessible multipoles are
instead grouped into Nb bins and a single coefficient Cb is associated with each bin.

Using Newton-Raphson iteration to locate the peak of this log-likelihood requires
the evaluation of its first two derivatives with respect to the binned power spectrum coef-
ficients. First, the data correlation matrix D is constructed as the sum of the experiment-
specific noise correlations N and the theory-specific signal correlations S(Cb) – then a
square linear system Wb = D−1 ∂S

∂Cb
is solved for each of the Nb spectral coefficients.

This is accomplished by inversion of D and direct matrix-matrix multiplication. These
operations scale asNbN 3

p for a map withNp pixels. This number of pixels has progres-
sively increased from O(103) for the initial detection of CMB anisotropies by the COBE
satellite to O(104) – O(105) for the ensuing ground- and balloon-based experiments, to
O(106) – O(107) for the current WMAP and forthcoming Planck satellite missions.

MADCAP achieves its highest performance when the data are dense on the pro-
cessors so that the communication overhead is minimized. With the advent of super-
computers with thousands of processors this was becoming harder to achieve for all
but the largest datasets. MADCAP has therefore recently been rewritten to exploit the
parallelism inherent in performing Nb independent matrix-matrix multiplications. The
analysis is split into two steps: first, all of the processors collectively build and invert D;
then, the processors are divided into independent gangs, each of which performs a subset
of the multiplications. Since the matrices involved are block-cyclically distributed over
the processors, this incurs the additional overhead of redistributing the matrices between
the two steps. Our results compare these single- and multi-gang approaches.

3.2 Major Components

Each iteration of MADCAP’s power-spectrum extraction algorithm is divided into seven
steps. Table 2 presents an overview of the resource requirements. To maximize its ability
to handle large datasets and many bins, MADCAP works with at most 3N 2

p double
words of memory, which corresponds to supporting 3 matrices in memory concurrently.
The out-of-core disk-based storage for the other matrices in the calculation is the only
practical choice given the number of bins, but comes at the cost of heavy I/O. All
matrices are block-cyclic distributed across the processors; when a matrix is stored to
disk due to memory limitations, MADCAP generates one file per processor over which
the matrix is distributed. This results in matrix I/O operations that are independent,
however the simultaneity of multi-processor disk accesses can create contention within
the I/O infrastructure, thus degrading overall performance.

(i) dSdC calculates each of the pixel-pixel signal correlation derivative matrices
dS/dCb. The elements of these matrices are weighted sums of the Legendre functions
Pl for each multipole l in bin b, evaluated for each pixel-pixel pair. HereNb distributed
matrices are output to disk. This step has high computational intensity on the superscalar
architectures (over 7 flops/byte on the Power3/4), and medium on the vector machines,
see Section 3.3 for details.

Performance Characteristics of a Cosmology Package on Leading HPC Architectures 181

Table 2. Computational requirements for each iteration of MADCAP’s power spectrum algorithm,
in terms of pixels (Np), bins (Nb), and multipoles (Nl)

Phase Disk RAM Flops
dSdC 8NbN

2
p 16N2

p O(NlN
2
p)

invD 8N2
p 16N2

p O(N3
p)

redist — 16N2
p —

W 8N2
p 24N2

p O(NbN
3
p)

dLdC 8Nb 8N2
p O(NbN

2
p)

fisher 8N2
b 16N2

p O(N2
b N2

p)
dC 8Nb 8N2

b O(N3
b)

Total 8(Nb + 2)N2
p 24N2

p O((Nb + 1)N3
p)

(ii) invD calculates the full (symmetric positive definite) pixel-pixel data corre-
lation matrix as D = N +

∑
b CbdS/dCb, explicitly inverts it using the ScaLA-

PACKpdpotrf andpdpotri routines, and performs the matrix-vector multiplication
z = D−1d (where d is the data vector, the pixelized sky map) using the ScaLAPACK
pdsymv routine. This step has an intermediate computational intensity of around 1.7
flops/byte. For our benchmarks we perform only the initial iteration in which Cb = 0,
so that the dSdCb matrices do not actually need to be read in; this routine then reads
and writes one matrix.

(iii) redist, one by one, reads each of the dS/dCb matrices and the D−1 matrix, which
are block-cyclic distributed across all of the processors, block-cyclic redistributes them
using the psgemr2d routine, and rewrites them over one gang’s worth of processors.
This step performs no calculations per se, but is a set of data gathers by the group of
processors in one gang from all other processors, stressing both memory bandwidth and
system interconnect.

So far, all the processors have worked on the same step of the code (single-gang
mode), since these operations are inherently sequential. The next steps may be performed
in multi-gang mode. Note that redist step re-maps the data from single- to multi-gang
mode and is not performed for single-gang MADCAP calculations.

(iv) W performs the multiplication Wb = D−1dS/dCb for a given bin using the
pdgemm routine. (Although D−1 and dS/dCb are both positive definite symmetric
matrices, dS/dCb may have significant block structure which we can exploit by using
pdgemm to multiply just the appropriate non-zero blocks, rather than using pdsymm
on the whole matrices.) Depending on the amount of data per processor, intermediate to
high computational intensity is required. This step requires each gang to read D−1 and
its subset of the dS/dCb matrices, and write the resulting Wb matrices.

(v) dLdC calculates the bth element of the log-likelihood derivative vector using
pdgemv, dL/dCb =zT Wbd − Trace(Wb), since the Wb matrices are not symmetric.
Each gang performs this multiplication for its subset of the bins. Matrix-vector multiply
is of relatively low computational intensity, requiring an architectural balance between
memory subsystem and peak arithmetic speed to achieve high performance. dLdC re-
quires matrix input (Wb) but has no matrix output requirements.

182 J. Carter, J. Borrill, and L. Oliker

(vi) fisher computes the bth column of the bin-bin fisher matrix by first reading and
transposing Wb, followed by reading W ′

b for all b′ > b and calculating the trace as the
sum over all matrix element pair products: Fbb′ = Trace(WbW

′
b) . For the case where

the number of bins exceeds the number of gangs, this step is load-balanced by giving
each gang both a low and high numbered bin. In the case where number of gangs equal
to the number of bins, there is an inherent load imbalance. The gang that processes the
first bin will take on the order of Nb longer than the gang that processes the last bin.
This step has low computational intensity, the main computational work being BLAS1;
it has heavy I/O requirements, reading Nb(Nb + 1)/2 matrices.

(vii) dC calculates the correction dCb = F−1
bb′ dL/dC ′

b using Cholesky decomposi-
tion of F and triangular solve. The number of bins is small enough that this is a simple
serial code using the dposv and dpotri routines. We do not present an analysis of
the dC phase, as it requires a trivial amount of runtime.

3.3 Vectorization

Most of the MADCAP routines utilize the ScaLAPACK library, making code migration
a relatively simple task. Performance for both scalar and vector systems depends heavily
on an efficient implementation of the vendor-supplied linear-algebra libraries. However,
explicit vectorization was required for the hand-coded dSdC routine. The basic struc-
ture of the dSdC routine loops over all pixel pairs, calculating the value of Legendre
polynomials up to some preset degree for the angular separation between these pixels.
On superscalar architectures this constituted a largely insignificant amount of work, but
due to the recursive computation, vectorization was prevented—resulting in significant
overheads on the ES and X1. This routine was therefore rewritten so that at each itera-
tion of the recursion a large batch of angular separations was computed in an inner loop.
Compiler directives were required to ensure vectorization for both vector architectures.
For our test case a speedup of approximately 10X and 30X were recorded on the ES
and X1 respectively, bringing back a performance balance similar to the superscalar
architectures.

3.4 Experimental Data

The data used in our experiments was collected by MAXIMA [8] (MillimeterAnisotropy
eXperiment Imaging Array): a balloon-borne millimeter-wave telescope designed to
measure the angular power spectrum of fluctuations in the CMB over a wide range
of angular scales. MAXIMA has an unprecedented combination of sensitivity, angular
resolution, and control of systematic effects. The experiment consists of a 1.3 m diameter
off-axis Gregorian telescope and a receiver with a 16 element array of bolometers cooled
to 100 mK. The high sensitivity of this receiver allows accurate measurements of the
CMB power spectrum in a single overnight balloon flight. Each of the detectors in the
array is sensitive to a single frequency band centered at 150, 240, or 410 GHz. The 150
GHz band is the most sensitive to the CMB and is close in frequency to the predicted
minimum in galactic foregrounds. The higher frequency channels monitor emission from
the atmosphere and galactic foregrounds such as dust.

Performance Characteristics of a Cosmology Package on Leading HPC Architectures 183

4 Results

Our experiment used a dataset of 14996 pixels (Np), 16 bins (Nb), and 1200 multipoles
(Nl). We explore both single-gang (SG) runs, where all processors participate in each
step of the calculation, and multi-gang (MG) runs, where gangs of processors carry
out the Nb W, dLdC, and fisher steps concurrently. For each architecture we perform
SG calculations using both 16 and 64 processors (SG processor counts are restricted to
squared integers). The MG implementation depends on fast file-level synchronization
across tasks. As the ES architecture provides this via MPI-IO or vendor-specific API
(currently not utilized in MADCAP) and our short stay at the ES Center prevented
code re-engineering, no MG experiments were performed. For all other architectures we
performed MG calculations using 16, 32, and 64 processors with 4, 8, and 16 gangs of
4 processors respectively.

Tables 3-8 present a performance breakdown of MADCAP’s five key steps. To dis-
tinguish between computational overhead and I/O requirements, we present two sets of
runtime data (RT) for each experiments: the overall time (in wall-clock seconds); and
the computational costs, without accounting for I/O operations and barrier wait times
caused by I/O imbalance. For the ES, we were unable to measure the I/O and barrier
times, so only the overall time is shown; we plan to gather these measurements on our
next visit to the ES center. In addition, the parallel efficiencies (PE) of scaling from 16
to 64 processors are shown (P=32 is also presented for the MG case). Finally, we show
the percentage of time each step accounts for in the overall MADCAP simulation (OT).

Recall that for dSdC, the SG and MG configurations are equivalent (exactly the
same code is executed in both cases). We expect good scaling for this step, since it is
embarrassingly parallel: The pixel map is divided amongst the processors and correlation
matrix is computed independently, pixel by pixel. As the per-processor data density
decreases at higher concurrencies, we expect to see a slight performance degradation
due to loop overhead and decreased vector lengths.

Table 3 presents dSdC results, showing that the ES achieves the fastest raw perfor-
mance, approximately 5x, 3.5x, and 2x faster than the Power3, Power4, and X1 respec-
tively. For the Power3 and ES systems we see excellent speedup, but for the Power4
and X1 this is not the case. On further investigation, we determined that the main cause

Table 3. Performance of dSdC using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

dSdC Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 743 746 375 371 179 190 156 716 714 339 339 171 174
RT — 373 — 199 — 97 — — 359 — 172 — 9332
PE — 100% — 93% — 98% — — 100% — 98% — 94%
RT 188 187 130 131 72 72 37 180 180 86 86 49 49

64 PE 99% 100% 72% 70% 63% 66% 105% 100% 99% 98% 98% 88% 88%
OT 7% 7% 6% 6% 8% 9% 4% 7% 7% 10% 11% 13% 12%

184 J. Carter, J. Borrill, and L. Oliker

Table 4. Performance of invD using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

invD Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 395 389 141 141 71 78 74 378 373 130 132 69 72
RT — 213 — 90 — 52 — — 204 — 81 — 4432
PE — 91% — 78% — 75% — — 91% — 81% — 82%
RT 131 131 77 70 81 80 22 126 125 67 62 71 75

64 PE 75% 74% 46% 50% 22% 24% 84% 75% 74% 49% 53% 24% 24%
OT 5% 4% 4% 3% 9% 10% 2% 5% 5% 6% 6% 14% 13%

of slowdown was increased I/O time for writing out the matrix. Both the Power4 and
X1 systems have global filesystems with compute nodes having no direct connections
to the I/O subsystem. We would expect to see some contention when increasing the
number of I/O streams above a certain level, and this effect is most likely the reason for
the slowdown. On removing the I/O time from the comparison the efficiency increases
markedly, in line with our expectations.

For invD, we expect some slowdown on increasing the processor count, due the the
decreased ratio of computation to communication; performance is presented in Table 4.
As in dSdC, we note that the ES has the best parallel efficiency and absolute performance.
Similarly, the Power3 has the second best efficiency, and is also the architecture where
I/O scaling has the least impact. The Power4 and X1 both scale poorly, and removing
I/O does not improve performance. For the Power4, we are comparing results between
16 processors (a half-populated SMP node) and 64 processors (two full SMP nodes),
where the former case involves no intra-node communication and has twice the memory
bandwidth per processor than in the latter case. For the X1, the scaling does not seem
related to I/O, nor to the vector length (which remains similar going from 16 to 64
processors) — this issue is currently under investigation.

Table 5. Performance of redist using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

redist Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 0 461 0 280 0 254 0 0 456 0 273 0 252
RT — 366 — 409 — 185 — — 360 — 400 — 18432
PE — 63% — 34% — 69% — — 63% — 34% — 69%
RT 0 222 0 296 0 186 0 0 217 0 289 0 185

64 PE — 52% — 24% — 26% — — 53% — 24% — 34%
OT 0% 6% 0% 13% 0% 23% 0% 0% 9% 0% 23% 0% 30%

Performance Characteristics of a Cosmology Package on Leading HPC Architectures 185

Table 6. Performance of W using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

W Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 8501 7847 3176 2818 958 906 1345 7928 7474 2865 2582 791 693
RT — 4052 — 1811 — 537 — — 3753 — 1531 — 41332
PE — 97% — 78% — 84% — — 100% — 84% — 84%
RT 2204 2029 1173 930 421 280 357 2066 1873 972 727 323 207

64 PE 96% 97% 68% 76% 57% 81% 94% 96% 100% 74% 89% 61% 84%
OT 79% 56% 53% 41% 48% 34% 37% 79% 81% 89% 72% 74% 41%

The redist step, presented in Table 5 taxes both memory bandwidth and interconnect
efficacy. In addition, any low-level support for strided gathers and the ability of the
ScaLAPACK to effectively use these features will also affect performance. Observe that
this operation is fastest on the X1, while slowest on the Power4. However, since the X1
is has significantly higher peak performance than the superscalar systems in our study,
redist accounts for a significant fraction of the X1’s overall time (23%), and shows little
parallel efficiency (26%). The cost of this step is vital to the success or failure of the
multi-gang strategy: If it is too high, we will not recoup the loss via faster matrix-matrix
multiplies in step W.

Before discussing the following set of results, we note that close to perfect parallel
efficiency is expected for the multi-gang experiments. In both the 16 and 64 processor ex-
periments, the computations and matrix distributions are identical — the only difference
being that in the 64-way run, four matrix-matrix multiplies are performed concurrently.
Table 6 shows the performance of W on our suite of architectural platforms. Observe that,
as expected, the MG strategy reduces the overhead of W in all test cases when compared
with the SG approach. The Power3 performs the closest to ideal scalability, particularly
when I/O times are removed. This is followed by the Power4 and the X1. Note, however,
that significant variability was seen in the X1’s I/O performance, sometime by up to a
factor of 4x. Observe that the X1 has the faster MG raw performance, achieving a 4.8x

Table 7. Performance of dLdC using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

dLdC Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 284 276 111 132 95 86 166 15 19 7 9 5 1
RT — 141 — 81 — 51 — — 10 — 9 — 232
PE — 98% — 81% — 85% — — 98% — 48% — 37%
RT 73 71 62 78 87 52 48 8 4 5 5 6 9

64 PE 98% 98% 45% 42% 27% 42% 86% 50% 121% 34% 46% 20% 4%
OT 3% 2% 3% 3% 10% 6% 5% 3% 3% 5% 6% 15% 8%

186 J. Carter, J. Borrill, and L. Oliker

Table 8. Performance of fisher using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

fisher Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 1361 1719 936 853 291 47 1442 591 489 125 104 63 28
RT — 863 — 699 — 21 — — 223 — 61 — 1532
PE — 100% — 61% — 109% — — 110% — 86% — 93%
RT 589 880 653 694 85 16 416 383 72 149 38 47 10

64 PE 58% 49% 36% 31% 86% 73% 87% 39% 170% 21% 69% 33% 71%
OT 21% 24% 30% 31% 10% 2% 44% 21% 16% 49% 38% 15% 2%

speedup over the Power3; however, it is also important to recall that the X1 is 8.5x faster
in peak compared with the Power3.

For the dLdC step, shown in Table 7, we again expect high efficiency in MG mode.
However, unlike step W, dLdC is dominated by I/O processing. The resulting compu-
tation-only runtimes are too small to clearly see the benefits of multi-gang parallelism,
except perhaps for the Power3. The total overhead times are influenced strongly by the
ability of the filesystem to handle concurrent streams of I/O without loss of efficiency.

Results for the fisher step are shown in Table 8. As previously mentioned in Sec-
tion 3.2, the 64-way MG experiment is inherently load imbalanced, due to the equal
number of gangs and bins (16); thus, we expect poor scalability when comparing with
the 16 processors simulation. For the Power3 and Power4, I/O accounts for a signif-
icant fraction of the runtime, while the X1 shows negligible I/O effects. In terms of
runtime, the ES achieves surprising poor performance, almost five times slower than the
X1 for the SG case — we plan to investigate this issue during our next visit to the ES
Center.

5 Summary and Conclusions

Table 9 summarizes our findings by putting together all of MADCAP’s components. We
find that the X1 has the best runtimes: 1.1x, 2.8x, and 4.4x faster than the ES, Power4,
and Power3 respectively; however, it suffers the lowest parallel efficiency. The ES and
Power3 demonstrate the best scalability, significantly higher than the Power4 and X1.
The Power3 shows the highest percentage of peak, followed by the ES, X1, and Power4;
it is also the only architecture where the multi-gang strategy pays off for this dataset.

Our in-depth analysis of the performance of the MADCAP package demonstrates
the complex interplay between the architectural paradigms, interconnect technology, and
I/O filesystem. These design tradeoffs play a key role in algorithmic design and system
acquisitions. Preliminary multi-gang parallel optimization has previously demonstrated
high sustained performance for large problem sizes at extremely high concurrencies.
However, for our experimental data set and limited processor count, little or no ben-
efit was attained on a broad spectrum of supercomputers when using this optimized
approach. Additionally, all evaluated architectural platforms sustained a relatively low

Performance Characteristics of a Cosmology Package on Leading HPC Architectures 187

Table 9. Overall MADCAP performance using single-gang (SG) and multi-gang (MG): in runtime
seconds (RT), parallel efficiency (PE), MFlop/s per CPU (MF/s/P), and percentage of peak

MADCAP Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 11400 11522 4814 4646 1710 1672 3269 9688 9547 3506 3455 1171 1285
RT — 6088 — 3344 — 1058 — — 4924 — 2272 — 81632
PE — 95% — 69% — 79% — — 97% — 76% — 79%
RT 3266 3606 2196 2264 873 823 954 2795 2492 1319 1240 567 624

64 PE 87% 80% 55% 51% 49% 51% 86% 87% 96% 66% 70% 52% 52%
MF/s/P 542 491 807 782 2029 2153 1857 634 711 1343 1429 3127 2840
% peak 36% 33% 16% 15% 16% 17% 23% 42% 47% 26% 27% 24% 22%

overall fraction of peak, considering MADCAP’s extensive use of computationally inten-
sive dense linear-algebra calculations. Future work will examine higher-scalability sim-
ulations across a broad range of supercomputing systems, where we expect to cross the
break-even point where multi-gang parallelism confers a clear performance advantage.
We also plan investigate MADCAP’s data transpositions and I/O transfer requirements
in more detail, with the goal of reducing the impact of these overheads.

Acknowledgments

The authors would like to gratefully thank: the staff of the Earth Simulator Center,
especially Dr. T. Sato, S. Kitawaki and Y. Tsuda, for their assistance during our visit;
D. Parks and J. Snyder of NEC America for their help in porting applications to the ES;
the MAXIMA team; and the NASA Advanced Information Systems Research Program
which supported the development of MADCAP. IBM Power4 and Cray X1 access was
graciously provided by ORNL; This research used resources of the NERSC at LBNL
and CCS at ORNL supported by the DOE under Contract No DE-AC03-76SF00098
and DE-AC05-00OR22725 respectively. All authors from LBNL were supported by the
Office of Advanced Scientific Computing Research in the DOE Office of Science under
contract number DE-AC03-76SF00098.

References

1. Borrill, J.: MADCAP: The Microwave Anisotropy Dataset Computational Analysis Package.
In: 5th European SGI/Cray MPP Workshop, Bologna, Italy (1999)

2. Agarwal, P.A., et al.: Cray X1 evaluation status report. In: Proc. of the 46th Cray User Group
Conference, Knoxville, TN (2004)

3. Dunigan Jr., T.H., Fahey, M.R., III, J.B.W., Worley, P.H.: Early evaluation of the Cray X1.
In: Proc. SC2003, Phoenix, AZ (2003)

4. Nakajima, K.: Three-level hybrid vs. flat mpi on the earth simulator: Parallel iterative solvers
for finite-element method. In: Proc. 6th IMACS Symposium Iterative Methods in Scientific
Computing. Volume 6. (2003)

188 J. Carter, J. Borrill, and L. Oliker

5. Oliker, L., et al.: Evaluation of cache-based superscalar and cacheless vector architectures
for scientific computations. In: Proc. SC2003, Phoenix, AZ (2003)

6. Oliker, L., et al.: A performance evaluation of the Cray X1 for scientific applications. In: 6th
International Meeting on High Performance Computing for Computational Science. (2004)

7. Top500 Supercomputer Sites: (http://www.top500.org)
8. Hanany, S., et al.: Maxima-1:A measurement of the cosmic microwave background anisotropy

on angular scales of 10′–5o. The Astrophysical Journal 545 (2000) L5–L9
9. ORNL Cray X1 Evaluation: (http://www.csm.ornl.gov/˜dunigan/cray)

10. Uehara, H., Tamura, M., Yokokawa, M.: MPI performance measurement on the Earth Simu-
lator. Technical Report # 15, NEC Research and Development (2003/1)

11. The ScaLAPACK Project: (http://www.netlib.org/scalapack/)

A Dynamic Geometry-Based Shared Space
Interaction Framework for

Parallel Scientific Applications�

Li Zhang and Manish Parashar

The Applied Software Systems Laboratory, Rutgers University,
94 Brett Road, Piscataway, NJ 08854

{emmalily, parashar}@caip.rutgers.edu

Abstract. While large-scale parallel/distributed simulations are rapidly
becoming critical research modalities in academia and industry, their ef-
ficient and scalable parallel implementations present many challenges. A
key challenge is the dynamic and complex communication/coordination
patterns required by these applications, which depend on states of the
phenomenon being modeled and are determined by the specific numer-
ical formulation, the domain decomposition and/or sub-domain refine-
ment algorithms used, and are known only at runtime. In this paper,
we present a dynamic geometry-based shared-space interaction frame-
work for scientific applications. The framework provides the flexibility
of shared-space coordination models while enabling scalable implemen-
tations. The design, prototype implementation and experimental evalu-
ation using an adaptive multi-block oil reservoir simulation are presented.

Keywords: parallel scientific applications, dynamic geometry-based
shared space, communication locality, scalability, tuple space, Hilbert
space filling curve.

1 Introduction

Large-scale parallel/distributed simulations are playing an increasingly impor-
tant role in science and engineering and are rapidly becoming critical research
modalities in academia and industry. With the increasing scale of parallel sys-
tems and sophistication of application formulations and numerical techniques,
emerging applications offer the potential for accurately simulating physically re-
alistic models of complex phenomena and providing dramatic insights into com-
plex applications such as interacting black holes and neutron stars, formations
of galaxies, subsurface flows in oil reservoirs and aquifers, and dynamic response

� The research presented in this paper is supported in part by the National Sci-
ence Foundation via grants numbers ACI 9984357 (CAREERS), EIA 0103674
(NGS), EIA-0120934 (ITR), ANI-0335244 (NRT), CNS-0305495 (NGS) and by DOE
ASCI/ASAP via grant number 82-1052856.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 189–199, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

190 L. Zhang and M. Parashar

of materials to detonation. However, the phenomena being modeled by these
applications and their implementations are inherently multi-phased, dynamic,
and heterogeneous in time, space, and state. Combined with the complexity and
scale of the underlying parallel/distributed system, efficient and scalable imple-
mentations of these applications present many challenges.

A key challenge is the dynamic and complex communication/coordination
patterns required by these applications. These communication/coordination pat-
terns depend on states of the phenomenon being modeled and are determined
by the specific numerical formulation, domain decomposition and/or sub-domain
refinement algorithms used, and are known only at runtime. Implementing these
communication/coordination patterns using commonly used parallel program-
ming frameworks is non-trivial. Message passing frameworks such as MPI
require matching sends and receives to be explicitly programmed for each inter-
action. Frameworks based on shared address spaces provide higher-level abstrac-
tions that can support dynamic interactions. However scalable implementation
of global shared address spaces remains a challenge.

Tuple spaces provide a very flexible and powerful mechanism for extremely
dynamic communication and coordination patterns [1]. In the model, processes
interact using an associative shared tuple space. A tuple is a sequence of fields,
each of which has a type and contains a value. The producer of a message
formulates the message as a tuple and places it into the tuple space. The con-
sumer(s) can associatively look up relevant tuples using pattern matching on
the tuple fields. The tuple space model provides two fundamental advantages:
simplicity and flexibility. The communicating nodes need not care about who pro-
duced or will consume a tuple. Furthermore, the communicating processes do not
have to be temporally or spatially synchronized. This decoupling feature auto-
matically supports for dynamic communication/coordination. However, scalable
implementation of tuple spaces remains a challenge. In a pure tuple space envi-
ronment, all the communication passes through a central tuple space with rel-
atively slow associative lookup mechanisms [2], which is an inherent bottleneck
impeding scalability and efficiency.

In this paper, we present the design, implementation and evaluation of an
interaction framework for scientific applications that address the challenges out-
lined above. The proposed framework supports the flexibility and dynamism of
a tuple-based environment while enabling scalable implementations. It builds on
two key observations: (a) formulations of most scientific and engineering appli-
cations are based on geometric multi-dimensional domains (e.g., grid or mesh)
and (b) interactions in these applications are typically between entities that are
geometrically close in this domain (e.g., neighboring cells, nodes or elements).
Rather than implementing a general and global associative space, we enable the
dynamic creation of transient geometry-based interaction spaces, each of which
is localized to a sub-region of the overall geometric domain. The interaction
space is defined to cover a closed region of the application domain described
by an interval of coordinates in each dimension, and can be identified by any
set of coordinates contained in the region. It can then be used to share objects
between nodes corresponding to that region. Nodes do not have to know of or

A Dynamic Geometry-Based Shared Space Interaction Framework 191

synchronize with each other. The semantics of sharing is similar to traditional
tuple space models.

The prototype implementation of the proposed model complements existing
interaction frameworks (e.g., MPI, OpenMP) and provides a scalable geometry-
based shared-space for dynamic runtime coordination and localized communica-
tion. It uses the Hilbert Space Filling Curve (SFC), a locality preserving recursive
mapping from a multi-dimensional coordinate space to a 1-dimensional index
space, to construct a distributed directory structure that enables efficient reg-
istration and lookup of objects in the shared-space. The prototype is evaluated
using a parallel adaptive multi-block oil reservoir simulation [3]. Experimental
results demonstrate system scalability, low space operation overheads, and that
the performance is comparable to a pure message passing system.

The rest of the paper is organized as following. Section 2 presents a driving
application and its interaction requirements. Section 3 presents the dynamic
geometry-based shared space model. Section 4 presents design of the interaction
framework. Section 5 presents the prototype implementation and experimental
evaluation. Section 6 discusses related work and Section 7 draws a conclusion
for our work.

2 A Driving Application: Parallel Adaptive Multi-block
Oil Reservoir Simulation

In this section we use the parallel multi-block oil reservoir simulation as the
driving application to motivate the interaction framework presented in this pa-
per. In these simulations, the oil reservoir is discretized as a series of blocks
and interfaces between blocks. The target domain consists of a coupled sys-
tem of highly nonlinear transient partial differential equations. Its geometrical
and geological features induce a multi-block decomposition so that each block is
discretized by cell-centered finite differences on logically rectangular grids. Flux

Fig. 1. 2-D view of decomposed domains with interface sharing [3]

192 L. Zhang and M. Parashar

matching conditions are imposed on the interfaces and a non-overlapping domain
decomposition algorithm is exploited so that solving the interface problem only
requires in-block solves and an exchange of interface values between neighbor-
ing blocks [3]. We refer to the face sharing described above as neighbor-neighbor
relationship. Fig. 1 presents a 2-D view of decomposed domains in a 2-dimensional
coordinate system. From the figure we can observe that communication between
blocks in this particular environment is highly localized and is on the interfaces
of neighboring blocks. The challenge presented in this application is that when
the decomposed sub-blocks are distributed across nodes in the system, locat-
ing the processor assigned to a neighboring block is non trivial especially when
dynamic load-balancing is used.

3 Dynamic Geometry-Based Shared Space(DGSS)
Model

DGSS builds on the tuple spaces model. Communication entities interact with
each other by sharing objects using a virtual shared space. However there is
conceptual difference between the DGSS model and the general tuple space
model. A general tuple space spans the entire problem domain, is accessible
to all nodes in computing environments, and is associated with a generic tu-
ple matching scheme. DGSS defines a dynamic shared space that is based on
geometric regions within the application domain. It enables interactions that
are localized to a geometric region by sharing objects in the DGSS based on
geometry-associative semantics. DGSS supports for dynamic and flexible inter-
action/coordination while enabling scalable realizations based on the geometric
nature of the computational domain and the local nature of communications,
which are typical of most scientific applications. The geometric nature is due
to the observation that formulations of scientific applications are based on a
geometric descretization of the physical domain. Communication locality is due
to the observation that interaction and coordination are defined by problem
domains, and are typically local to sub-regions of the domain. Consequently, op-
erations on an object shared in a DGSS only require communication within the
DGSS. Coordinates from the geometric domain define the geometry-associative
semantics for retrieving/storing objects from/to the spaces. DGSS is dynamic
in the sense that it is created/destroyed at runtime and is constructed on top
of a dynamic set of nodes that may change as the communication-integrated
sub-domain changes. Through the model we automate the communication setup
procedure among partitioned tasks, thus releasing programmers from the com-
plicated and tiresome work of manually arranging all coordination patterns for
every node during application development, facilitate localized communication,
thus ensuring scalability of the model and benefit most scientific applications
through its support for geometry-associative semantics.

A Dynamic Geometry-Based Shared Space Interaction Framework 193

4 Design of the DGSS Framework

4.1 DGSS Architecture

The DGSS architecture consists of two components: a distributed directory struc-
ture that enables locating shared spaces based on geometric relationships, and
the dynamic shared-spaces that are associated with geometric regions. The dis-
tributed directory is constructed as a distributed table. The index of the table is
generated by mapping the multi-dimensional problem domain to a 1-dimensional
index space using Hilbert space-filling curves, which is then partitioned and
distributed across the nodes in the system. A space-filling curve (SFC) is a
continuous mapping from a d-dimensional space to a 1-dimensional space. The
d-dimensional space is viewed as a d-dimensional cube, which is mapped onto
a line such that the line passes once through each point in the volume of the
cube, entering and exiting the cube only once [4]. Using this mapping, a point
in the cube can be described by its spatial or d-dimensional coordinates, or
by the length along the 1-dimensional index measured from one of its ends.
The construction of SFCs is recursive. An important property of SFCs is lo-
cality preserving. Points that are close together in the 1-dimensional space are
mapped from points that are close together in the d-dimensional space. As the
index space is partitioned across the nodes in the system, each node is respon-
sible for an interval of the index space and the region of the computational
domain corresponding to this interval. The node manages information regarding
the creation, deletion and memberships of any DGSS in this region. Note that
the hash table will be typically sparsely populated and that the shared spaces
are not uniformly distributed across the index space. As a result, load-balancing
is used while partitioning the index space across the nodes. The mapping of a
2-dimensional domain using the Hilbert SFC and the creation of a distributed
directory are illustrated in Fig. 2.

To create or access a shared space corresponding to a region in the computa-
tional domain, the region is first translated to interval(s) in the 1-d index space
and these intervals are used to locate the processor where information about
the space is maintained. The process of locating corresponding directory node is
efficient, requiring only local computation. An interval tree is used to store index
intervals corresponding to already created and registered shared spaces at each

Fig. 2. Directory structure using Hilbert SFC [3]

194 L. Zhang and M. Parashar

node, and to detect geometric relationships between new and already registered
spaces.

4.2 DGSS-Based Shared Storage

The DGSS-based shared storage is created to span a dynamic set of nodes based
on the geometric relationship of their regions of interaction. Multiple DGSS-
based shared spaces can co-exist in the system and each node can be part of
more than one space. Physically, the shared space is replicated on each of the
participating nodes and consistency is maintained using a combination of up-
date propagation and multiple-versioned objects. Update propagation refers to
propagating changes to a shared object to every node caching the object within
the space. Since each DGSS-based shared space only spans a geometrically local-
ized communication zone, it typically spans a small number of nodes and update
propagation does not result in significant overheads. Multiple-versioned objects
allows shared objects to have multiple co-existing versions, which can improve
parallelism by enabling nodes to access and update different versions of the same
object without synchronization.

4.3 DGSS Interface

The DGSS framework interface defines operators to allow nodes to join/leave
a space and to access the space. The creation/destruction of a space is a non-
collective operation and nodes can join and leave a space at runtime. A node
joins a space by registering its interaction region described using geometric coor-
dinates. If the region overlaps with an existing region, the querying node joins the
existing space and the region covered by the space is redefined to be a union of
the two regions, and the membership of the space is updated. If it does not over-
lap with any of the existing regions, a new shared space is dynamically created.
A node leaves a space by de-registering itself. When the last node associated
with a space de-registers, the space is destroyed.

The space access operators are similar to those provided by tuple space sys-
tems such as Linda [1], with the exception of the “eval” function, which is not
supported. The space access operators are listed in Table 1. Given the geometry-
based access semantic defined by DGSS, the search process for a finite region
should uniquely return zero or one object from the shared space. This is unlike
a generalized tuple space, which may have multiple matches.

Table 1. DGSS Interface

Interface
Operators

Function Description
Linda Corr-
espondence

get
A “get” operation moves an object from a DGSS to requesting node. Further
“get” requests on the object are blocked until it is “put” back to DGSS

in

put A “put” operation moves an object from requesting node to a DGSS. out

read
A “read” operation copies an object to requesting node without removing it
from DGSS. Multiple “read” operations can occur simultaneously.

rd

register
“register” is provided to register an object with DGSS. Based on registered
geometric information, a pointer pointed at an existing DGSS or a new DGSS
will be returned.

n/a

A Dynamic Geometry-Based Shared Space Interaction Framework 195

5 Implementation and Performance Evaluation of a
Prototype System

5.1 Prototype Implementation

We have developed a prototype DGSS interaction framework. The implemen-
tation uses multi-threading. At application startup, a DGSS-daemon thread is
created within the user application process on each node. This daemon handles
registration requests by retrieving and updating local directory entries, and ob-
ject access requests if the node is part of a DGSS. Besides the DGSS-daemon, the
other key component is DGSS-storage, which is created to store shared objects.
To create a DGSS at runtime, nodes in a sub-domain will register a geometric
interaction region of interest with the underlying distributed directory layer. On
receiving the registration request, the DGSS-daemon retrieves its local directory
to determine whether the region of interest intersects with an existing DGSS or
if a new DGSS should be created. The DGSS-daemon returns a pointer to the
existing/new DGSS, which is then used for further space interactions. Current
implementation needs to statically define a startup server, which is known a
priori to all nodes in the computing environment. Table 2 lists a code sample
showing how a node starts up a space daemon, joins a DGSS by registering
an object and shares the object with other nodes through the DGSS within a
computation loop.

/*In the pseudo code series we first create a runtime DGSS by calling space-initiation function,
register an object with the DGSS and insert an object into it. Then a loop that takes the object from
the DGSS, performs local computation and updates the object, and puts the object back to the DGSS
is executed until loop condition becomes invalid. After that the object is de-registered from DGSS*/
/*Create DGSS by calling space-initiation function*/
SPACE* space=system_init(node id, shared space bootstrap server ip);
Initiate a local object;
/*Register an object with the DGSS*/
space->register(object geometric description);
/*Insert the object into the DGSS*/
space->put(object geometric description, object, object version number);
while(number of iterations<maximum number of iterations){
/*Get the object which has been updated by other nodes sharing it from the DGSS*/
space->get(object geometric description, object, object version number);
perform local computation, update object and its version number;
/*After performing local computation and updating the object, put it back to the DGSS*/
space->put(object geometric description, object, object version number);
}
/*De-register the object from the DGSS*/
space->deregister(object geometric description);

5.2 Experimental Evaluation

We have constructed a simulated oil reservoir environment to evaluate perfor-
mance and scalability of the prototype system. In the simulation, we assumed

Table 2. Pseudo Code Series Calling DGSS Interface

196 L. Zhang and M. Parashar

Fig. 3. 3-D/2-D view of the simulated oil reservoir experiment environment

the whole problem domain is mapped to a geometry model of a series of 6 blocks
and 5 interfaces in a 3-dimensional coordinate system as shown in Fig. 3.

Four of shared interfaces have a size of 200*400 grid points and the fifth has
400*400 grid points. The data attached to each point is of type double. Blocks
are decomposed at runtime into smaller blocks and assigned to nodes across a
cluster of workstations. Thus possibly a node owns only a small partition of one
block and its associated interface or possibly no associated interfaces, e.g., it is
a central part of a block. The simulation is run on a 64-node Beowulf cluster
connected by a high speed 100 MB LAN.

a) Performance Evaluation

The execution times for “register” “get” and “put” operations are measured for
a range of system sizes, upto 64 nodes. Two observations result: First, as the sys-
tem size increases, application grid blocks were partitioned into a larger number
of partitions of smaller sizes. Consequently, the corresponding shared interfaces
were also smaller in size. Second, not all nodes were assigned shared interfaces
and so, not all nodes were part of a DGSS. Fig. 4 shows the execution time
of each primitive. Lines with different colors represent experiments on different
system sizes. The figure shows that the time for the “register” operation varies
from 0.06428 second to 3.10842 seconds. This is because in the experiment all
nodes that share an interface register that interface almost at the same time.
Thus these registration requests nearly simultaneously reach the directory nodes
that should handle them and are processed sequentially to guarantee consistency
of the registration process. As a result, the execution time for “register” oper-
ation includes the time that a request blocks waiting for response, which can
increase as system size increases. This potential bottleneck can be removed us-
ing dynamic load balancing. The times required for “get” and “put” operations
are much smaller and comparatively stable, as seen from the figure. Further,
the times required for these operations decrease as system size grows due to the
two observations mentioned above. Of the three operations, “register” has the
highest cost. However, note that each shared interface is registered only once in
the application.

A Dynamic Geometry-Based Shared Space Interaction Framework 197

Execution time for register operation

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

node id

T
im

e(
se

c)

Execution time for get operation

0

0.0002

0.0004

0.0006

0.0008

0.001

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

node id

T
im

e(
se

c)

8

16

24

32

40

48

56

64

Execution time for put operation

0

0.0002

0.0004

0.0006

0.0008

0.001

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

node id

T
im

e(
se

c)

Fig. 4. Execution time for “register”,“get” and “put” operations

Execution time for get operation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

8 16 24 32 40 48 56 64

number of nodes

T
im

e(
m

se
c)

Execution time for system initialization

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2
1.22

8 16 24 32 40 48 56 64

number of nodes

T
im

e(
se

c)

Execution time for register operation

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

8 16 24 32 40 48 56 64

number of nodes

T
im

e(
se

c)

Execution time for put operation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

8 16 24 32 40 48 56 64
number of nodes

T
im

e(
m

se
c)

Fig. 5. Execution times for “init”,“register”,“get”and “put” operations

198 L. Zhang and M. Parashar

b) Scalability Evaluation

To evaluate system scalability, we averaged the execution time for each oper-
ation on different nodes for different system sizes. These results are plotted in
Fig. 5. The figure shows that only system startup time increases as system size
increases. Execution times for “register”, “get” and “put” operations decrease as
system size increases. The reason for increasing startup time is that the startup
phase uses server-client communication to collect necessary network information
from all nodes. As system size increases, the server becomes a communication
bottleneck causing the startup time to increase. The other three operations scale
well, which is because (a) they operate with DGSS which includes only a small
number of processors, and (b) as the system size increases, the size of shared
interface corresponding to a DGSS reduces and thus the “register”, “get” and
“put” operations operate on objects of smaller sizes.

6 Related Work

Several other projects also base their frameworks on tuple space concept such
as Sun’s JavaSpaces and IBM’s Tspace. Sun’s JavaSpaces combines Java with
tuple spaces while IBM’s Tspace emphasizes the integration of tuple space with
database systems. These systems are quite complex and over-weighted for High
Performance Computing. A lightweight Java Taskspaces framework for scientific
computing on computational Grids [2] is a work similar to ours. The framework
constructs lightweight shared taskspaces for node pairs that are assigned with
tasks in problem sub-domains with neighbor-neighbor relationship. Because of
the particular type of applications targeted, space sharing mechanism is sup-
ported by building direct communication channels between two nodes in a node
pair. However the framework is limited to only one specific type of communica-
tion locality while our model addresses communication locality in general.

7 Conclusion

This paper presented a DGSS interaction framework to facilitate dynamic inter-
action/coordination in large-scale parallel scientific applications. The framework
exploits geometric structure of the application domain and its communication
locality to provide the flexibility and dynamic of shared space interaction mod-
els while enabling their scalable implementations. A DGSS is virtually shared
among a group of nodes in a problem sub-domain and provides a powerful mech-
anism for dynamic complex interaction/coordination. The framework comple-
ments (and can co-exist with) existing interaction infrastructures (e.g. MPI). A
prototype implementation and experimental evaluations were presented. Exper-
imental results using a multi-block adaptive oil reservoir simulation show system
scalability and small overheads of interface operations.

A Dynamic Geometry-Based Shared Space Interaction Framework 199

References

1. Nicholas Carriero, David Gelernter. Linda in context. Communications of the ACM,
Volume 32, Issue 4, pp.444-458, April 1989, ISSN:0001-0782.

2. H. De Sterck, R.S.Markel, T.Pohl, U.Rude. A lightweight Java Taskspaces frame-
work for scientific computing on computational grids. The eighteenth annual ACM
symposium on applied computing, March 2003, Melbourne, Florida, USA. pp.1024-
1030, 2003, ISBN:1-58113-624-2

3. M. Parashar and I. Yotov. An Environment for Parallel Multi-Block, Multi-
Resolution Reservoir Simulations. Proceedings of the 11th International Conference
on Parallel and Distributed Computing Systems (PDCS 98), Chicago, IL, Interna-
tional Society for Computers and their Applications (ISCA), pp.230-235, September
1998.

4. Cristina Schmidt, Manish Parashar. Flexible Information Discovery in Decentralized
Distributed Systems. 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC’03), June 22-24,2003, Seattle, Washington, pp.226,
2003, ISBN:0-7695-1965-2.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 200–210, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Earthquake Engineering Problems in Parallel
Neuro Environment

Sanjay Singh1 and S V Barai2

1 IBM Global Services India Pvt. Ltd., 2nd Floor, Subramanya Arcade-2,
12 Bannerghatta Main Road, Bangalore 560 029, India

sanjaysingh@in.ibm.com
2 Department of Civil Engineering, IIT Kharagpur, Kharagpur 721 302, India

skbarai@civil.iitkgp.ernet.in
http://barai.sudhir.tripod.com

Abstract. The aim of the paper is to explore the application of Parallel Neuro
Simulator for the generation of artificial earthquake. Parallel Neuro Simulator
is a neural network code developed on PARAM 10000 using ‘C’ language and
MPI library subroutines. In this study, two artificial neural network (ANN)
models have been proposed to replace the auto-regressive moving average
(ARMA) model. First ANN model substitutes the polynomial model that repre-
sents the relation of initial site information and coefficients of polynomial and
the second ANN based model substitutes the estimated parameters of the
ARMA model. Several Indian earthquake records have been used for present
study on PARAM 10000. The variation in computational time with increasing
number of processors has also been studied.

1 Introduction

Earthquake ground acceleration is a typical example of nonstationary process. For a
nonstationary process both the frequency and the intensity changes with time. In the
past a wide variety of models have been used to simulate the nonstationary processes.
Earlier, most of the models were based on the spectral representation of the nonsta-
tionary process. After that, autoregressive moving average ARMA models had been
applied to the analysis of earthquake acceleration time series with stationary and
nonstationary characteristics [3,11]. Recently, the attempts have been made to exploit
the learning capabilities of Artificial Neural Networks [5] to develop the methods for
simulating ground motion [2,4,6,7,13].

Lin and Young [8] proposed the concept of random pulse train for the modeling
of hypothetical ground acceleration and investigated an evolutionary Kanai-Tajimi
model, a one-dimensional elastic model, and a one-dimensional Maxwell model.
Artificial accelerograms were generated from these models and results were com-
pared.

Wen and Yeh [14] and Yeh and Wen [15] proposed a stochastic process model for
generating artificial earthquake ground motions using three different functions such
as intensity, frequency modulation (FM) and power spectral density (PSD) function.

Earthquake Engineering Problems in Parallel Neuro Environment 201

Polhemus and Cakmak [11] obtained earthquake acceleration time series by fitting
stationary autoregressive moving average (ARMA) models after a variance-
stabilization transformation.

Ghaboussi and Lin [4] recently proposed a new method of generating artificial
earthquake accelerograms using neural networks. In the proposed method the neural
networks learned the inverse mapping directly from the actual recorded earthquake
accelerograms and their response spectra.

Lee and Han [7] developed efficient neural network based models for the genera-
tion of artificial earthquake and response spectra. Five neural network based models
were proposed for replacing traditional processes.

In the past few years, efforts have been made to develop efficient neural network
models. It is observed that while developing a reliable neural network model one has
to try with the different combinations of neural network parameters and it is a time
consuming process. In addition to this, as the size of data set increases the computa-
tional time also increases. In such cases, use of parallel computing environment offers
an attractive solution to both the problems. Based on the brief review, following ob-
jectives are identified.

(i) Develop and explore neural network models for simulating earthquake accel-
eration. (ii) To expedite the process of training neural networks, perform simulation
on parallel computing environment using Indian earthquake data.

2 Autoregressive Moving Average (ARMA) Models

Due to non-stationary characteristics of recorded earthquake ground motion, direct
application of ARMA models to the recorded strong ground motion is not possible. A
non-stationary process has a change in variance as a function of time. In constructing
ARMA models with time dependent variance, it is common practice to multiply either
the white noise at or the filtered noise (B)at by non negative time varying function

g(t). In the first case, the non-stationary model tZ takes the form

Zt = (B)[g(t)at] (1)

So that the variance 2 ()Z tσ of Zt varies with time according to

() () () 2

1

2222
a

j
jZ jtgtgt σψσ −+=

∞

=

 (2)

in the latter,

Zt = g(t)[(B)at] (3)

With the variance changing as

() () 2

1

222 1 a
j

jZ tgt σψσ +=
∞

=

 (4)

While the first case does allow for changes in the variance to be affected by the fil-
ter, the later case is more tractable for many analytical procedures and is the form

S. Singh and S.V. Barai 202

assumed in this study. The procedure for construction such a model from an observed
time series requires the following steps:

Step 1: Estimation of the variance function ()tZ
2σ .

Step 2: Construction of a stationary series by transforming the non-stationary se-
ries according to the various functions determined in step 1.

Step 3: Estimation of an ARMA model from the stationary series obtained in
step 2.

Step 4: Validation of the modeling procedure.

In the present analysis, an effort has been made to replace the ARMA model by
ANN. Since earthquake is a non-stationary process, so first it is converted to a sta-
tionary process using a polynomial model because ARMA models can only be appli-
cable to stationary time series. So from the given earthquake records polynomial
model parameters and ARMA model parameters are determined. In the present ap-
proach, the obtained polynomial model parameters and ARMA model parameters
have been related to the recorded site history using Neural Network. The advantage
of this approach is that given the site condition, directly accelerorgams can be gener-
ated and these can be used in earthquake resistant design.

The following steps will ensure a reliable ANN model. (i) Data collection (ii) De-
velopment of neuro models (iii) Performance of neuro models.

3 Data Collection

The simulation procedure is carried out on the various earthquakes occurred in the
North-Eastern part of India, Himanchal Pradesh and some parts of Uttaranchal during
last two decades.The analysis is carried out for 100 strong earthquake records (pro-
vided by Department of Earthquake Engineering (DEQ), Indian Institute of Technol-
ogy Roorkee) starting with North-east India earthquake on September 10, 1986 and
ending with India-Burma border earthquake on May 6, 1995. Brief details are given
below:

(a) September 10, 1986 earthquake in North-east India (b) April 26, 1986 earth-
quake in Himachal Pradesh (c) May 18, 1987 earthquake in India-Burma border (d)
February 6, 1988 earthquake in India-Bangladesh border (e) August 6, 1988 earth-
quake in India-Burma border (f) January 10, 1990 earthquake in India-Burma border
(g) October 20, 1991 earthquake at Uttarkashi (h) March 24, 1995 earthquake at
Chamba, Himachal Pradesh (i) May 6, 1995 earthquake in India-Burma border.

4 Developments of Neuro Models

4.1 Neural Network Architecture

Inputs to the neural network are four site parameters namely magnitude, focal depth,
epicentral distance and ground motion components of earthquake. The output pa-
rameters for both the neural network models are different and model specific. The

Earthquake Engineering Problems in Parallel Neuro Environment 203

Input Features

Magnitude

Focal Depth

Epicentral Distance

GM Components

Hidden Layers

Two Layers

Sigmoid Activation
Function

Output Features

Polynomial Coefficients

0 1 2 3 4, , , ,β β β β β

ARMA Model Parameters

1 2 3 4 1, , , , ,cφ φ φ φ θ

information about the model output parameters is given in the Figure 1. The inputs
and the outputs are normalized in order to have a significant number representing the
vector between 0 and 1. The data samples were normalized during pre-processing and
renormalized during post-processing. On the basis of experience and compromise
between the accuracy and the computational time and going through different hit and
trial with one and two hidden layers, it is decided to have two hidden layers. The
transfer function between hidden layer and output layer has to be such that the output
nodes contain the values in the range 0 to 1. So to achieve the above objective it was
decided to use sigmoidal function which gives output value in the range of 0 to 1 and
is also very commonly used in neural networks. Back-propagation algorithm is se-
lected for training purpose. The various neural network parameters for both the
models are summarized here in Tables 1and 2.

Fig. 1. Neural network architecture

Table 1. Neural network architecture data for polynomial coefficients prediction

Input neurons: 4
Hidden layers: 2
No. of neurons in 1st layer: 10
No. of neurons in 2nd layer: 15

Neural Network
Architecture

Output neurons: 5
Learning rate parameter: 0.250
Momentum rate parameter: 0.10
Maximum normalized error: 0.001

Neural Network
Parameters

No. of processors used: 8
Input Parameter Magnitude, Focal Depth, Epicentral Distance, G.M. Component
Output Parameter Coefficients of Polynomial (0 1 2 3 4, , , ,β β β β β)

4.2 Implementation of Neural Network Model on PARAM 10000

Parallel execution occurs in terms of different neural network models. There are total
8 processors available on PARAM 10000. The loosely coupled shared memory mul-
tiprocessors approach is used. Processor with rank 0 acts as Master processor and rest

S. Singh and S.V. Barai 204

as Slave processors (with rank 1,2, 3…7). Processor with rank 0 exchanges the mes-
sages (information) with rest of the processors and assigns various tasks to them.

Table 2. Neural network architecture data for ARMA model parameters prediction

Input neurons: 3
Hidden layers: 2
No. of neurons in 1st layer: 8
No. of neurons in 2nd layer: 10

Neural Network
Architecture

Output neurons: 6
Learning rate parameter: 0.40
Momentum rate parameter: 0.10
Maximum normalized error: 0.001

Neural Network
Parameters

No. of processors used: 8
Input Parameter Magnitude, Focal Depth, Epicentral Distance, G.M. Component
Output Parameter ARMA Model Parameters (1 2 3 4 1, , , , ,cφ φ φ φ θ)

Neural network models are evenly distributed among processors with rank 0 to

rank 7 and each model is trained independently on assigned processor. For each neu-
ral network model input file contains training and testing examples. As soon as proc-
essor finishes the computations it sends messages that work has been done and new
task is assigned to that processor. Finally, outputs generated by different processors
are ensembled.

Several researchers in the field of neural networks have investigated and proposed
various techniques for combining the predictions of multiple networks to produce a
single prediction. The resulting model (referred to as an ensemble) is generally more
accurate than any of the original models selected on the basis of statistical tests, tends
to be more robust to overfitting phenomena, and avoids the instability problems [12].

In an ensemble, each neural network model is generally trained separately, and the
predicted output of each neural network model is then combined to produce the output
of the ensemble. However, combining the output of several models is more useful if
there is disagreement. Obviously, the combination of identical models produces no gain.
So it is desired that an ideal ensemble consist of highly correct prediction that disagree
as much as possible, and that an effective combining scheme is to simply average the
predictions of each neural network model. As a result, it is necessary to ensembles those
models that disagree in their predictions. Neural network techniques that can be em-
ployed include different reliable methods for training with different topologies, different
initial weights, different parameters, and different training sets. In case numbers of neu-
ral network models are less than the processors available then in that case work is as-
signed to processors equal to the number of neural network models.

For each model networks have been independently trained on N different proces-
sors and finally ensembling has been done. The output generated by different model
are tested and validated to estimate the reliability and performance of the model.

Earthquake Engineering Problems in Parallel Neuro Environment 205

For the present study, a standard Message Passing Interface (MPI), which was
originally designed for writing applications and libraries for distributed memory envi-
ronment, was used. More details about the MPI can be found elsewhere [9,10]. The
programming and data structures details are not included due to space restrictions.

5 Performances of Neuro Models

In the present study, as discussed earlier total one hundred recorded accelerograms
are selected from different recording stations. Training is carried out with ninety
recorded accelerograms. Ten records are used for testing. The data set is randomized
before carrying out the training. For training and testing purpose, Neuro Simulator
developed on PARAM 10000 is used. The whole exercise is carried out on 8 different
processors, independent to each other. For each processor the different randomized
data set is used keeping the testing data same every time. Each set is trained and
tested on 8 different processors and finally the average error for training sets is calcu-
lated. Performance of the ANN is shown for typical testing example of Baithalangso
recording station.

5.1 Part 1: Construction of ARMA Models Using Neural Networks

Due to non-stationary nature of earthquake ground motion, Figure 2 shows an obvi-
ous change in variance as a function of time.

To estimate the variance function ()tZ
2σ , a natural approach would be to fit a

model to the observed { }2
tz . However, the distribution of 2

tZ is positively skewed

with a variance that increases with its mean, so that some transformation must first be
applied. Box and Cox [1] transformation has been applied and it is postulated that the
expected values of the transformed squares accelerations follow a polynomial model

h (t) of the form with the coefficients 1 2 3, ,, kβ β β β .

 (5)

A fourth order polynomial model appears to describe the data well. Figure 2 shows
the estimated model for h (t) together with the transformed data.

Fig. 2. Transformed square acceleration with estimated variance polynomial

() 2
0 1 2 k

kh t t t tβ β β β= + + + +

S. Singh and S.V. Barai 206

(i) ANN for variance function estimation: In developing ANN for variance estima-
tion, initial information is used as input variables and the coefficients of the polyno-
mial model are chosen as the output parameters. Total 100 examples are taken, out of
which 90% used for training and rest 10% for testing purpose. Both input and output
variables are normalized. Here, two-layered model is considered with 10 and 15 hid-
den neurons in first and second layer respectively. Training is successfully completed
over about 400000 epochs. The results indicate that the predicted outputs are satisfac-
tory for all test patterns. The Table 3 shows the average error of all training patterns.
Table 4 shows numerical result for a typical testing pattern.

Table 3. Average error in training patterns

Parameters 0 1 2 3 4

% Average error 2.29 2.45 3.92 5.16 6.19

Table 4. Typical testing pattern result

No. Parameter Estimated Value Predicted % Error

 0 2.500 2.584 3.36
 1 0.963 1.027 6.65
2 -0.18 -0.17 1.59
3 0.0102 0.0114 11.76

Example 1

4 -0.0002 -0.00018 10.00

To obtain an estimate for ()tZ
2σ , the variance function, the reverse Box-Cox [1]

transformation is applied. The square root of ()tZ
2σ provides an estimate of the stan-

dard deviation of acceleration versus time. The comparison of standard deviation
obtained from actual data and predicted by neural networks showed good agreement.
To obtain a series with a variance, which is constant over time, zt is scaled by divid-
ing it by a local estimate of its standard deviation according to

 ()tzz ztt σ̂/* = (6)

The result of this transformation is illustrated in Figure 3, showing that the vari-
ance has been reasonably well stabilized.

(ii) ANN for ARMA model estimation: Having transformed the acceleration series
so that the variance is constant throughout, an ARMA model is then constructed to
represent the dynamic behavior of the transformed series. The ARMA (4, 1) appeared
to give a reasonable fit to the data.

1 1 2 2 3 3 4 4 1 1t t t t t t tZ Z Z Z Z a a cφ φ φ φ θ− − − − −= + + + + − + (7)

Earthquake Engineering Problems in Parallel Neuro Environment 207

Fig. 3. Acceleration series after variance stabilization

In developing ANN for ARMA model estimation, initial information is used as in-

put variables and the ARMA model parameters 1 2, 3, 4 1(, , ,)cφ φ φ φ θ are chosen as the

output variables. The same methodology is followed in this model as described for
previous one. The Table 5 shows the average error for 10 randomized training pat-
terns. Table 6 shows numerical result for typical testing pattern.

Table 5. Average error in training patterns

ARMA Parameters 1φ 2φ 3φ
4φ 1θ c

% Average Error 1.052 1.23 1.217 1.77 1.81 2.16

Table 6. Typical testing pattern result

No. Parameter Desired value Predicted value % Error

1φ 0.655 0.678 3.51

2φ -0.212 -0.226 6.60

3φ 0.117 0.125 6.84

4φ 0.024 0.027 12.5

1θ 0.608 0.616 1.316

Example 1

c 0.019 0.017 10.53

5.2 Part 2: Simulation of Earthquake Acceleration

To produce the simulated ground motion acceleration series, stationary series are first
generated from the fitted ARMA models and then multiplied by the estimated stan-
dard deviation function. Two ANN models are used to predict the ARMA model
coefficients and the standard deviation function. So artificial accelerogram can di-
rectly be reproduced by the multiplication of two. Figure 4 shows the model ARMA
(4, 1) being replaced by ANN.

S. Singh and S.V. Barai 208

Fig. 4. Simulated Acceleration from ANN

6 Computation Time Comparisons

In parallel computing environment, there are many components of computational
time. The total time is time taken in whole execution from the invocation till the ter-
mination of the program. This includes the time of communication among the proces-
sors and the execution of program on individual processor. Figure 5 shows the varia-
tion in computational time with the number of processors for both the neural net-
works models.

 (a) (b)

Fig. 5. Comparison between computation time vs. number of processors. (a) ANN for variance
estimation (b) ANN for ARMA parameters estimation

Figure gives an indication that computational time decreases as number of processors
increases. The performance of 5 processor-based models is near flattened because of its
loosely coupled nature. The results are transferred to master node infrequently with a
very small period of independent computation in between. Hence five, six and seven
processor-based models do not show much improvement in terms of computation time.
Other reasons could be that size of the data is too small in present context.

7 Conclusions

In the present study, neural networks simulations were carried out using Parallel
Neuro Simulator developed on PARAM 10000 for various earthquake engineering

Earthquake Engineering Problems in Parallel Neuro Environment 209

problems. The problems were - replacing the ARMA model by ANN and simulating
earthquake acceleration using ANN. It is found that computational time reduces sig-
nificantly with increasing number of processors. It is not always true, as the number
of processors increases the communication time also increases. At some point of time
the communication time may take a substantial part of total computational time. In
that case the total computational time keeps on increasing with the increase in proces-
sors. So one need to select the optimum number of processors for minimum time.

Acknowledgement

Authors gratefully acknowledge the facility of PARAM 10000 installed by Center for
Development of Advanced Computing (C-DAC) at IIT Kharagpur and provided to
them for the reported research work.

References

1. Box, G. E. P. and Cox, D. R.: An analysis of transformations’, J. R. Statist. Soc. B 26,
(1964) 211-252.

2. Cheng, M. and Popplewell, N.: Neural Network for Earthquake Selection in Structural
Time History Analysis, Earthquake Engineering and Structural Dynamics, 23, (1994) 303-
319.

3. Chang, M.K., Kwaitkowski J.W., Nau R.F., Oliver R.M. and Pister K.S. : ARMA models
for earthquake ground motions, Earthquake Eng. Struct. Dyn., 10, (1982) 651-662.

4. Ghaboussi, J. and Lin, C.: New method of generating spectrum compatible accelerograms
using neural networks, Earthquake Eng Struct Dyn., 27, (1998) 377–396.

5. Haykin S.: Neural networks: a comprehensive foundation. Englewood Cliffs, NJ: Pren-
tice-Hall International, Inc; 1994.

6. Kerh, T. and Chu, D.: Neural networks approach and microtremor measurements in esti-
mating peak ground acceleration due to strong motion, Advances in Engineering Soft-
ware, 33, (2002) 733-742.

7. Lee, S. C. and Han, S.W.: Neural network based models for generating artificial earth-
quakes and response spectra, Computers and Structures 80, (2002) 1627-1638.

8. Lin, Y. K. and Young, Y.: Evolutionary Kanai-Tajimi earthquake models. J Eng Mech,
ASCE, 113(8), (1987) 1119–37.

9. MSMPI, The Mississippi State MPI web page, http://www.erc.msstate.edu/mpi
10. Pacheco, P. S. :A User Guide to MPI, (Dept. of Mathematics, University of San Fran-

cisco, San Francisco, March 30, 1998), http://lavica.fesb.hr/~slap/upute/mpi.guide.ps
11. Polhemus, N.W. and Cakmak A. S.: Simulation of earthquake ground motions using

autoregressive moving average (ARMA) models. Earthquake Engg. Struct. Dyn., 9,
(1981) 343-354.

12. Roverso D.: Neural Ensembles for Event Identification, in Proceedings of Safeproc-
ess'2000, the 4th IFAC Symposium on Fault Detection, Supervision and Safety for Tech-
nical Processes.(2000).

13. Tung, A. T. Y. , Wang, Y. Y. and Wong, F. S.: Prediction of the Spatial Distribution of
the Modified Mercalli Intensity using Neural Networks, Earthquake Engineering and
Structural Dynamics, 23(1), (1994) 49-62.

S. Singh and S.V. Barai 210

14. Wen, Y. K. and Yeh, C-H.: Biaxial and torsional responses of inelastic structures under
random excitations, Structural Safety, 6 (2-4), (1989) 137-152.

15. Yeh, C-H and Wen, Y. K.: Modeling of nonstationary ground motion and analysis of
inelastic structural response, Structural Safety, 8(1-4), (1990) 281-298.

Parallel Simulation of Carbon Nanotube Based
Composites�

Jyoti Kolhe1, Usha Chandra2, Sirish Namilae3,
Ashok Srinivasan1, and Namas Chandra3

1 Computer Science, Florida State University, Tallahassee FL 32306-4530, USA
asriniva@cs.fsu.edu

2 Computer and Information Sciences, Florida A&M University,
Tallahassee FL 32307-5100
uchandra@cis.famu.edu

3 Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee FL 32312
chandra@eng.fsu.edu

Abstract. Computational simulation plays a vital role in nanotechnol-
ogy. Molecular dynamics (MD) is an important computational method
to understand the fundamental behavior of nanoscale systems, and to
transform that understanding into useful products. MD computations,
however, are severely restricted by the spatial and temporal scales of
simulations. This paper describes the methods used to achieve effective
spatial parallelization of a MD code that is based on a multi-body bond
order potential. The material system studied here is a carbon nanotube
(CNT). We discuss the scientific and computational issues in the de-
velopment and implementation of parallel algorithms, when the domain
needs to be discretized with fine granularity. Specific issues in terms of
neighbor-list computation, communication reduction, and cache aware-
ness are delineated, with corresponding benefit in terms of speed up.
Important practical problems relevant to CNT based composites are
studied, and the effectiveness of various strategies reported. Our im-
plementation achieves efficient parallelization at a finer granularity com-
pared with published works on CNTs with complex configurations.

1 Introduction

Molecular dynamics simulation involves numerical solution of Newton’s equation
of motion on a set of atoms interacting through an interatomic potential. The
position and velocity vectors for N atoms (6 N variables) are computed for each
time step, with time steps of the order of femto seconds (10−15 s). Sequential
computing naturally consumes significant effort even with limited system sizes,
for meaningful time periods of simulation. For example, to understand a system

� We wish to acknowledge the School of Computational Science and Information Tech-
nology, Florida State University, for permitting use of their Teragold (IBM SP3)
supercomputer. This work is partly funded by NSF grant # CMS-0403746.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 211–221, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

212 J. Kolhe et al.

behavior for even a 100nm3 of material for one nanosecond, it requires five
million iterations (time step 0.2 femto seconds) for about a million atoms. The
computational effort is further increased when chemical interactions are required
to be modeled accurately using complex multi-body potentials. For example, a
problem involving the pull-out of a CNT with 3000 atoms for 800,000 time
steps takes about two days of computational time on a 2GHz single processor
PC running Linux. Each run is often just a component of a larger multi-scale
simulation. It is therefore untenable to perform these simulations without the
use of effective parallelization. Thus, for these classes of problems, parallelization
is not a luxury but a necessity.

The specific class of problems addressed here involves the evaluation of
mechanical properties, and should be clearly distinguished from a host of MD
problems, where physical and thermodynamics properties, such as entropy and
specific heat, are evaluated. The latter set of problems is usually formulated with
periodic boundary conditions on all sides, representing samples of a microcanon-
ical ensemble. Several independent simulations on the same set of atoms with
differing starting states are then performed and the results are averaged in some
sense to determine the physical properties. This leads to a trivially parallelizable
scheme quite different from those cases when mechanical loads are applied, or
when fracture can occur with no a-priori knowledge. Further, many mechanical
property simulations involve a low number of atoms (e.g. 3000-10000) for long
simulation times. In such cases, conventional spatial decomposition techniques
often lead to fine granularity resulting in high communication overhead. Thus
more care needs to be taken in the implementation to ensure that communication
does not become a bottleneck.

The specific problem solved in this paper involves the determination of me-
chanical behavior of a CNT, either as a stand-alone unit or when connected to
a matrix using chemical attachments; the latter case represents an important
industrial application pertaining to CNT based composites. This is shown in
Fig. 1. The CNT is pulled at a constant rate, while the polymer matrix remains
fixed. One end of the attachment (which connects the CNT to the matrix) moves
along with the CNT, while the other end is fixed to the matrix. The mechanical
force vs. displacement response of these attachments then represents the me-
chanical behavior of the interface that we seek to understand. This figure also
demonstrates that the physical domain is not homogeneous (it has an uneven
distribution of attachments), and even for a case of 64 processors, the number
of atoms per processor is of the order of only 50 for a 3000-atom CNT. Such
fine granularity leads to communication cost being an important bottleneck to
effective parallelization.

For the sake of completeness, and also to highlight the specifics of computa-
tional issues in MD, we present in Sect. 2, the problem description of the pull-out
test, which should be carefully considered in the formulation and implementation
of the parallelization scheme. In Sect. 3, we present the computational structure
used, both in the serial and parallel versions of the code. In this section, we
also present the details of the various schemes invoked to achieve parallelism.

Parallel Simulation of Carbon Nanotube Based Composites 213

Fig. 1. Schematic of the boundary conditions applied in the pullout test simulation

In Sect. 4, we present the timing studies that illustrate the effectiveness of the
various implementation schemes, and then summarize our conclusions in Sect. 5.

2 Description of the MD Problem

Molecular dynamics is a computational simulation method that determines the
position ri and velocity vi of every atom i = 1, ..., N , that is contained in a
computational cell subjected to external boundary conditions (force, pressure,
temperature or velocities). The basic equation of motion that solves for these
6N variables is given by,

Fi =
∂vi

∂t
, vi =

∂ri

∂t
, (1)

where Fi is the force on an atom i having mass mi. In a numerical scheme, ∂t is
approximated by Δt. A variety of schemes is available to numerically integrate
the above equation. Irrespective of the scheme used, the incremental time step
is restricted to a very low value based on physical considerations of atomic level
vibrations.

The only input needed to solve the above equation is the inter-atomic poten-
tial E = E(r), which is related to force in the above equation through F = ∇E.
The potential energy function can be as simple as a pair-potential (forces between
two atoms) or as complex as a four-body potential (three neighbor interactions)
with chemical bonding effect. Truly, this function is what determines the accu-
racy of the MD solution. The simple Lennard-Jones potential defines a potential
energy function that is based only on two-body interaction. However, in the
case of CNTs considered in this work, a more complex but accurate reaction
bond order potential, the Brenner potential, is required. It considers two, three,

214 J. Kolhe et al.

and four-body interactions. These terms are very complex in nature and are ex-
pressed in terms of tables and implicit functions. These terms are all described
in [1]. We wish to point out that the computational effort of one potential is
quite different from that of others, and may require keeping track of a larger
neighborhood (three neighbors compared to only one).

3 Computational Structure

In this section, we first describe the computational structure of the sequential al-
gorithm and then discuss our optimizations. We then discuss the parallelization,
and the issues that are addressed by our implementation.

3.1 Sequential Algorithm

The sequential algorithm for the simulation is given in Fig. 2. We examine the
computational efforts required in each of the following components: (i) force, (ii)
neighbor list, (iii) integration scheme, and (iv) thermostat computations.

Force and Neighbor List Computations. Brenner’s potential can, in principle,
require O(N2) time for two-body forces, O(N3) time for three-body forces, and
O(N4) time for four-body forces. However, in practice, the number of neighbors
of each atom is a constant, and so these take a constant time for each atom. This
leads to O(N) time for the force computations, if we can determine all neighbors
of an atom in constant time. This is typically accomplished through a neighbor
list, which is an array that stores the neighbors of each atom. Though the list
can theoretically change every time step, the physics of the problem dictates
otherwise. Also, a neighbor list is re-computed only when some atom in the
system has moved farther than a given threshold.

– Initialization
– Loop over n iterations

• Determine the neighbor list, if necessary
• For each atom

∗ Compute two-body forces, three-body forces, and four-body forces
∗ Determine new positions, velocities, and its higher derivatives

• Compute potential and kinetic energies
• Apply thermostat: that is, change velocities to keep temperature constant.
• Determine if neighbor list needs to be updated

– End loop

Fig. 2. Sequential algorithm for MD simulation of CNT interface

Parallel Simulation of Carbon Nanotube Based Composites 215

Fig. 3. Schematic of the cell-based approach to neighbor list computation

Numerical Integration Scheme and Thermostating. Once the forces are known,
acceleration can be computed from Newton’s law. Positions of the atoms can be
predicted by integrating the acceleration twice in succession using a numerical
scheme. We use a third order Nordsieck predictor-corrector scheme. Themostat-
ing is the generic name given to maintaining a constant temperature. While
generic MD uses a microcanonical ensemble (Number of atoms N , volume V ,
and total energy E fixed), we use a canonical ensemble (fixed N , V , and tem-
perature T). The temperature is a linear function of the kinetic energy, which
is determined by summing the squares of the velocity component of each atom.
In order to maintain constant temperature, we keep the kinetic energy constant
by modifying the velocities of atoms.

The force and the neighbor list computations consume more than 95% of
the time taken by the algorithm. For a 3000-atom simulation, the neighbor list
computation accounts for around 25% of the time taken. Computations other
than the neighbor list take O(N) time. The neighbor list in the original Brenner
algorithm is determined by a simple scheme, which compares all pairs of atoms
and determines if they are sufficiently close to be considered neighbors, leading to
O(N2) time complexity. So, for a larger number of atoms, the proportion of time
taken by neighbor list computations is even greater. We discuss below some of
the approaches that have been taken to improve the neighbor list computations.

Srivastava [2] and Caglar [3] improve the neighbor list computation by using
a cell-based approach, as shown in Fig. 3. The spatial domain studied is divided
into a number of cells, with the length of a cell equal to the cutoff distance.
Atoms are placed into cells based on their positions in space. A linked list is
used in each cell to store the atoms located in that cell. In order to determine
neighbors of an atom, while creating the neighbor list, one needs to search only
neighboring cells. The worst case time complexity of O(N2) occurs if all the
atoms are in the same cell. This does not happen in practice, because repulsive
forces prevent such an agglomeration. In practice, the cells have only a few atoms
at most, and so the time complexity of computing the neighbor list is O(N).

216 J. Kolhe et al.

Atom Potential neighbors of x

One cutoff

Longest axis

Projection
x

Fig. 4. Schematic of the projection-based approach to neighbor list computation

In the problem studied here, the spatial region containing the functional
groups (which connect the CNT to the polymer matrix) is sparsely populated
with atoms. So, memory is often wasted, with several cells being empty. We ob-
serve that the neighbor list computation is just a range-search calculation, and so
the use of a data structure such as k-d tree or range tree appears promising. But
we found that in practice they are not as effective as the cell-based approach, as
they actually attain their worst-case time complexities. For example, we imple-
mented a k-d tree and found it to be much worse (by a factor of four for a 1000
atom CNT) than the cell-based approach, though it was still much better than
the crude algorithm (by a factor of three). There is one other disadvantage to the
cell-based algorithm, apart from memory usage; it uses indirection, due to access
through pointers, and is thus less efficient than an array-based representation.

We address both these problems by observing that the CNT calculations
involve long, thin regions in space. So we project the coordinates of the atoms
along the axis of longest dimension (z-axis), and then sort the atoms using
insertion sort based on this projection, as shown in Fig. 4. Neighbors of an atom
can be determined by traversing this sorted array on both sides for a length of
the cut-off distance. This not only avoids waste of memory, but also facilitates an
array representation. While the worst-case time complexity is O(N2), in practice
it only takes O(N) time, since atoms change positions infrequently, and have only
a small number of neighbors falling within the cutoff. We found that the average
time for sorting and computing the neighbor list is approximately half that of
the cell-based approach. There is an additional advantage to sorting. In irregular
computations, data for neighboring atoms may be stored at unrelated memory
locations, and so cache misses occur frequently. When we sort atoms, we move
the entire data of the atoms to correspond to the sorted order, and so data of
neighbors tend to be close to each other. Consequently, when data for some atom
is brought into cache, it is very likely that data of its neighbors too are brought
into cache, thereby reducing the likelihood of additional cache misses.

3.2 Parallelization

There has been considerable effort in parallelizing MD codes for CNT applica-
tions. In general, these efforts use domain decomposition techniques and divide

Parallel Simulation of Carbon Nanotube Based Composites 217

the overall computational effort to multiple processors. The methods differ in the
manner in which the domain is divided, with the overall objective of balancing
the load, while minimizing the communication cost.

Srivastava [2] used a lexical decomposition method to parallelize the com-
putations on a shared memory machine. Here, the atoms are divided equally
amongst the processors based on their indices, in an attempt to balance the
load. Auxiliary arrays were used to avoid cache misses due to false sharing.
(False sharing implies that data for different atoms fall in the same cache line,
and update of data for one atom invalidates that of others.) However, this ran-
dom assignment of atoms does not make good use of memory bandwidth on
NUMA architectures. The speedup reached in these computations was around
16 on 32 processors, with over 2500 atoms per processor.

Caglar [3] performed parallelization using a cell-based decomposition. Atoms
are placed in cells, as in Fig. 3, and blocks containing equal numbers of adjacent
cells are then assigned to different processors. Boundary cells on a processor
require data from neighboring processors, which are obtained by message pass-
ing. Caglar obtained good speedups with granularity of less than 1000 atoms per
processor. However, the geometry simulated was simple, not involving functional
groups. With the use of a functionalized CNT, as in our case, the disparity in the
number of atoms per cell will lead to greater load imbalance in their algorithm.
In addition, the speedup results reported were for simple tensile tests. Also, the
performance of the baseline sequential code used to measure speedup was quite
slow. For example, their baseline sequential code took about thirty times that
of our baseline sequential code. Even accounting for the difference in comput-
ing platforms (Cray T3E, versus IBM SP3 for us), the difference in speeds is
substantial.

Furthermore, we solved a more complex science problem. Our MD simulations
are performed at a constant temperature, which implies that the thermostat
needs to be applied at every time step. Maintaining a constant temperature
requires computing the global energies, which normally needs a reduction in the
parallel code. Reduction is expensive in terms of communication cost. The design
of the parallel code aims to achieve a good speedup with a fine granularity, even
for a complex geometric domain. The parallel algorithm is shown in Fig. 5.

We project the coordinates of the atoms along the longest axis, as shown
in Fig. 4. The processors can be logically considered as a linear array having
two neighbors each, except at the two ends. The data of the sorted atoms is
divided equally into P blocks of N/P atoms each, and each block is assigned to
a different processor, where P is the number of processors. Though the initial
sorting takes significant time, subsequent sorting consumes much less time, since
the operations are local. Each processor needs data for not only atoms that it
owns, but also for a buffer region from adjacent processors. The buffer region
comprises atoms that are within three times the cut-off distance (third neighbor)
for the border atoms, and every processor exchanges this buffer data with its
immediate neighbor.

218 J. Kolhe et al.

– Initialization: Sort data for atoms; each processor decides its own domain and
buffer

– Loop over n iterations

• Send and receive buffer data
• Determine the neighbor list for local and buffer atoms, if necessary
• For each local atom

∗ Compute two-body forces, three-body forces, and four-body forces
∗ Determine new positions, velocities, and its higher derivatives

• Compute potential and kinetic energies (may need a reduction)
• Apply thermostat: that is, change velocities to keep temperature constant.
• Determine if neighbor list needs to be updated

– End loop

Fig. 5. Parallel algorithm for MD simulation of CNT interface

The neighbor list is recomputed for the local and buffer atoms on a processor
if any local atoms moves more than a specified threshold. Also, if a neighboring
processor performs a neighbor list computation, then the atoms in the buffer
regions are sorted, and the neighbor list is recomputed. This is needed to ensure
that neighboring processors have a consistent view of atoms they own. When a
neighbor list computation is required due to local changes, a processor informs
the neighbors of this, along with the message that sends the boundary data,
so that the neighbors too can recompute their lists. This scheme assumes that
atoms stored in each processor (other than the end processors) span a range of
at least three cut-offs, in order to ensure correctness.

Apart from the computations of neighbor list updates, our algorithm has
to cater to certain global operations involving total and kinetic energy of the
system. Energy needs to be computed for two different reasons: (i) Energy is a
system level quantity that needs to be monitored and reported. However, this
information is needed only periodically, say once in 100 iterations. Therefore the
reduction is performed only occasionally, and the communication overhead is
small. (ii) The kinetic energy evaluation is also needed for thermostating, and
this needs to be performed every iteration, which requires a reduction. In our
most optimized implementation, we changed the thermostat to use the average
kinetic energy of only the local atoms. This is acceptable, since thermostating is
performed just to ensure that the set of velocities for a large number of atoms
has the required distribution. If there are enough atoms per processor, then this
leads to a scientifically acceptable result, even though the answers may not be
identical to that of the sequential code.

We discuss a few more implementation issues below.
(i) Replicating force computations: There are symmetries in the forces being

computed that can be used to reduce the computational effort. In two-body

Parallel Simulation of Carbon Nanotube Based Composites 219

forces, for example, the force on one atom is the negative of the force on the
other atom. Thus one computation is sufficient for each pair of atoms. However,
if different processors own the atoms of a pair, then the processor that performed
the force computation will need to communicate the value to the neighboring
processor. This applies to multi-body forces also. In order to avoid this additional
communication cost, we do not use symmetries for atoms close to the boundary,
but make use of these symmetries for only local atoms.

(ii) MPI Communication mode: Use of non-blocking communication (MPI
ISend/IRecv) improved communication cost by a factor of two over the blocking
(MPI Send/Recv) version.

(iii) Packing and unpacking data: The code is mixed Fortran/C, with all the
communication being performed in C routines. Instead of sending/receiving sev-
eral arrays, we send a single message by packing and unpacking several arrays
in each communication step. The arrays that contain the original data are de-
fined in Fortran code, which is inherently stored in column-major order. Packing
and unpacking arrays in this order resulted in a four-fold improvement in per-
formance for this computational component, compared with our original code,
which accessed the arrays in row-major order, as is natural for C code.

(iv) Redundant computations: One way to save on message startup cost is to
perform redundant computations. Processors do not send messages to neighbors
each time step, but only every k time steps. When they do send a message,
they send not only the buffer, but also a buffer k times larger. After this step, a
processor can perform accurate computations for its local atoms, and for atoms in
k−1 buffer zones. In the next time step, without any additional communication,
the same processor can perform accurate computations for all local atoms and k−
2 buffer zones. Following this reasoning, communication needs to be performed
only every k iterations. If message startup cost is significant, then this can lead
to significant improvements in efficiency. However, this was not effective in our
implementation for the following reason. Four-body forces imply that the buffer
is fairly large – three cutoffs – instead of just one with two-body forces. The
extra computation is not compensated for by the decrease in message startup
cost on the IBM SP3.

4 Results

Pullout simulations are performed as shown in Fig. 1, while tensile tests do
not include attachments to the matrix. A displacement of 0.05 Åis applied to
the atoms at one end of the CNT, in a region about 15 Åin length. A similar
region in the other end is held fixed. After each displacement, the system is
equilibrated for 1500 time steps. The simulations are carried out until some of
the hydrocarbon chains fail. Typically, a simulation lasts for 500,000 to 800,000
time steps. They were performed on an IBM SP3 with 375 MHz IBM Power3
processors. Each node consists of four processors, and has 2GB RAM.

We first summarize improvements due to the optimizations in Fig. 6. Substan-
tial improvements are obtained, especially for the neighbor list computations,

220 J. Kolhe et al.

Fig. 6. Improvements in performance, relative to the original scheme. 1. Time for
neighbor list computation on 3200 atoms, compared with Brenner’s algorithm. The
ratio (our time/Brenner’s) decreases by a factor of two when the number of atoms
doubles. The time relative to a cell-based algorithm is a little less than 0.5, and fairly
independent of the number of atoms. 2. Time for packing and unpacking, using the
cache-aware scheme, compared with a non-cache-aware one. The relative performance
is independent of the number of atoms, for large numbers of atoms. 3. Time using non-
blocking sends and receives, compared with blocking calls. The relative performance is
independent of the number of calls and the number of atoms on an IBM SP3

which now ceases to be a bottleneck. The relative time for neighbor list compu-
tations is directly related to the number of atoms, and influences the speed of
both the sequential and the parallel algorithms. The relative times for the other
two techniques are independent of the number of atoms, and are relevant only
to the parallel algorithm.

The speedup results are plotted below, for a 10000-atom simulation. The
results shown are for tensile tests under isothermal conditions; pullout tests also
show similar speedup with equivalent granularity. We can see that good efficiency
is maintained up to 20 processors with a granularity of 500 atoms per processor.
The efficiency reduces for a larger number of processors. An important reason
for this is the replication of force computations on boundary atoms. This factor
limits speedup to P/(1 + 2bP/N), where b = 50 is the number of atoms in each
buffer zone. This limits the maximum speedup on 20 processors for a 10000-
atom CNT to 16.7, and on 32 processors to around 24.3. The loss in speedup
beyond this is caused almost solely by the communication overhead; the load
imbalance is negligible. As seen above, the code achieves a large fraction of the
efficiency possible. In comparison, [2] requires a granularity greater than 2500
atoms per processor for good efficiency. Caglar [3] achieves good speedups at
granularity less than 1000 atoms per processor too, but for simpler geometries
and applications. Furthermore, the speedups in [3] are relative to a sequential
code that are much slower.

Parallel Simulation of Carbon Nanotube Based Composites 221

Fig. 7. Speedup results with 10000 atoms on an IBM SP3 for a tensile test

5 Conclusions

We demonstrate significant improvements in sequential and parallel performance,
and also explain the relative effectiveness of different optimization techniques.

One future work is to investigate the frequency with which different (two-,
three-, and four-body) force components are recomputed. For example, if four-
body forces change less frequently, then they need not be updated every time
step. This can improve the performance of both, the sequential and the parallel
codes. Such optimizations have been used by other groups, in other applica-
tions. The speedup of the parallel code can also be improved on the IBM SP3 by
avoiding replication of force computations, at the expense of increased commu-
nication cost, since communication is quite fast on this machine when the MPI
implementation uses the shared memory.

References

1. Brenner, D.W.: Empirical potential for hydrocarbon for use in simulating the chem-
ical vapor deposition of diamond films. Physical Review B 42 (1991) 9458

2. Srivastava, D., Bernard, S.T.: Molecular dynamics simulation of large-scale carbon
nanotubes on a shared-memory architecture. In: Proceedings of the IEEE/ACM
SC1997 Conference, IEEE Computer Society (1997)

3. Caglar, A., Griebel, M.: On the numerical simulation of Fullerene nanotubes:
C100.000.000 and beyond! In et al., R.E., ed.: Molecular Dynamics on Parallel Com-
puters, World Scientific (2000)

Design of a Robust Search Algorithm for P2P
Networks�

Niloy Ganguly1,2, Geoff Canright3, and Andreas Deutsch2

1Indian Institute of Social Welfare and Business Management, Management House,
Kolkata, India

n ganguly@hotmail.com
2Center for High Performance Computing, Dresden University of Technology,

Dresden, Germany
deutsch@zhr.tu-dresden.de

3Telenor Research and Development, 1331 Fornebu, Norway
geoffrey.canright@telenor.com

Abstract. In this paper, we report a decentralized algorithm, termed
ImmuneSearch, for searching p2p networks. ImmuneSearch avoids query
message flooding; instead it uses an immune-systems-inspired concept of
proliferation and mutation for message movement. In addition, a proto-
col is formulated to change the neighborhoods of the peers based upon
their proximity with the queried item. This results in topology evolution
of the network whereby similar contents cluster together. The topology
evolution help the p2p network to develop ‘memory’, as a result of which
the search efficiency of the network improves as more and more individ-
ual peers perform searches. Moreover, the algorithm is extremely robust
and its performance is stable even when peers are transient.

1 Introduction

Due to their flexibility, reliability and adaptivity, p2p solutions like Gnutella [6],
Napster [5], and Freenet [2] are becoming hugely popular. However, especially
due to the unreliability of the peers, the development of an efficient search algo-
rithm poses a fundamental challenge to researchers. The algorithm for search in
p2p networks proposed by us in this paper is termed ImmuneSearch. It has been
inspired by the simple and well known concept of the humoral immune system
where B cells undergo mutation and proliferation to generate antibodies which
track the antigens (foreign objects). ImmuneSearch uses proliferation and muta-
tion to spread query message packets across the network. In addition, it evolves
the topology of the p2p network in terms of adjusting the neighborhood of the
participating peers. This gives rise to a loosely structured network where the
overlay topology [1] roughly corresponds to the content in the network. Conse-
quently, the algorithm ensures better quality of service (in terms of the number

� This work was partially supported by the Future & Emerging Technologies unit of
the European Commission through Project BISON (IST-2001-38923).

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 222–231, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Design of a Robust Search Algorithm for P2P Networks 223

of search items found within a specified number of steps), and greater efficiency
(in terms of the network congestion arising from the query packets) compared
to the conventional schemes of random walk and message flooding [3]. The algo-
rithm ensures robustness, that is, stability of performance in face of the transient
nature of the network. It also guarantees autonomy to the users, who are not
required to store any replicated files on their own machine.

The next section describes the ImmuneSearch(IS) algorithm in detail. Section
3 details the different simulations performed based upon the algorithm Immune-
Search. The simulation results reflect the potential of ImmuneSearch to perform
fast and accurate search as well as point to its adaptability to continuously chang-
ing situations of p2p networks. The concluding section summarizes important
insights from our simulation studies, and presents an outline for further work.

2 Simulation Model

In this section, we describe the framework chosen to model the p2p environment
and the ImmuneSearch algorithm.

2.1 Abstraction

The factors which are important for simulating p2p environments are the overlay
topology, the profile management of each individual peer, the nature of distri-
bution of these profiles and the affinity measure based upon which the search
algorithm is developed. Each of these factors is discussed one by one.

Topology: The overlay topology responsible for maintaining the neighborhood
connections between the peers in the p2p network is considered to be a (100
× 100) toroidal grid where each node in the grid is conceived to be hosting a
member (peer) of the p2p network. Each node has a fixed set of eight neighbors.
A peer1 residing in a particular node has correspondingly eight neighbors. Each
peer carries two profiles - the informational profile and the search profile.

Profile: The informational profile (PI) of the peer may be thought of as a
description of the information stored by the user. The search profile (PS) of a
peer is built from the informational interest of the user. In general, the search
profile may differ from the information stored on the peer. For simplicity we
assume that there are 1024 coarse-grained profiles, and let each of these profiles
be represented by a unique (d =) 10-bit binary token. The query message packet
(M) is also a 10-bit binary token. From now on we interchangeably use the term
profile and token. Similarity between a profile P and a query message packet

1 Although, in standard literature, ‘peer’ and ‘node’ are synonymous terms, the terms
have been differentiated in the paper for ease of understanding. Node here means a
position in the grid and essentially indicates a neighborhood configuration. A peer
entering the network is assigned a node by the overlay management protocol. During
topology evolution (discussed next) peers occupy new nodes and acquire new sets of
neighbors.

224 N. Ganguly, G. Canright, and A. Deutsch

(M) that is, sim(P, M) = d−HD(P, M), where HD is the Hamming distance
between P and M . The frequency of the profiles follows Zipf’s distribution [4].
The ranking of tokens in terms of frequency is the same for both information
and search profiles—for instance, the most popular information profile is also
the most popular search profile.

On the basis of the above discussed model, we now present the search algo-
rithm ImmuneSearch.

2.2 ImmuneSearch Algorithm

The ImmuneSearch algorithm defines the movement of the query message packets
through the network and the topology evolution initiated as a result of search.

Packet Movement: The search in our p2p network is initiated from the user
peer. The user (U in Fig. 1) emanates message packets (M) to its neighbors - the
packets are thereby forwarded to the surroundings. The message packets (M)
are formed from the search profile PS of U . The message packets spread in the
network by undergoing random walk on the grid, but when they come across a
matching profile (information profile of any arbitrary peer), that is, the similarity
between a message packet and informational profile is above a threshold, the
message packet undergoes proliferation (as around peer A of Fig. 1), so as to
find more peers with similar information profile around the neighborhood. Some
of the proliferated packets are also mutated. (Cf. the differently colored message
packets around A in Fig. 1). Mutation has two-fold consequences. First of all,
due to mutation the chance of message packets meeting similar items increases,
which in turn helps in packet proliferation. Secondly, the concept of mutation
can be used in the future to help the user peer to find a wider variety of search
items. The mutation results in finding new items which may not have been
exactly queried. But these suggestive new results can be helpful for the user2.
(This aspect of mutation is not dealt with in this paper).

Proliferation and mutation will initiate an intensified search around the neigh-
bors of the peers which are already found to be similar to the queried profile. This
implicitly points to the importance of topology evolution of the network, which
should ensure that peers which have similar profiles come close to each other.
Due to clustering, packets after proliferation will immediately begin to find peers
with similar information profiles, thus enhancing the efficiency of search.

Topology Evolution: In the topology evolution scheme, the individual peers
change their neighborhood configuration during search so as to place them
‘closer’ to U . Fig. 1 illustrates the exact mechanism of this movement. In the
figure, peer A moves (changes its neighborhood configuration) from node 7 to
node 13 to place itself ‘closer’ to U . Correspondingly, other peers adjust their
positions. We now explain the factors based upon which a peer decides to change
position as well as the rules guiding the degree of change.

2 An example of this is the Amazon.com criterion of statistical correlation: “Users who
sought [query Q] have also often been interested in [. . .].”

Design of a Robust Search Algorithm for P2P Networks 225

U

C

1 2 3

A

4

5 6 7 8

9 10 11 12

13

A

Move

new

To facilitate A’s movement from node 7 to 13; peers in node 6, 5, 13, respectively,
move to node 7, 6, 5. For example, peer C which initially was residing in node 6
having peers at node numbers {1, 2, 3, 5, 7 (= A), 9, 10, 11} as neighbors, after
topology evolution resides in node number 7 and has peers at node numbers {2, 3, 4,
6, 8, 10, 11, 12} as neighbors. In effect, peer C changes three neighbors [Neighbors
previously residing in (1,9,7=(A)) for (4,8,12). (The peer which was earlier residing
in 5 now resides in 6, hence there is no change in this case.)]

Fig. 1. The Search Mechanism (packets passing and topology evolution)

A peer (say A) decides to change its neighborhood configuration and places
itself ‘closer’ to the user, when similarity between the profile of peer (P) and the
message (M) sent by user peer (say U) is above a threshold level. The similarity
can be of two types: (i) Similarity between information profile (PI) of the peer
(A) and the message packet (M), and (ii) similarity between search profile (PS)
of the peer (A) and the message packet (M).

The amount of movement of A towards the user peer (U) is proportional to
(a) the similarity between them (P and M) either in terms of (i) PI or (ii) PS ;
and (b) the distance between node U and node A. (Each message packet carries
the node number of the user peer U which initiated the query, so that each peer
can estimate the distance between it and U). (c) The movement of the peer is also
controlled by another important process which is inspired by natural immune
systems - aging. The movement of a peer gets restricted as it ages. The age of
a peer is determined in terms of the number of times it undergoes movement
as a result of encountering similar message packets. That is, the longer it stays
in the environment (p2p network), the more it is assumed that the peer has
found its correct node position, and hence the less it responds to any call for
change in neighbors towards any user peer U . If the search profile (PS) of peer
A matches M , but the peer (A) has performed the search operation more times
than U , then there is no movement of the peer A towards user peer U . The aging
concept lends stability to the system; thus a peer entering the p2p network, after
undergoing some initial changes in neighborhood, finds its correct position.

226 N. Ganguly, G. Canright, and A. Deutsch

3 Simulation Results

The experimental results, besides illustrating the efficiency of the ImmuneSearch
algorithm, also show the self-organizing capacity of the algorithm in face of
heavy unreliability of the peers participating in a p2p network. We also sim-
ulate experiments with a random walk, two schemes of proliferation/mutation
termed proliferation1 and proliferation2, as well as a simple flooding technique.
In proliferation1 and proliferation2, peers basically execute the ImmuneSearch
algorithm without the Topology Evolution step. The threshold conditions applied
to the two schemes differ; this point will be discussed later.

3.1 Experimental Setup

To understand the effect of proliferation and mutation rates, experiments with
different rates and different threshold values have been performed. From these,
we report two cases which represent two main trends observed by us. In both
cases, the proliferation and mutation rate is the same; however, the value of
Threshold(Pro/Mut) differs. For the first case, Threshold(Pro/Mut) is (d - 1);
while in the second case, it is (d - 2) (d is the length (= 10) of the token).
ImmuneSearch and proliferation1 represents the first case, while proliferation2
represents the second case. The number of packets proliferated (NR) in the
neighborhood is given by the following equation - NR = 8 · S, where S =
sim(PI ,M)

d ; while the probability of each packet undergoing one bit mutation
(MP) is 0.05. The threshold value required for topology evolution is set to d.

Each search is initiated by a peer residing at a randomly chosen node and the
number of search items (ns) found within 50 time steps from the commencement
of the search is calculated. The search output (ns) is averaged over 100 different
searches (a generation), whereby we obtain Ns, where Ns =

∑100
i=1 ns

100 .
In the graphs (Fig. 2 & 5) we plot this average value Ns against generation

number to illustrate the efficiency of different models. We perform two types of
experiments within the above mentioned experimental setup. In the first experi-
ment, no peers leave the system, while the second experiment represents a more
transient situation where peers leave/join the network at random.

3.2 Expt. I: Search in Stable Conditions

This experiment is carried out with the assumption that no peer leaves the
system. We have initiated experiments with random walk, two types of prolif-
eration/mutation schemes (proliferation1 and proliferation2), limited flooding,
and ImmuneSearch. The graph of Fig. 2 displays the performance of the five
different models. The x-axis of the graph shows the generation number while
the y-axis represents the average number of search items (Ns) found in the last
100 searches. The performance comparison of the above mentioned five methods
obeys fairness criteria which are discussed next.

Fairness in Power: To provide fairness in ‘power’, two different approaches are
taken. The first approach defines fairness among ImmuneSearch, proliferation2,

Design of a Robust Search Algorithm for P2P Networks 227

random walk, and limited flooding, while the second approach defines fairness
between ImmuneSearch and proliferation1. The initial conditions (number of
message packets) for ImmuneSearch, proliferation2, and random walk, are cho-
sen in a way such that the total number of packets used over 50 time steps of
each individual search is roughly the same. In the case of flooding, we have al-
lowed the process to run for x number of steps where x (< 50) steps uses the
same number of packets as the aforesaid three cases used in 50 time steps.
Proliferation1 and ImmuneSearch have the same threshold level for prolifer-
ation, and the same proliferation/mutation rate. But due to topology evolu-
tion, the message packets during ImmuneSearch pass through thickly populated
areas with similar information profile and are able to produce more message
packets.

Search Efficiency: In Fig. 2, it

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Generation Number

P
ro

fil
e
 M

a
tc

h
e
d
 P

e
r

G
e
n
e
ra

tio
n

ImmuneSearch
Proliferation1
Proliferation2
Random Walk
LimitedFlooding

Fig. 2. Efficiency of different techniques of
search namely ImmuneSearch, proliferation1,
proliferation2, random walk and limited flood-
ing. (Search results are averaged over 20 simu-
lation runs)

is seen that the number of search
items (Ns) found is progressively
higher in limited flooding, random
walk, proliferation2, proliferation1,
and ImmuneSearch, respectively.
The proliferation1, proliferation2,
random walk, and limited flood-
ing maintain a steady search out-
put of around 50, 40, 30, and 15
hits respectively.

IntheImmuneSearchalgorithm,
it is observed that after it starts
at an initial output of around 55
itemspersearch,itsteadilyincreases
to 80 within the 25th generation,
and then maintains a steady out-
put of about 80 per search. There-
fore, the first 25 generations can
be termed as ‘learning’ phase. Dur-
ing this time, similar to natural
immune systems, the p2p network develops memory by repositioning the peers.
The repositioning results in clustering of peers with similar profiles which is
discussed next.

Clustering Impact: The series of snapshots in Fig. 3 demonstrates the cluster-
ing effect in the p2p network as a result of ImmuneSearch. Each figure represents
the configuration on the 100 × 100 overlay grid taken to host the 10,000 peers.
In Fig. 3a. & b., each peer displays its two profiles PI and PS . (The big dots rep-
resent the search profile of a peer (PS) while the small dots are the informational
profile (PI)). In Fig. 3c, we show only the informational profile represented as
dots.

228 N. Ganguly, G. Canright, and A. Deutsch

a b
Clustering of information (small dots) and search (big
dots) profile of peers possessing most frequent tokens at
generation no. 0, 24 respectively.

c
Information profile of peers
hosting 11th most frequent
tokens at generation 100.

Fig. 3. Snapshots showing clustering of similar peers in the p2p network

The second snapshot (Fig. 3b) exhibits the clustering of the most frequently
occurring profile at generation number 24 (the generation around which ‘learn-
ing’ is more or less complete) from the initial scattered setting (Fig. 3a). The
snapshot of generation 24 shows that peers with search profile PS intermingle
with the peers with information profile PI . That is, execution of the algorithm
results in the peers with search profile (PS) positioning themselves in ‘favor-
able’ positions whereby, when these peers initiate search, the message packets
emanated by them immediately begin to find peers with similar profiles. The
clustering of the peers, as seen in Fig. 3b, is roughly divided into three major
clusters; and it is notable that the clusters are porous. The porous and sepa-
rated clusters are a result of ongoing competition among the differently frequent
tokens and as a result of it also less frequent tokens obtain space to form clus-
ters. Subsequently, their search output is also enhanced. (As an example, Fig.
3c shows clusters of peers hosting the 11th most frequent token).

The next important aspect of the experimental results which needs to be
discussed is the cost incurred during search.

Cost and Self-Regulation: Cost is defined as the number of message packets
spent per successful item searched. Since, already, in order to be ‘fair’, we have
assigned each process the same ‘power’, intuitively, we can say that cost will vary
inversely to performance. However, while experimentally demonstrating this fact
in the following paragraphs, we also illustrate another important self- organizing
property displayed by the ImmuneSearch algorithm. In order to illustrate the
self-organizing property, we next present the result of a single experiment.

The graph of Fig. 4(a) displays the performance analysis of the five different
models based upon a single experiment. Similar to Fig. 2, the x-axis of the graph
shows the generation number while the y-axis represents the average number of
search items (Ns) found in the last 100 searches. However, unlike Fig. 2, in this
figure we see that the search results of all the models are oscillating in proportion
to their average output. The oscillations occur due to the sampling differences at

Design of a Robust Search Algorithm for P2P Networks 229

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Generation Number

P
ro

fi
le

 M
a
tc

h
e
d
 P

e
r

G
e
n
e
ra

ti
o
n

ImmuneSearch
Proliferation1
Proliferation2
Random Walk
LimitedFlooding

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Generation Number
C

o
s
t
P

e
r

S
e
a
rc

h
It
e
m ImmuneSearch

Proliferation1
Proliferation2
Random Walk
LimitedFlooding

(a)Efficiency (b)Cost

Fig. 4. Efficiency and cost of different techniques of search namely ImmuneSearch,
proliferation1, proliferation2, random walk and limited flooding. (Search results are
based on one experiment)

each generation. However, these oscillations help us to understand the cost regu-
lation mechanism inbuilt within proliferation/mutation schemes, explained next.

Fig. 4(b) displays the cost each scheme incurs (y - axis) to generate the
performance of Fig. 4(a). The packets are assumed to be present in the network
throughout the 50 time steps executed during a search instance. It is seen that
for limited flooding, it is around 16 packets per item searched, while it is just
around 2 in case of ImmuneSearch and proliferation1.

Two interesting observations are worth mentioning here. First of all, the
cost is almost the same in proliferation1 and ImmuneSearch. It is seen that
keeping the same constraints for proliferation/mutation implies almost the same
cost in the network. Only the number of search items differs according to the
topology of the network. The interesting feature is further demonstrated through
the second observation. We see that the cost of all the three schemes using
proliferation and mutation for packet movement (proliferation1, proliferation2,
ImmuneSearch) almost remains constant throughout the total period, although
the number of items found through search (Fig. 4 (a)) varies considerably during
this period. The above two observations point to the fact that proliferation and
mutation have a self-regulatory quality inherent within them. As a result of this,
in the ImmuneSearch algorithm, the packets are not generated blindly, as with
flooding, but are instead regulated by the availability of the searched item.

3.3 Expt II : Search in Transient Conditions

The robustness of the algorithm is demonstrated by the following experiment. In
this experiment, 0.5%, 1%, 5%, or 50% of the population, respectively, is replen-
ished after every generation. This mimics the transient nature of p2p networks
where peers regularly join and leave the system.

230 N. Ganguly, G. Canright, and A. Deutsch

0 10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

55

60

65

70

75

80

85

Generation Number

P
ro

fi
le

 M
a
tc

h
e
d
 P

e
r

G
e
n
e
ra

ti
o
n

ImmuneSearch (without Replacement)
ImmuneSearch(with 0.5% replacement)
ImmuneSearch (with 1% replacement)
ImmuneSearch (with 5% replacement)
ImmuneSearch (with 50% replacement)
Proliferation1

(a)Performance efficiency

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Generation Number
M

o
v
e
m

e
n
t
P

e
r

G
e
n
e
ra

ti
o
n

Without replacement
0.5% Replacement
1% Replacement
5% Replacement
50% Replacement

(b)Change in neighborhood

Fig. 5. Performance efficiency and amount of change in neighborhood undergone by
peers when there are 0%, 0.5%, 1%, 5% and 50% replacement of peers after each
generation respectively. (Results are average of 20 simulation runs)

Fig. 5(a) showing the performance of the ImmuneSearch, under various de-
grees of replacement, illustrate two important results. (i) First of all, even in face
of dynamic change, the ImmuneSearch algorithm ‘learns’, in that, after some ini-
tial generations, the efficiency increases. The amount of increase in search effi-
ciency, are generally dependent on the percentage of replacement the p2p network
undergoes after each generation. We find that the performance of proliferation1
(which has been plotted as a reference point) is roughly the same when there
is 50% replacement. But replacement of 50% of all peers within 100 searches
is likely far higher than any realistic turnover rate. (ii) However, the more im-
portant point to be noted is that at 0.5% replacement, we observe that the
performance is in fact at par and sometimes slightly better than ImmuneSearch
without replacement! The result establishes one important positive point about
the algorithm - that is, a little transience is helpful, rather than detrimental, to
the performance of the algorithm. This happens because the problem of devel-
oping a search algorithm is in fact a multi-objective optimization problem, and
due to the enormous complexity, we are obtaining a ‘good’, however not optimal
solution. So a little change in peers is facilitating the system to move quickly
towards a better solution.

We next discuss the extent of neighborhood changes the peers have to un-
dergo.
Change in Neighborhood: Fig. 5(b) shows the amount of change in neigh-
borhood of the constituent peers (y-axis) . One unit of movement implies the
movement of a peer from one node to a neighboring node. We can also refer to
a unit of movement as a neighborhood change.

It is seen that in all the cases (0%, 0.5%, 1%, 5% & 50%), initially, there are
around 300 neighborhood changes, per search. That is, when a search goes on for

Design of a Robust Search Algorithm for P2P Networks 231

50 time steps, at each time step there are around 6 peers changing their neigh-
borhood (or 1 peer changing neighborhood 6 times). However, the movement
of the peers in all the cases, except the first case, gradually reaches a steady
level. In the first case, plotting the movement over many generations produces
a monotonically decreasing curve, which implies that the system will eventually
reach a state in which there will be no further movement. In the other cases, the
amount of movement at steady state increases monotonically (but sublinearly)
with the percentage of peers leaving the network. For example, in cases of 0.5%
and 1% replacement, the change in neighborhood becomes quite insignificant
and are around 30 and 50 neighborhood changes per search respectively.

The monotonically decreasing graph for the case where no peers leave the
system is the result of the concept of aging, whereby, after some time, the system
stops rearranging the peers. The steady level of movement maintained by other
cases can be directly attributed to the dynamic nature of the system. As new
peers are joining the system, the system as a whole tries to adjust to the changing
conditions. This shows that the system on the whole tries to learn, while at the
same time does not unnecessarily undergo neighborhood changes.

4 Conclusion

This paper has presented a search algorithm which derives its inspiration from
natural immune systems and whose underlying guiding rules are generally also
very simple. We find that as a result of the algorithm, the p2p network ‘learns’
and subsequently develops memory, whereby the search efficiency improves dra-
matically after some initial learning/training phase. The system also gains capa-
bility to decide upon the number of message packets to be generated during the
search for a particular item, according to the availability of that item. Thus the
cost of search remains virtually constant irrespective of the item’s availability
and the nature of the topology. The system also can withstand the transient
nature of the peers. The basic strengths displayed by the ImmuneSearch algo-
rithm need to be further explored and developed, by applying it in more realistic
circumstances in the near future.

References

1. G Canright, A Deutsch, M Jelasity, and F Ducatelle. Structures and functions of
dynamic networks. Bison Deliverable, www.cs.unibo.it/bison/deliverables/D01.pdf,
2003.

2. Freenet. http://freenet.sourceforge.net/.
3. Q. Lv, P. Cao, E. Cohen, and S. Shenker. Search and Replication in Unstructured

Peer-to-Peer Networks. In Proceedings of the 16th ACM International Conference
on Supercomputing, June 2002.

4. G. K. Zipf. Psycho-Biology of Languages. Houghton-Mifflin, 1935.
5. Napster. http://www.napster.com, 2000.
6. Gnutella. http://www.gnutellanews.com, 2001.

Efficient Immunization Algorithm for
Peer-to-Peer Networks�

Hao Chen, Hai Jin, Jianhua Sun, and Zongfen Han

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China

{haochen, hjin, jhsun, zfhan}@hust.edu.cn

Abstract. In this paper, we present a detail study about the immunization of
viruses in Peer-to-Peer networks exhibiting power-law degree distributions. By
comparing two different immunization strategies (randomized and degree-based),
we conclude that it is efficient to immunize the highly connected nodes in order to
eradicate viruses from the network. Furthermore, we propose an efficient updating
algorithm for global virus database according to the degree-based immunization
strategy.

1 Introduction

In the past several years, Peer-to-Peer (P2P) networks have emerged as effective ways
for communication and cooperation among geographically distributed computers. P2P
systems depend on voluntary participation of peers without any centralized control and
hierarchial organization, from which the underlying infrastructure is constructed. In
P2P networks (e.g. SETI@Home, Freenet, Gnutella, Napster), through cooperation of
all peers, tremendous computation and storage resources unoccupied on individual com-
puters can be utilized to accomplish some kinds of tasks jointly. Individual computers
communicate with each other directly without a central point of coordination. P2P sys-
tems are often built at the application level and use their own communication protocols to
form a virtual network over the underlying physical network. The topology of the virtual
network shares some common properties of complex networks in other disciplines of
science, and has a significant impact on performance, scalability and robustness of P2P
systems.

Recently, a large proportion of research effort has been devoted to the study and
modeling of a wide range of natural systems that can be regarded as networks, focusing
on large scale statistical properties of networks other than single small networks. Some
reviews on complex networks can be found in [11]. From biology to social science to
computer science, systems such as the Internet [8], the World-Wide-Web [5], social com-
munities, food web and biological networks can be represented as graphs, where nodes
represent individuals and links represent interactions among them. Despite this simple
definition, these networks often exhibit high degree of complexity due to the wiring

� This paper is supported by National Science Foundation of China under grant 60125208 and
60273076.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 232–241, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Immunization Algorithm for Peer-to-Peer Networks 233

entanglement during their growth. Researches on these networks have revealed some
commonalities. Specially, many of these networks have complex topological properties
and dynamical features that can not be explained by the classical graph model of random
networks, the Erdos-Renyi model [4].

These diverse networks can be characterized more accurately by small world phe-
nomenon and power-law degree distributions. The first demonstration of small world
effect was introduced by the classic experiment by Stanley Milgram [10], which showed
that people could find a short sequence of acquaintances in order to deliver a message
to each other, and are often referred to as “six degrees of separation”. In networks with
power-law degree distributions, the probability distribution of the degree of the node
is approximately proportional to k−γ , where k is the node degree and γ is a constant.
Such networks are often called scale-free networks. However, the degree distribution in
random graph networks follows a Poisson distribution.

One important characteristic of P2P networks, like some other complex networks,
is that they often show high degree of tolerance against random failures, while they are
vulnerable under intentional attacks [6]. Such property has motivated us to carry out a
study about the virus spreading phenomena and hacker behaviors in P2P networks from
a topological point of view. In our study, we choose Gnutella as our testbed, due to its
large user community and open architecture. Some previous works have been done on the
measurement and analysis of Gnutella network [12, 14, 9], such as bottleneck bandwidth
[14] and search algorithms [1]. But few work has been devoted to investigate the behav-
iors of virus spreading and intrusion from a topological view. The main contributions
of this paper are two-fold: firstly, an optimal immunization strategy is given; secondly,
we propose an efficient information updating algorithm for P2P networks based on the
immunization strategy.

The rest of this paper is organized as follows. Section 2 describes the immunization
model of P2P networks. In section 3, we propose an information updating algorithm for
P2P networks. In section 4, we give our conclusions and point out some directions for
future work.

2 Immunization Model of P2P Networks

Some previous works [1, 6] indicate that P2P networks often display small-world phe-
nomenon and power-law degree distributions. Many topological properties of such
power-law networks are much different from those of networks modelled by random
graphs [4]. One of the most important property is the network resilience, which mea-
sures the network robustness and weakness by random removal or targeted deletion of
vertices in the network. In this section, we first review some materials about the resilience
of P2P network, from which implications for designing immunization strategy of P2P
network will be introduced.

2.1 Network Resilience and Its Implication for Immunization of P2P Networks

There are a variety of different strategies of removing nodes form a network, and different
networks may show varying degrees of resilience to these strategies. For example, one

234 H. Chen et al.

Fig. 1. Results for random failures (open square) and degree-based (star) attacks of nodes measured
by the relative size of largest cluster S, the average closeness centrality Cc as functions of the
fraction of removed nodes f in Gnutella network

could remove some nodes randomly in a network, or other nodes with high degrees.
Removal of important nodes may affect the network significantly. With the removing
of nodes from a network, some paths between pairs of nodes is broken. The average
length of these paths increases. Eventually nodes are isolated in different clusters, and
communications between them become impossible. Some real networks display high
degree of robustness against random failures of nodes, but they are also very vulnerable
under attacks of the high degree nodes.

In the following, we illustrate the network resilience of Gnutella network based on
our previous work [6]. To explain the damages caused by attacks and random failures,
we measure two parameters: the relative size of the largest cluster S (defined as the ratio
between the size of the largest cluster and the size of original network) and the average
closeness centrality1 Cc (defined as the average of the closeness centralities of all nodes
in the largest cluster).

As shown in Fig.1, Gnutella network shows high degree of tolerance against random
failures. However, the fault tolerance comes at the expense of attack vulnerability: rapid
decreasing of the relative size of the largest cluster and the average closeness centrality in
early stage. In Fig.1 (b), after the critical point, the largest cluster becomes much smaller
than the initial size of the network, which causes the fallback of average path length in
such clusters and the increasing of Cc correspondingly. A more detailed description can
be referred to [6].

It is intuitive that the attacks on high degree nodes are analogous to the malicious
behavior of hackers in reality. They often make hosts malfunctioning by brute attacks.
In addition, there are other dangers caused by computer viruses or backdoor programs
(programs left by hackers that reside in hosts and can be used to intrude into other hosts

1 Closeness centrality is the measurement of the shortest path length of one node to all others in
the network. See [6] for a more detailed description.

Efficient Immunization Algorithm for Peer-to-Peer Networks 235

without breaking down systems). If they are not controlled properly, they will spread to
the whole system. Hence, the problems remained to us are: how efficiently can we stop
the spreading of viruses (in the rest of this paper, viruses stand for both computer viruses
and backdoor-like programs unless explicitly stated)? How can one node inform other
nodes when it detects a virus? Imagine that if one successfully intrude into one host and
spread in a P2P network, DDOS(Distributed Denial of Service) attacks could be easily
performed. These are exactly the topics to be discussed in the following sections.

2.2 Modeling Immunization of P2P Network

One model of the spread of a virus over a network is the SIR (susceptible-infective-
recovered) model [7]. This model assumes that the nodes in the network can be in three
states: susceptible (one node is healthy but could be infected by others), infective (one
node has the virus, and can spread it to others), or recovered (one node has recovered
from the virus and has permanent immunity, so that it can never be infected again or
spread it).

Another widely used model of virus spreading is called SIS (susceptible-infective-
susceptible) model [7]. The main difference with SIR model is that one node can be
infected again without permanent immunity, even though it once recovered from the
virus. Comparing the two models, we know that the SIS model is more suitable for
modeling the spread of computer virus or intrusion in P2P networks, since viruses or
intrusions in the network can be cured by antivirus software or be blocked by intrusion
detection system. But without a permanent virus-checking or intrusion-detecting pro-
gram, they have no way to defend the subsequent attacks by the same virus or intrusion.
Hence, we use SIS model to investigate the effect of virus spreading in P2P networks.

In SIS model, regarding P2P networks as graphs, we represent individuals by nodes,
which can be either "healthy" or "infected", and represent connections between individ-
uals by links, along which the infection can spread. Each node (susceptible) is infected
with rate ν if it is connected to one or more infected nodes. At the same time, an infected
node is cured with rate δ, defining an effective spreading rate λ = ν/δ for the virus.
Without lose of generality, we set δ = 1. Viruses whose spreading rate exceeds a crit-
ical threshold λc will persist, while those under the threshold will die out shortly. This
model can be used to investigate epidemic states of viruses of P2P networks, in which
a stationary proportion of nodes is infected.

P2P networks often exhibit power-law degree distributions [1, 6], similar to other
complex networks. A widely used theoretical model for such power-law networks is the
Barabasi and Albert (BA) model [3], which describes the growth of complex networks
by two basic features: the growing nature of the networks and a preferential attachment
rule. The algorithm of BA model is as following: Staring with a small number (m0)
of nodes, at every step we add a new node with m edges that link the new node to m
different nodes already in the system. The probability that a new node will be connected
to node i depends on the degree ki of node i, such that

∏
(ki) = ki/

∑
j kj . After n

steps, we obtain a network with degree distribution pk(k) = 2m2k−3. In the following,
we use the BA model to deduce a theoretical framework of the prevalence of virus, and
then compare with the real data obtained from Gnutella network [6].

236 H. Chen et al.

In order to take into account the different connectivity of all the nodes, we denote
the density of infected nodes with degree k by ρk(t), where the parameter t indicates
the time evolution, and denote the average density of all infected nodes in the network
by ρ = Σkp(k)ρk. According to the mean-field theory as in [13], we have the following
equation:

dρk(t)
dt

= −ρk(t) + λk[1− ρk(t)]Θ(λ). (1)

The first term in the right-hand side describes the probability that an infected node is
cured. The second term is the probability that a healthy node with degree k is infected,
proportional to the infection rate λ, the probability 1 − ρk(t) that a node with degree
k is healthy and the probability Θ(λ) that a given link point to an infected node. The
probability Θ(λ) is proportional to the average degree 〈k〉 =

∑
k kp(k) of all the nodes,

and it can be written as:

Θ(λ) =
∑

k kp(k)ρk(t)
〈k〉 . (2)

Imposing the stationary condition dρk(t)
dt = 0 when the system is at large times such

that the number of infected nodes are balanced with the number of healthy nodes, we
find the stationary density as:

ρk =
kλΘ(λ)

1 + kλΘ(λ)
. (3)

Using a continuous k approximation, we calculate Θ(λ) for BA model, whose aver-
age degree is 〈k〉 =

∑
k kp(k) =

∫ ∞
m

k2m2k−3dk = 2m, as:

Θ(λ) � m

∫ ∞

m

λΘ(λ)
k(1 + kλΘ(λ))

dk =
e−1/mλ

(1− e−1/mλ)mλ
. (4)

By combining equations (3) and (4) we have:

ρ � 2m2
∫ ∞

m

k−2λΘ(λ)
1 + kλΘ(λ)

dk =
2e−1/mλ

1− e−1/mλ
. (5)

The ρ is the stationary density of all infected nodes after time evolution of the
stochastic cycle of SIS model. Equation (5) shows an explicit relationship between the
infection density ρ and the effective infection rate λ, which can be used to evaluate
different immunization strategies in the following section. The detailed calculations of
Θ(λ) and ρ are shown in the appendix.

2.3 Immunization Strategies of P2P Networks

As discussed in section 2.1, the power-law networks exhibit different behaviors under
random failures and intentional attacks, from which two intuitive immunization strate-
gies may be regarded as randomized and degree-based immunizations. In the randomized
immunization strategy, a proportion of nodes randomly chosen in the network are immu-
nized, and these immune nodes will not be infected and do not spread the virus to their

Efficient Immunization Algorithm for Peer-to-Peer Networks 237

Fig. 2. Results for randomized and degree-based immunization measured by the density of infected
nodes ρf as a function of the fraction of immune nodes f

neighbors.Accordingly, in the degree-based strategy, nodes are chosen for immunization
if their degrees are greater than a predefined value.

Let us illustrate an example of installing a distributed intrusion detection system
or a distributed firewall in a P2P system according to the two strategies. In both of
the immunization strategies, the spreading dynamical properties can be considered as
follows: suppose that a proportion of nodes are infected in the initial state, the immune
nodes (intentionally protected by the IDS or firewall) in the system do not transmit viruses
as if the links to their neighbors were eliminated, and the non-immune nodes spread
viruses to their neighbors, but at the same time these nodes are cured with probability
δ such as some nodes may install their personal antivirus program (not the same as the
IDS or firewall mentioned above) or update the operating system. After a long time
evolution, according to the mean-field theory, the system comes into balance between
the infected and healthy nodes. In such a process, the two strategies have remarkably
different impact on the density of infected nodes at the critical point of balance.

In the randomized case, for a fixed spreading rate λ, defining the fraction of im-
munized nodes in the network as f , we get the effective spreading rate λ(1 − f), and
substitute it into equation (5), we obtain

ρf =
2e−1/mλ(1−f)

1− e−1/mλ(1−f) . (6)

Clearly, in the case of degree-based immunization, we can not use equation (5) to
deduce an explicit formula as in the randomized case, but we will use simulations to
compare the difference between the theoretical BA model and the real data of Gnutella
network.

Our simulations are implemented with a fixed spreading rate λ = 0.15, the smallest
node degree m = 3 and the number of nodes N = 34206 the same as the real data
of the topology collected from Gnutella network [6]. Initially a proportion of healthy
nodes are infected in the network. In Fig.2 (a), we plot the simulation results of degree-
based immunization for BA network (line) and Gnutella network (square-line). As the

238 H. Chen et al.

increasing of f , ρf decays much faster in Gnutella network than in BA model, and the
linear regression from the largest values of f yields the estimated thresholds fc � 0.03
in Gnutella network, fc � 0.2 in BA network. The value of fc in Gnutella network
indicates that the Gnutella network is very sensitive to the degree-based immunization,
and the immunization of just a very small fraction (3%) of nodes will eradicate the
spreading of virus. On the other hand, in Fig.2 (b), the simulation results of randomized
immunization are plotted for Gnutella Network (square-line), which is in good agree-
ment with the theoretical prediction (line) by equation (5), except for a larger value of
fc � 0.7 compared with the value fc � 0.64 of BA network. Based on the analysis
above, it is evident that the degree-based immunization is really better than randomized
immunization, which also inspires us designing an efficient immunization algorithm for
P2P networks in the next section.

3 Efficient Immunization Algorithm for P2P Networks

Since the degree-based immunization is more effective than randomized immunization,
one problem arises naturally that how efficiently we can inform other nodes when one
node finds a virus in real networks. Returning to the example discussed in section 2.3,
we consider that in a distributed IDS or firewall system for P2P network, if one node
detects an intrusion or a virus, how can it transfer the information to others to update
their local database in an efficient way?An intuitive solution is that it transfers the update
information by visiting the neighbor with the highest degree, followed by a node with
the next highest degree, since the immunized nodes are always with high degrees. In
such a way, one can walk down a degree sequence all having high degrees. First, we
formulate the highest degree in the network as a function of the network size.

Generally, the highest degree kmax of a node in a network depends on the size of
the network. In [2], Aiello et al. assumed that the highest degree was approximately
the value above which there was less than one node of that degree in the network on
average, i.e, npk = 1. This implies that for the power-law degree distribution pk ∼ k−γ ,
kmax ∼ n1/γ . However, this assumption is not accurate in many real networks, where
there are nodes with significantly higher degrees than this in the network.

Given a specific degree distribution pk, the probability that there are m nodes with
degree k and no nodes with higher degree is

pkmax
=

(
n

m

)
pm

k (1− Pk)n−m, (7)

where Pk =
∑∞

k′=k pk′ is the cumulative probability distribution and n is the number of
nodes in the network. Hence, the probability Πk that the highest degree in the network
is k is

Πk =
n∑

m=1

(
n

m

)
pm

k (1− Pk)n−m = (pk + 1− Pk)n − (1− Pk)n, (8)

and the expected value of the highest degree is kmax =
∑

k kΠk.

Efficient Immunization Algorithm for Peer-to-Peer Networks 239

The probability Πk tends to zero for both small and large values of k. Thus, in most
case, a good approximation to the mean value of the highest degree is given by the modal
value. Based on equation (8), we find that the maximum of Πk occurs when

dΠk

dk
= (

dpk

dk
− 1)(pk + 1− Pk)n−1 + pk(1− Pk)n−1 = 0, (9)

where dPk

dk = pk. Assuming that pk is sufficiently small for k ≥ kmax that npk � 1
and Pk � 1, we can write equation (9) as

dpk

dk
= −pk[(

1− Pk

pk + 1− Pk
)n−1 − 1]

= −pk[(
1

pk + 1
)n−1 − 1] � −np2

k, (10)

where 0 < (pk + 1− Pk)n−1 < (1− Pk)n−1 < 1.
For BA model, the probability distribution of degree is pk = 2m2k−3. Substituting

it into equation (10), we have

kmax �
√

2m2n

3
. (11)

As described above, the node that detected an intrusion or a virus transfers the in-
formation to other nodes through a degree sequence in which all the nodes have the
highest degree. For simplicity, suppose that the degrees of the nodes in the sequence all
approximate to kmax, then the number of steps needed to transfer the information in the
network of size n is

s =
n

kmax
�

√
3n

2m2 . (12)

We performed simulations of the real data of Gnutella network with a power-law
exponent γ = 2.0 [6], and compared the simulation results with the theoretical prediction
of BA network in equation (12). The number of nodes range from N = 103 to N = 104.

Fig. 3. The number s of steps needed to transfer information through high degree nodes as a
function of the network size N

240 H. Chen et al.

Fig.3 shows that the algorithm of transferring update information based on high
degrees in Gnutella network is as efficient as the prediction of the theoretical BA model.
We need only s = 11 steps to update all high degree nodes in Gnutella network with
N = 1000 nodes, and s = 36 steps in Gnutella network with N = 10000 nodes. The
discrepancy between the BA network and the Gnutella network is mainly due to the
difference of power-law exponent of γ = 3.0 in BA network and γ = 2.0 in Gnutella
network. Hence, in implementing a real distributed IDS or firewall system, we can update
the global information effectively utilizing the highly connected nodes.

4 Conclusions

In this paper, based on the simple SIS model, we analyze the influence of virus spread-
ing on P2P networks with two different immunization strategies namely randomized
and degree-based immunization, and performe theoretical modeling and real data sim-
ulations. The results show that the degree-based strategy is more efficient than the ran-
domized strategy, which also motivate us to design an effective information transferring
algorithm for updating global virus databases. These methods are highly valuable in
the implementation of real systems such as distributed IDSs or firewalls. As mentioned
in the text, the immunization model is not flexible enough to analyze both randomized
and degree-based strategies, hence, our future work is to improve the model to make it
suitable for the analysis of both strategies.

References

1. L. Adamic, R. Lukose, A. Puniyani and B. Huberman, "Search in Power-Law Networks",
Phys. Rev. E, Vol.64, 2001.

2. W. Aiello, F. Chung, and L. Lu, "A random graph model for massive graphs", Proceedings of
the thirty-second annual acm symposium on Theory of computing, pp.171-180, 2000.

3. A. L. Barabasi and R. Albert, "Emergence of scaling in random networks", Science, Vol.286,
pp.509, 1999.

4. B. Bollobas, Random Graphs, Academic Press, New York, 2nd ed, 2001.
5. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, and R. Stata, "Graph structure in the web",

Computer Networks, Vol.33, pp.309-320, 2000.
6. H. Chen, H. Jin, and J. H. Sun, "Analysis of Large-Scale Topological Properties for Peer-

to-Peer Networks", Proceedings of International Symposium on Cluster Computing and the
Grid, 2004.

7. O. Diekmann and J. A. P Heesterbeek, Mathematical epidemiology of infectious diseases:
model building, analysis and interpretation, JohnWiley & Sons, New York, 2000.

8. M. Faloutsos, P. Faloutos, and C. Faloutsos, "On Power-law Relationships of the Internet
Topology", Computer Communications Review, Vol.29, pp.251-262, 1999.

9. M. A. Jovanovic, "Modeling Large-scale Peer-to-Peer Networks and a Case Study of
Gnutella", Master thesis, Department of Electrical and Computer Engineering, University
of Cincinnati, 2000.

10. S. Milgram, "The small-world problem", Psychology Today, Vol.1, pp.62-67, 1967.

Efficient Immunization Algorithm for Peer-to-Peer Networks 241

11. M. E. J. Newman, "The structure and function of complex networks", SIAM Review , Vol.45,
pp.167-256, 2003.

12. M. Ripeanu, I. Foster andA. Lamnitchi, "Mapping the Gnutella Network: Properties of Large-
Scale Peer-to-Peer Systems and Implications for System", J. Internet Computing, 2002.

13. R. P. Satorras and A. Vespignani, "Epidemic Spreading in Scale-Free Networks", Phys. Rev.
Lett, Vol.86, pp.3200-3203, 2001.

14. S. Saroiu, K. P. Gummadi and S. D. Gribble, "Measuring and analyzing the characteristics of
Napster and Gnutella hosts", Multimedia Systems, Vol.9, pp.170-184, 2003.

A Appendix. Calculations of Θ(λ) and ρ

Θ(λ) =
∑

k kp(k)ρk(t)
〈k〉 �

∫ ∞

m

2m2k−3k2λΘ(λ)
2m(1 + kλΘ(λ))

= m

∫ ∞

m

λΘ(λ)
k(1 + kλΘ(λ))

dk

= mλΘ(λ)
∫ ∞

m

(
1
k
− λΘ(λ)

1 + kλΘ(λ)
)dk

= mλΘ(λ)([ln k]∞m − [ln(1 + kλΘ(λ))]∞m)

= mλΘ(λ)(lim
M→∞

ln
M

1 + MλΘ(λ)
− ln

m

1 + mλΘ(λ)
)

= −mλΘ(λ) ln
mλΘ(λ)

1 + mλΘ(λ)
⇒

− 1
mλ

= ln
mλΘ(λ)

1 + mλΘ(λ)
⇒ Θ(λ) � e−1/mλ

(1− e−1/mλ)mλ
.

ρ = Σkp(k)ρk �
∫ ∞

m

2m2k−3kλΘ(λ)
1 + kλΘ(λ)

dk

= 2m2λΘ(λ)
∫ ∞

m

(
1
k2 −

λΘ(λ)
k

+
(λΘ(λ))2

1 + kλΘ(λ)
)dk

= 2m2λΘ(λ)([−1
k

]∞m − λΘ(λ)[ln k]∞m + λΘ(λ)[ln(1 + kλΘ(λ))]∞m)

= 2m2λΘ(λ)(
1
m

+ λΘ(λ) lim
M→∞

ln
1 + MλΘ(λ)

M
+ λΘ(λ) ln

m

1 + mλΘ(λ)
)

= 2m2λΘ(λ)(
1
m

+ λΘ(λ) ln
mλΘ(λ)

1 + mλΘ(λ)
)

= 2m2λΘ(λ)(
1
m
− λΘ(λ)

1
mλ

) (by substituting Θ(λ) into the above equation)

� 2mλΘ(λ) (the lowest order of λ is remained)

=
2e−1/mλ

(1− e−1/mλ).

Leveraging Public Resource Pools to Improve
the Service Compliances of Computing Utilities

Shah Asaduzzaman and Muthucumaru Maheswaran

McGill University, Montreal QC H3A 2A7, Canada
{asad, maheswar}@cs.mcgill.ca,
http://www.cs.mcgill.ca/∼anrl/

Abstract. Computing utilities are emerging as an important part of
the infrastructure for outsourcing computer services. One of the major
objectives of computing utilities is to maximize their net profit while
maintaining customer loyalty in accordance with the service level agree-
ments (SLAs). Defining the SLAs conservatively might be one easy way
to achieve SLA compliance, but this results in underutilization of re-
sources and loss of revenue in turn. In this paper, we show that inducting
unreliable public resources into a computing utility enables more com-
petetive SLAs while maintaining higher level of runtime compliance as
well as maximizing profit.

1 Introduction

Constant improvements in computer communications and microprocessor tech-
nologies are driving the development of new classes of network computing sys-
tems. One such system is the computing utility (CU) that brings large number of
resources and services together in a virtual system to serve its clients. Typically,
CUs are built by connecting the resources or services to a resource management
system (RMS) that itself is implemented either centrally or federally. The RMS
allocates resources to the client requests such that some measure of delivered
performance is maximized subject to fairness constraints. The organization of
the RMS, which impacts the scalability, extensibility, and fault tolerance of the
CU is a key consideration in CU design. Support for services with quality of
service (QoS) assurances is another important design issue in order to attract
business critical applications.

This paper is concerned about augmenting CUs using “public” resources
(i.e., resources that wish to contribute their computing, storage, and network
capacities without subjecting themselves to any contractual agreements). Sev-
eral large-scale network computing systems such as Gnutella, SETI@home have
demonstrated the tremendous potential of using public resources. Our proposed
CU architecture augments the deployed dedicated resources with public resource
for additional capacity and we refer to it as a public computing utility (PCU).

Although different applications can potentially use a PCU, here we consider
only high-throughput computing applications. In this situation, job requests be-
longing to different clients arrive at the PCU at arbitrary times. In a practical

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 242–251, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Leveraging Public Resource Pools to Improve the Service Compliances of CU 243

PCU setting, the RMS has to take the allocation decision as soon as the jobs
arrive.

In this paper, we devise an online scheduling heuristic for the RMS of the
PCU. The PCU online heuristic needs to decide what class of resources (public or
private) should be used for servicing a given request. Because the PCU is bound
by the SLAs when delivering services to the clients, we need to consider the SLAs
in the resource allocation process as well. Section 2 of the paper discusses the
related results found in the literature. Section 3 explains the proposed system
architecture in detail. Section 4 defines the resource scheduling problem being
dealt with in the PCU. Section 6 discusses the results from the simulations
performed to evaluate the resource allocation alternatives.

2 Related Work

Multiprocessor job scheduling is a well-studied problem in operations research
and computer science. Although several optimal algorithms are available [1] for
simpler scheduling problems, most of the interesting and practical scheduling
problems are computationally intractable. Scheduling jobs with arrival time and
deadline constraints is proven to be a NP-hard problem for more than two proces-
sors [2]. In fact [3] proved that optimal scheduling of jobs in multiple processors
is impossible if any of the 3 parameters - arrival time, execution time or deadline
is unknown. Because in an online scheduling scenario, resource allocations have
to be carried out with incomplete information regarding jobs, heuristic solutions
are appropriate for this situation. A good survey of online scheduling heuristics
can be found in [4].

One major goal of the RMS of a PCU is to enforce QoS according to the
SLAs signed up with its clients. Architectures of SLA compliant resource man-
agement for cluster of dedicated machines has been studied in several research
projects like Oceano [5], Globus Grid [6][7], etc. However, study of scheduling
algorithms with detailed performance evaluations were not carried in the above
works. Performance evaluation of scheduling heuristics for cluster based hosting
centers are found in [8][9][10] with different optimization goals in different cases.

The Condor project [11] focuses on harvesting unused resources from hetero-
geneous public machines, but their resource management mainly emphasizes on
discovery and co-allocation of resources through matchmaking and gangmatch-
ing. They do not support SLA driven QoS aware resource management on the
public resource pool.

One work that is very close to our work is [12], which examines stochastic
QoS on a similar architecture using dedicated private resource and stochastic
public resources. Nevertheless, our work is significantly different from theirs in
several dimensions. Instead of modeling the public resources with homogeneous
performance and stochastic idle times, we have modeled their throughput to be
stochastic which captures the real behavior more closely. They have assumed
the QoS requirement (cycle length) of applications has distribution identical
to that of underlying public resources, but we have relaxed that assumption.

244 S. Asaduzzaman and M. Maheswaran

Furthermore, their scheme does not have any long term SLA with the clients,
whereas Our scheduling heuristic is devised to simultaneously maximize the net-
profit of the service provider and the level of compliance with the long term
SLAs. Our investigation also includes job streams arriving from multiple clients
that have different SLAs with the PCU.

3 The PCU System Model and Assumptions

The underlying substrate of the PCU is a proximity aware planetary scale P2P
network such as the Pastry [13] that connects all the resources that participate
in the system. The public resources are expected to be dispersed throughout
the network and the private resources can be concentrated as clusters at certain
locations. The P2P network enables efficient discovery of the public resources.

Several issues like resource co-allocation, trust and incentive management,
load-balancing, etc. should be addressed in developing the resource allocation
process in a PCU system. As a first cut at the problem, we consider allocation
of only one resource – the processors. The allocation decisions of the RMS are
influenced by several parameters including: (a) current utilization of the private
resource pool administered by the PCU, (b) current load offered by the different
clients, (c) current value of the expected performance of the best-effort resources,
and (d) throughput guaranteed to the particular client by the PCU in its SLA.
In our current PCU RMS design, there is no progress monitoring of public re-
sources, only process completions are notified. Inclusion of progress indicators
can improve the contribution from public resources towards overall throughput,
albeit at the cost of high communication overhead.

4 The Resource Management Problem

Computational jobs arrive from each client of the PCU service provider at ar-
bitrary points in time with each job consisting of arbitrary number of mutually
independent parallel components of possibly different but known sizes. An over-
all deadline is defined for the job before which all the components must finish
their execution.

The SLA that is signed off-line between the provider and a client reserves
a throughput guarantee for the corresponding client. The SLA defines various
parameters including:

– ρ, the ratio of the client-offered workload that is guaranteed to be carried
out by the PCU service provider.

– V , the maximum limit on the workload that can be offered by the client.

From these parameters it can be deduced that when the offered load is v ≤ V ,
the delivered throughput should be ≥ ρv to be compliant with the SLA. If offered
load v is greater than V , it is sufficient for the PCU to deliver ρV amount of
throughput.

Leveraging Public Resource Pools to Improve the Service Compliances of CU 245

The PCU provider earns revenue in proportion to the total delivered compu-
tational work for the jobs that finish completely within their deadline (with all of
its components). There is penalty for violation of the SLA terms and the penalty
is proportional to amount of deviation of the delivered throughput from guaran-
teed throughput, measured over a specified time window. The optimization goal
of the job scheduler is to maximize the net revenue (i.e., revenue − penalty) of
the PCU service provider.

5 Heuristic Solutions for Resource Management

In this section, we present three heuristic solutions to resource management in
a PCU environment. The first solution, the PCU heuristic, is proposed as part
of this work. The next two solutions are adopted from the scheduling literature
for the PCU environment for comparison purposes.

5.1 PCU Heuristic: An Online Resource Allocator

The scheduler of the RMS uses an online heuristic to take decisions about allo-
cating available resources to incoming jobs. To reduce the scheduling overhead,
the RMS executes the scheduling rules at discrete points of time (i.e., at the end
of each scheduling epoch δ). Another component of the RMS, the SLA mon-
itor measures the current deviation Dc of delivered throughput from required
throughput for each client c, according to the SLA specified time-window τc and
moving average factor αsla. Say the total arrived workload in a time-window is
Wa and total completed and delivered workload is Wd, both Wa and Wd being
smoothed by moving average with the past values. Then,

Dc = max(Vc, Waρc)−Wd

In the above equation, Vc and ρc are SLA defined maximum load and ac-
ceptance ratio for client c. The current value of Dc is available to the scheduler
at the end of every epoch. There are two parts of the decision taken by the
scheduler at the end of every epoch (i) accept newly arrived jobs and start them
on public and/or private resources, and (ii) relocate and restart the deadline
vulnerable jobs from public resource to the private resource pool (in absence
of checkpointing and progress monitoring, it is impossible to migrate without
restarting).

Acceptance of Jobs. For each client, the scheduler maintains a priority queue
for newly arrived jobs, ordered by highest contributing job first. For a job with
total workload W and total available time Ta before deadline, the throughput
contribution is W

Ta
. Every time the foremost job from the queue of the client

having highest Dc −Wc value is chosen, where Wc is is the amount of workload
so far accepted for client c in current SLA window.

All the jobs are ultimately accepted, and each of them are assigned one of the
two different levels of launch-time-priority, which is used for restarting decisions.
The jobs are accepted according to the following rules:

246 S. Asaduzzaman and M. Maheswaran

1. As long as available dedicated resources allow, schedule jobs with high launch-
time-priority with critical components on dedicated and the rest on public
resources. The components that are expected to violate deadline if scheduled
on a public resource according to its currently estimated expected through-
put μ, are identified as critical components. Among the M private resources,
Mr are reserved for restarting phase (the ratio Mr

M is a design parameter).
If Mo resources are already occupied and the selected job has m critical
components, this phase continues as long as Mo + m ≤ M −Mr,

2. For the rest of the enqueued jobs all components are scheduled on public
resources. For any client c, as long as total accepted workload in the current
SLA window is below ρcVc, the launch-time-priority of the accepted job is
high, otherwise it is low.

Restart Jobs. At the end of every epoch, the scheduler restarts some dead-
line vulnerable job-components from public resources. The job-components that
have reached a point where it can be completed before deadline only if run on
a dedicated machine, is identified as vulnerable. A priority queue is maintained
for all the vulnerable components. The queue is ordered descending primarily
by launch-time-priority (explained earlier) and secondly by violation probability
(pv). pv is computed at the job-launch time from the available information (dis-
tribution of the public resource throughput, component size and the deadline).
From the queue, high launch-time-priority components are restarted as long as
any dedicated resource is available. Low launch-time-priority are restarted as
long as available dedicated resource is > Mr. The rest of components are left on
public resource.

5.2 Least Laxity First and Greedy Heuristics

For performance evaluation we compare our PCU heuristic with the well known
Least Laxity First (LLF) [4] heuristic and a Greedy heuristic. We use the LLF
heuristic to schedule the jobs only in the private pool of resources. The laxity
is the slack between possible execution finish time and deadline. New jobs form
each client enter a separate priority queue ordered by laxity and at every epoch
jobs popped from the queue that fits in available dedicated resources are started
there, otherwise the job is deferred until it becomes infeasible to execute before
deadline. As a fairness scheme the queue of the client with highest deviation
from SLA is favored when choosing every job.

The Greedy heuristic, another one that we used for comparison, works on
the same PCU architecture with a combination of private and public resource
pools. The greedy scheduling policy chooses jobs from the arrival queues in every
scheduling epoch in the order of highest contributing job of the highest deviating
client first. It schedules all components of incoming jobs on private resources in
the order of longer component first, as long as there is spare capacity in the
private resource pool. All the remaining job-components are scheduled on public
resources until all the arrival queues are exhausted.

Leveraging Public Resource Pools to Improve the Service Compliances of CU 247

6 Simulation Results

Here we evaluate the performance of the PCU heuristic through a simulator
written in Parsec [14] by changing different parameters and comparing it with
the Greedy and LLF heuristics. In our simulation setup, the service provider had
a pool of 100 dedicated machines and an infinite pool of public machines. There
were five independent clients each feeding a stream of parallel jobs that should
be completed within the given deadlines and having its own SLA. Jobs arrival
is a Poisson process, with each job having a random number (k) of parallel
components (geometrically distributed). Each component of a job also has a
random workload that is from a geometric distribution. Each job has a feasible
deadline, i.e., it can always be completed if all the parallel components run on
dedicated machines. Unless stated otherwise, the deadline was computed with
a uniform random laxity between 0.5 and 2 times the mean component length,
from the longest component. This tight deadline allows one trial on the public
pool and failing that it should be restarted on a private resource.

All private machines have homogeneous throughput, completing 1 unit of
workload of a component per second. The public resource throughput is sampled
from Lognormal distribution with standard deviation 1.0 and mean less than
1.0. Justification behind using lognormal distribution is that being left skewed
it closely resembles the behavior of the resources in a PCU setting, where most
of the public resources may have very low or even 0 throughput.

In the first set of experiments the PCU heuristic is compared with LLF and
Greedy using throughput (Figure 1), SLA compliance (measured using penalty
per unit revenue in Figure 2). The PCU heuristic delivers better throughput than
LLF, which implies it useful to augment public resource in a CU. Also the PCU-
heuristic is superior in performance to the greedy heuristic in similar setting.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

PCU-heuristic
Private Pool LLF

Greedy
Public Pool only

Fig. 1. Variation of mean throughput
with offered load values for mean public
resource throughput μ = 0.80, mean num-
ber of parallel components P = 25, total
number of private resources M = 100, and
total SLA booking,

∑
ρV = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400

P
en

al
ty

 p
er

 u
ni

t r
ev

en
ue

Offered load

Greedy
Private Pool LLF

PCU-heuristic

Fig. 2. Variation of penalty per unit rev-
enue with offered load for μ = 0.80, P =
25, M = 100, and

∑
ρV = 100

248 S. Asaduzzaman and M. Maheswaran

Figure 3 shows that a much higher gain in throughput is achievable, if the exact
knowledge of throughput of each public machine is available at schedule time,
because then there is no need for restarting jobs. How far of this gain can be
achieved without apriori knowledge remains a problem for future research.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

PCU-upperbound
PCU-heuristic

Private Pool LLF
Greedy

Public Pool only

Fig. 3. Upper bound on PCU through-
put assuming future behavior of public re-
sources is known for μ = 0.80, P = 25,
M = 100, and

∑
ρV = 100

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900
T

hr
ou

gh
pu

t
Offered load

client-1(ρV = 66)
client-2(ρV = 33)

Fig. 4. Comparing delivered throughput
to 2 clients having different max-load de-
fined in SLA for μ = 0.80, P = 25, and
M = 100

Demonstrating the fairness of PCU heuristic figure 4 shows that for 2 different
clients, who offers load at the same rate, but has SLA maxload (V) defined at
2 : 1 ratio, the delivered throughput is proportional to the maxload of the clients
for overloaded situations.

The penalty is higher with the LLF algorithm on private pool only system
than the PCU heuristic, because jobs are not deprioritized when the client is
offering more workload than the SLA upper bound. In case of the greedy al-
gorithm, penalty grows even higher when the client is overloading, because the
dedicated pool gets fully occupied and most of the newly arriving jobs are put
on public resources. Consequently, only a small portion of the newly arriving
jobs can finish before their deadlines.

As Figure 5 shows, the utilization of dedicated resources is higher for the
greedy policy. This is because Greedy uses the dedicated resources exhaustively.
The PCU heuristic tries to execute a job-component primarily using public re-
sources unless it becomes vulnerable for deadline violation. Also, in PCU, to
allow the restarting of vulnerable components, it reserves a portion of the dedi-
cated resources (25%) as contingency resources. These factors lower the utiliza-
tion of dedicated resources in the PCU heuristic. Greedy’s utilization is even
more than LLF, because, in LLF jobs are not allocated unless the all the com-
ponents fit in the private resources, whereas, Greedy may put part of a job in
private pool and rest in public pool.

To consider the flexibility in SLA overbooking, if and total agreed upon deliv-
erable throughput (ρV) is higher than the maximum system capacity, the SLA
deviation goes very high leading to correspondingly high penalties. This in turn

Leveraging Public Resource Pools to Improve the Service Compliances of CU 249

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400

M
ea

n
oc

cu
pi

ed
 m

ac
hi

ne
s

Offered load

Private Pool LLF
Greedy

PCU-heuristic

Fig. 5. Utilization of dedicated resources
versus offered load for μ = 0.80, P = 25,
M = 100, and

∑
ρV = 100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400

P
en

al
ty

/R
ev

en
ue

Offered load

Σ ρV = 200
Σ ρV = 160
Σ ρV = 150
Σ ρV = 140
Σ ρV = 120
Σ ρV = 100

Fig. 6. Penalty per unit revenue earned
at different levels of SLA booking for μ =
0.80, P = 25, and M = 100

reduces the net profit earned by the service provider. From Figures 6 it can be
observed that SLA booking should be at 140% of the dedicated pool capacity to
maximize the performance for the given PCU configuration.

Figure 7 shows that use of PCU-heuristic brings gain in delivered throughput
in most region of the spectrum of public resource behavior. It should be noted
that with lognormal distribution, even if the mean throughput is equal to that of
a dedicated machine, 62% of the public resources have throughput less than that
of a dedicated machine. For very low public resource throughput, almost all of
the jobs scheduled there needs restart, and since restart is subject to availability
in the limited capacity private pool, many jobs get discarded. This explains the
less than one throughput-gain with poor quality of public resources. Figure 8
shows that PCU-heuristic outperforms the greedy heuristic across the whole
spectrum.

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

μ = 1.00
μ = 0.80
μ = 0.70

μ = 0.60
μ = 0.50

Fig. 7. Throughput gain at different pub-
lic resource characteristics, with respect
to a dedicated pool only system for P =
25, M = 100, and

∑
ρV = 100

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

μ = 1.00
μ = 0.80
μ = 0.70

μ = 0.60
μ = 0.50

Fig. 8. Throughput gain at different pub-
lic resource characteristics, with respect
to the greedy resource allocation policy
on combined pools for P = 25, M = 100,
and

∑
ρV = 100

250 S. Asaduzzaman and M. Maheswaran

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t

Offered load

P=1
P=5

P=10
P=20
P=25

Fig. 9. Mean throughput at varying de-
gree of parallelism for μ = 0.80, M = 100,
and

∑
ρV = 100

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t

Offered load

Laxity = 5 * mean-worktime
Laxity = 4 * mean-worktime
Laxity = 3 * mean-worktime
Laxity = 2 * mean-worktime
Laxity = 1 * mean-worktime

Fig. 10. Throughput gain at different
amount of laxity in deadline, with respect
to a dedicated pool only system for μ =
0.80, P = 25, M = 100, and

∑
ρV = 100

Studying the effect of parallelism figure 9 shows that the effect is insignificant
in underloaded situations, but when the system is overloaded, high number of
parallel components increase the probability of failure of a whole job due to fail-
ure of only one or few components which could not be restarted when necessary.
Hence, the total delivered throughput becomes low.

Study on the effect of laxity before deadline (Figure 10)f shows that through-
put gain is much higher with relaxed laxity jobs. This is because with relaxed
laxity the probability of getting a job component completed before deadline on
a public resource increases, which incurs less restarts and better contribution
from public resources.

7 Conclusion

In this paper, we presented the idea of creating a public computing utility by
augmenting computing utilities of dedicated resources with public resources. A
resource management strategy for such an augmented system was presented.
We proposed a resource allocation heuristic that uses the public and private
(dedicated) pools of resources in an efficient manner. We carried out extensive
simulations to evaluate the performance of the proposed heuristic and compare
it with two other heuristics.

The results indicate that the use of public resources can lead to significant
performance improvements both in terms of obtainable throughput and the com-
pliance with client SLAs. Further, the results indicate that the performance gain
from PCU increases if the job has fewer components or relaxed deadlines. The
performance of the PCU heuristic may be further improved by incorporating
these parameters in the decision process.

One of the significant features of our PCU architecture is the minimal mon-
itoring on the public resources. Because public resources are plenty this helps
to keep the overhead low. It might be possible to selectively enable performance

Leveraging Public Resource Pools to Improve the Service Compliances of CU 251

monitoring for high capacity public resources and increase the delivered perfor-
mance levels even further.

References

1. Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: 9. In: Handbooks in
Operations Research and Management Science. Volume 4. Elsevier Science Pub-
lishers (1993) 445–522

2. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the theory of
NP-Completeness. W H Freeman and Company, New York (1979)

3. Dertouzos, M.L., Mok, A.K.L.: Multiprocessor on-line scheduling of hard-real-time
tasks. IEEE Transactions on Software Engineering 15 (1989) 1497–1506

4. Sgall, J. In: On-Line Scheduling – A Survey. Springer Verlag (1997) 196–231
5. Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar,

S., Pazel, D., Pershing, J., Rochwerger, B.: Oceano – SLA based management of a
computing utility. In: Proceedings of the 7th IFIP/IEEE International Symposium
on Integrated Network Management. (2001)

6. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications 15 (2001)

7. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A protocol
for negotiating service level agreements and coordinating resource management in
distributed systems. Lecture Notes in Computer Science 2537 (2002) 153–183

8. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing
energy and server resources in hosting centers. In: 18th ACM Symposium on
Operating Systems Principles. (2001)

9. Ranjan, S., Rolia, J., Knightly, E.: QoS driven server migraion for internet data
centers. In: Proceedings of IWQoS 2002. (2002)

10. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: A mechanism for re-
source management in cluster-based network servers. In: Proceedings of ACM
SIGMETRICS. (2000)

11. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The
condor experience. Concurrency and Computation: Practice and Experience (2004)

12. Kenyon, C., Cheliotis, G.: Creating services with hard guarantees from cycle har-
vesting resources. In: Proceeings of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’03). (2003)

13. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001) 329–
350

14. Bagrodia, R., Meyer, R., Takai, M., Chen, Y., Zeng, X., Martin, J., Park, B., Song,
H.: Parsec: A parallel simulation environment for complex systems. Computer 31
(1998) 77–85

Plethora: An Efficient Wide-Area Storage
System�

Ronaldo A. Ferreira, Ananth Grama, and Suresh Jagannathan

Department of Computer Sciences,
Purdue University,

West Lafayette, IN 47907
{rf, ayg, suresh}@cs.purdue.edu

Phone: (765) 494 0971, Fax: (765) 494 0739

Abstract. Trends in conventional storage infrastructure motivate the
development of foundational technologies for building a wide-area read-
write storage repository capable of providing a single image of a dis-
tributed storage resource. The overarching design goals of such an
infrastructure include client performance, global resource utilization, sys-
tem scalability (providing a single logical view of larger resource and user
pools) and application scalability (enabling single applications with large
resource requirements). Such a storage infrastructure forms the basis for
second generation data-grid efforts underlying massive data handling in
high-energy physics, nanosciences, and bioinformatics, among others.

This paper describes some of the foundational technologies underly-
ing such a repository, Plethora, for semi-static peer-to-peer (P2P) net-
works implemented on a wide-area Internet testbed. In contrast to many
current efforts that focus entirely on unstructured dynamic P2P environ-
ments, Plethora focuses on semi-static peers with strong network con-
nectivity and a partially persistent network state. In a semi-static P2P
network, peers are likely to remain participants in the network over long
periods of time (e.g., compute servers), and are capable of providing rea-
sonably high availability and response-time guarantees. The repository
integrates novel concepts in locality enhancing overlay networks, transac-
tional semantics for read-write data coupled with hierarchical versioning,
and novel erasure codes for robustness. While mentioning approaches
taken by Plethora to other problems, this paper focuses on the problem
of routing data request to blocks, while integrating caching and locality
enhancing overlays into a single framework. We show significant perfor-
mance improvements resulting from our routing techniques.

1 Plethora: Introduction and Design Principles

The Plethora project at Purdue University aims to build a wide-area read-write
storage repository for supporting a single seamless distributed storage resource.

� This research has been supported by the National Science Foundation Grant STI
0334141.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 252–261, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Plethora: An Efficient Wide-Area Storage System 253

In contrast to many current efforts that focus entirely on unstructured dynamic
peer-to-peer (P2P) environments, Plethora focuses on semi-static peers with
strong network connectivity and a partially persistent network state. In doing
so, it alleviates many of the constraints found in conventional P2P networks,
focusing instead on mechanisms for supporting expressive storage access and
management semantics, exploiting existing Internet infrastructure, and provid-
ing performance guarantees in terms of end-user latencies, global resource uti-
lization, and robustness.

At the heart of Plethora’s design is a two-level network overlay. A global
overlay spans all nodes in the network and is organized much like other P2P
systems, which define a collection of peers that cooperatively provide access
to resources such as storage. A local overlay, which provides caching mecha-
nisms, lies on top of this global overlay. Nodes belong to both local and global
overlays and are organized into local overlays based on proximity information,
specifically, the Autonomous Systems (ASs) to which they belong. Algorithms
for organizing nodes into local overlays are described in greater detail in Sec-
tion 3.2. Data accesses are first attempted in the local overlay, and forwarded to
the global overlay when no cached copy is found. Specifically, if a Plethora node
n requests a globally shared piece of data, the data is routed using a distributed
(or consistent) hashing scheme to a node nl in n’s local overlay. If nl does not
have the requested data, a query is sent to the global overlay. This two-tiered
search mechanism distinguishes Plethora from other P2P schemes in obvious
ways. Most notably, it leverages the physical structure and organization of the
Internet to provide efficient routing and lookup of shared data.

Concurrent Access Semantics in Plethora

Plethora is a global object repository upon which classical applications such as
file systems, collaborative environments, publishing, etc. can be built. To sup-
port such repositories, appropriate concurrent access semantics must be built on
top of the Plethora routing core. These semantics must facilitate desirable char-
acteristics of client performance, global resource utilization, system scalability,
and application scalability. We start our discussion by presenting the Plethora
concurrent access model.

To be a member of a Plethora community, a node n defines two namespaces.
The first, called cSpace is a local client namespace in which objects such as files
are created and modified by applications that execute on the node. The second,
called pSpace is the space used by Plethora to support shared access semantics.
Based on this model, we describe the logical operation of the Plethora object
sharing mechanism for the following basic tasks: (i) introducing an object into the
network, (ii) acquiring an object from the network, and (iii) updating objects in
the network. Plethora supports these tasks using local and global object brokers.
These brokers are determined by applying appropriate hash functions to the
object handle – a local hash function, whose range is the set of nodes in the
local overlay and a global hash function, whose range is the set of all nodes in
the Plethora community. Note that these ranges can be easily affected by using

254 R.A. Ferreira, A. Grama, and S. Jagannathan

pSpace

Object O

Local broker for O
Global broker for O

2

1 3
2

3

4

4

6

5

6

5

1

n

Node n notifies local broker to initiate Object O.
Local broker creates reference for O in pSpace.
Local broker notifies n of this reference.
Node n copies O to this location in pSpace.
Reference in pSpace sent to global broker.
Global broker records this reference.

(a) Initiating object O into Plethora.

pSpace

Object O

Local broker for O

2

3

1

2

3

1

n

Node n requests local broker for Object O.
Local broker sends reference to O in pSpace.
Node n creates reference, copies into cSpace.

(b) Searching for object O in Plethora (the case illustrated is one in which object is
found in local overlay).

Fig. 1. Protocols for object initiation and lookup. The protocol for updation is similar
to initiation augmented by aggregation of commits

appropriate routing table entries in two distinct set of tables without changing
the hash function. A local object broker is responsible for keeping track of the
shared objects (that hash to it) within the local overlay. A global object broker
keeps track of shared objects (that hash to it) in the entire network.

Consider a local object O in node n’s cSpace, which needs to be initiated
into the network. Node n communicates with a broker for the object in the local
overlay. The broker copies the object into node n’s pSpace, generates a local
reference to this copy and also communicates this reference to the global object
broker along with appropriate metadata. At this point, object O is visible to the
other nodes. This process is illustrated in Figure 1(a). To acquire object O from
the network, a node n first communicates with a local broker for the object. If
the object O is cached in the local overlay, a reference to the cached version is
returned and a copy subsequently communicated to node d’s pSpace. This is
illustrated in Figure 1(b). If no cached version exists, a search is initiated by
the local broker over the global overlay and a copy is fetched by the broker into
node n’s pSpace.

To update a shared object O, it must first be copied into a node’s cSpace.
To make these changes visible to the rest of the network, the node must commu-
nicate its intention to have these changes committed to O’s local broker. Object
O’s broker copies this object into node n’s pSpace. A new version is recorded
at the local broker and the existence of this version is propagated to Object O’s
global broker. In the event that multiple commits arrive at the local broker for
the same object, the broker may choose to either ignore all conflicts among these

Plethora: An Efficient Wide-Area Storage System 255

versions, commit each set of updates as a new version, or attempt more sophisti-
cated conflict resolution and commit only a single resolved version. Yet another
option is for the local broker to rely on time stamps to discard all updates other
than the most recent set. Plethora provides hooks for each of these policies to be
implemented at the local broker. The global broker may apply similar strategies
to resolve conflicts between multiple local brokers for the same object.

Several observations can be made about the suitability of Plethora’s access
semantics for wide-area storage systems. First, updates to objects occur entirely
locally once the object is copied into the nodes cSpace. The applications deter-
mine when these changes need to be made visible to the rest of the network.
Locality of data access in typical applications implies that such a scheme is ide-
ally suited from the point of view of minimizing update traffic. Just as a node
aggregates several object updates into a single request to commit to the local
broker, the local broker may aggregate several such requests before propagat-
ing the version to the global broker. This hierarchical aggregation is critical for
scalability to large number of nodes given constraints on available bandwidth.

A novel component of Plethora’s software architecture is its use of a versioning
system to deal with object conflict resolution and commitment. By supporting
versioning semantics as opposed to a copy/ invalidate protocol, Plethora allows
concurrent updates to a shared object, and places the burden of proper conflict
resolution on the application. In other words, two clients that commit updates
to a shared object may see two versions of the object preserved by the object
server. They may choose to reconcile these versions by identifying and remedying
conflicts in much the same way as version control systems such as CVS or RCS
do, or they may choose to simply perform subsequent modifications based on
their version or some other version accessible from the local broker. Our primary
goal in these design decisions is to provide scalability by taking advantage of
the local overlay structure. Our versioning system provides a semantically clean
characterization of object modification without requiring global updates on each
commit.

2 Plethora and Its Comparison to Related Work

There has been a long history of research in the area of distributed file systems
and storage. Plethora’s design is inspired by many of these past efforts. Exist-
ing systems based on the client-server architecture like AFS [4], NFS, xFS [2],
Sprite LFS [10] and Coda [5] do not meet our goals of scalability, availability,
and network performance. Farsite [1] is a distributed file system that operates
over untrusted environments using randomized replicated storage; the secrecy
of file contents is ensured using cryptographic techniques, and Byzantine agree-
ment protocols are used to ensure file and directory integrity. The goals of these
systems are only partially aligned with ours. Distributed file systems like Coda
or AFS are geared towards a client-server storage model. Decentralized systems
like Farsite focus on completely untrusted local-area environments (such as a
collection of desktops in a corporate campus). Neither consider routing and

256 R.A. Ferreira, A. Grama, and S. Jagannathan

location services for geographically-dispersed peers, or consistency semantics
when multiple copies of data are cached at distributed sites.

A number of researchers have addressed the problem of providing scalable
solutions [13, 14] in a P2P environment. Systems such as Chord [13], Pastry, and
Tapestry [14] provide a simple primitive for name resolution: given a file name,
return the IP addresses of the nodes that currently have reference to the file.
To support this primitive, these systems rely on a distributed hash table (DHT)
abstraction [13, 14], and provide an upper bound on hop-count of O(log n), where
n is the total number of nodes in the network. This upper bound is achieved using
a small amount (O(log n)) of routing information per node. Other systems such
as CAN [8] support similar primitives, but have different upper bounds on hop-
count subject to varying constraints on per-node routing information. Storage
systems that exploit the organization and routing properties of the DHT systems
described above have been recently proposed [3, 11, 6, 9, 12].

3 The Plethora Routing Core

Central to the performance of Plethora is an efficient routing core, designed to: (i)
optimize locality of data access by efficient replication, (ii) minimize overlay link
dilation (stretch) and network congestion, and (iii) support suitable object access
semantics and robustness mechanisms. These objectives are achieved in part by
organizing the network into two distinct overlays – a local overlay comprising
nodes in close network proximity, and a global overlay used to provide universal
location services.

3.1 Locality Mechanisms in Plethora

Locality of data access is at the core of scalability of Plethora. This has been
recognized by many other projects as well, which use various mechanisms for
enhancing locality in overlays. Commonly used methods can be classified as
either state-based or static. State-based approaches rely on network state infor-
mation (latencies, hop-count) for situating an incoming peer in an overlay. These
methods include location using landmarks and topological inference. In contrast,
static approaches rely on known information from the Internet infrastructure to
build local overlays. Plethora bases its design on static information for locality.
This is motivated by the availability of standardized information, such as IP
domains and Autonomous System (AS) membership, across diverse platforms.
Using this information efficiently, however, poses considerable challenges.

With the eventual goal of an AS-based node aggregation in mind, we inves-
tigated, in a Gnutella trace, the prefix length of CIDR (Classless Inter Domain
Routing) blocks in these systems. The trace contains 3,264 different ASs, which
constitute a representative sample of the Internet. The average prefix length of
the AS’s CIDR blocks was a little over 19 bits. This implies that local overlays
based on single ASs constitute very small networks, and are unlikely to yield
significant improvements from caching. Plethora therefore aims to build local

Plethora: An Efficient Wide-Area Storage System 257

(b) Data access in Plethora.

(a) Entering the two−level Plethora routing core.

4

3

3

1

2

4

2

2

3

3

4

4

1

2

1

1

Node n sends a message to s = h(n).

Node s sends global routing information to n
along with local id. Ln, which n must
join (this is determined by Node n’s AS).

Node n sends a message to t = h′(n) in Ln
indicating its desire to join local overlay.
Node t sends local routing information to n.

Node n sends a message to t = h′(n) requesting
data item d in local overlay.

If Node t has a copy of data item d, steps 2
and 3 are skipped. In step 2, Node t sends a
request to Node s = h(d) in global overlay
requesting data item d.
Node s sends a copy of data item d to Node t.

Node t caches a copy of data item d in local
overlay Ln and forwards a copy to Node n.

Ln

Ln n

n

s

s

t

t

Fig. 2. Registering peers and locating data objects in Plethora

overlays as aggregates of geographically proximate ASs. For each AS, we de-
termine a ranking sequence of all other ASs close to it (this ranking sequence
can be computed using static and/or dynamic state information such as delay
or number of hops). This sequence determines the aggregation process. Aggre-
gation is controlled by a root node in the global overlay that is responsible for
this AS. The population of a local overlay is controlled by merging and splitting
local overlays based on this AS proximity information. The precise algorithms
for these operations are described in Section 3.4.

3.2 Building the Plethora Routing Core

The key to building the Plethora routing core is to use the global overlay to
maintain state information for local overlay. Specifically, an incoming node n
is mapped to a node s in the global overlay. This node s uses n’s IP address
to determine the AS [7] to which n belongs and maps the incoming node to a
local overlay Ln (several ASs might comprise a local overlay depending on peer
population). Node s responds to incoming node n’s request with the id of the
local overlay Ln to which it should join. In addition, node s also sends node
n the global routing tables. These correspond to steps 1 and 2 in Figure 2(a).
At this point, node n has joined the global overlay and knows that it must join
local overlay Ln (note that in this framework, it is possible to use additional
state information at node s to determine Ln). Node n then sends a message to
a selected node t in local overlay Ln (this node can be selected using a hashcode
whose range is in Ln) indicating its desire to join the local overlay. Node t
responds to this request with local routing information for overlay Ln. This is
illustrated in steps 3 and 4 in Figure 2(a). In this manner, an incoming node
joins the global location and local caching network.

258 R.A. Ferreira, A. Grama, and S. Jagannathan

3.3 Search in Plethora

The process by which objects are located in Plethora is illustrated in Figure 2(b).
An object is first searched in the local overlay using a conventional hash-based
query routing scheme. If the object is found, it is fetched from within the local
overlay. Otherwise, a query is generated on the global overlay. The object is
fetched and cached in the local overlay and forwarded to the requesting node.
While current versions of the Plethora core use a simple LRU replacement policy
with fixed buffer sizes, the specific caching mechanism is flexible w.r.t. imple-
mentation. The performance of this two level scheme is predicated on two critical
factors: local overlays must have a high degree of network proximity for meaning-
ful performance gains, and a significant fraction of all accesses must be satisfied
from the local overlay (hit ratio). In extensive experiments using access traces as
well as synthetic distributions, we have shown that for realistic network sizes, we
can achieve hit ratios in excess of 70%. At these hit ratios, we observe over 50%
improvement in peer performance with respect to a Pastry peer. With larger
buffers and correspondingly larger peer density in local overlays, these savings
are expected to grow considerably.

3.4 Plethora Network Maintenance

An important task within the Plethora routing core is to ensure that local over-
lays do not become too large or too small. In both cases, benefits from localization
are diluted, and the performance tends to that of a single global overlay (with
some overhead). For this reason, Plethora supports two directives – pSplit and
pMerge. A pSplit operation splits a single local overlay into two. This is simply
implemented by dropping selected bits (paths) from the routing infrastructure
(akin to splitting a single hypercube into two subcubes). It is important that
all peers within the same AS drop the same routing paths. A pMerge operation
conversely merges two local overlays into a single overlay. This is affected by
pairing up peers in the two local overlays, having them exchange local rout-
ing tables and merging the two with different routing prefixes (akin to merging
two subcubes into a hypercube of one larger dimension). Efficient algorithms for
pSplit and pMerge have been developed and their performance characterized
within the Plethora core.

3.5 Plethora Routing Performance

To critically examine the performance of the Plethora routing core, we have de-
veloped a network simulator that implements the routing schemes of the global
and local overlays, implements the algorithms for merging and splitting local
overlays, and emulates the underlying network. The topology of the underly-
ing network is generated using the Georgia Tech. transit-stub network topology
model (GT-ITM). All experiments are performed on a 32-processor Origin 2000
with 16GB of memory, running IRIX64.

The underlying network topology we use in our experiment contains 10 transit
domains, with an average of 10 nodes per transit domain. Each transit node has
an average of 10 stub domains attached. There are a total of 1,000 stub domains,

Plethora: An Efficient Wide-Area Storage System 259

Table 1. Parameters of the simulation experiments

Overlay Nodes 10,000
Network Nodes 110,100

Cache Size per Node 5MB
Distinct Objects 500,254
Mean File Size 5,144 bytes

Max Local Overlay Sizes 200; 300; 400; 500; 1,000; 2,000
Max Delay (D) 30ms; 40ms; 50ms; 100ms; 200ms

α 0.70; 0.75; 0.80; 0.85; 0.90

with an average of 10 nodes per stub domain. A LAN with 10 hosts is connected
to each stub node, resulting in a total of 100,000 hosts. The total number of nodes
in the underlying network topology is, therefore, 110,100. Each stub domain is
considered an autonomous systems. The link delays are selected randomly in the
following way: the delay of an edge between two transit domains is in the interval
[20-80]ms; the delay of a transit-transit edge in the same transit domain is in
the interval [3-23]ms; the delay of a transit-stub edge is in the interval [2-7]ms;
the delay of a stub-stub edge is in the interval [1-4]ms; and the delay of an edge
connecting a host to a stub node is fixed to 1ms.

The evaluation of a caching scheme requires appropriate dimensioning of the
storage available for caching at each node, and a realistic workload. Since there
are no publicly available traces that contain file sizes for existing peer-to-peer
systems, we use web proxy logs for the distribution of file sizes in the network.
The same approach was used to validate PAST in [11]. We use a set of web
proxy logs from NLANR1 corresponding to eight consecutive days in February
2003. The trace contains references to 500,258 unique URLs, with mean file size
5,144 bytes, median file size 1,663 bytes, largest file size 15,002,466 bytes, and
smallest file size 17 bytes. The total storage requirement of the files in the trace
is 2.4GBytes.

86.03%75.64%72.15%60.75%

72.65%68.28%68.26%60.75%

69.29%66.17%66.03%59.31%

61.36% 64.33%

60.75% 94.90%

89.22%

78.17%

68.88%

2000

1000

500

400

300

200

90.01%77.72%72.15%

60.50%58.40%57.04%

200ms100ms50ms40ms30ms

51.70% 51.38% 51.24% 52.98% 56.64%

Delay
Size

α = 0.70

80.94%

79.83%

76.82%

71.50%

82.84%

82.84%

80.81%

79.65%

75.59%

71.55%

76.68%

76.68%

76.68%

75.92%

84.78%

95.88%

92.18%

86.20%

81.34%

78.89%

74.59%

92.79%

90.38%

83.34%

81.59%

77.33%

72.53%

86.00%

74.72%

71.69%

2000

1000

500

400

300

200

200ms100ms50ms40ms30msDelay
Size

α = 0.90

Fig. 3. Cache hit ratios for α = 0.70 and α = 0.90

The main performance measurements that we investigate are the performance
gains in response delay and number of packets in the underlying network for

1 http://www.ircache.nlanr.net/

260 R.A. Ferreira, A. Grama, and S. Jagannathan

queries in the two-level overlay compared with a single Pastry overlay. The per-
formance gain is defined as: g = m1−m2

m1
, where m1 is the measurement (average

delay or lookup messages) in the network without cache, and m2 is the mea-
surement in the network with cache. The source nodes of the queries are chosen
randomly and uniformly, and the objects are accessed according to a Zipf-like
distribution, with the ranks of the objects being determined by their position
in the original NLANR trace. For the global overlay the Pastry parameters are:
b = 4, and leaf set size l = 32. These parameters are also used in the single Pas-
try overlay. We measure the impact of the cache hit ratio, the maximum delay
used to construct local overlays D, and the maximum number of nodes in a local
overlay in the performance gains. The cache hit ratio is the ratio between the
number of queries responded in a local overlay by the total number of queries.
The parameters of the simulation experiments are summarized in Table 1.

The cache hit ratio is a function of the α value in the Zipf distribution and
the maximum number of nodes in a local overlay. Figure 3 illustrates the cache
hit ratios obtained with α = 0.70 and α = 0.90 and the different maximum local
overlay sizes. The values in the tables correspond to the minimum and maximum
ratios obtained for the parameters, other values of α produce cache hit ratios
in those intervals. At these cache hit ratios, the reduction in end-user access
latency exceeds 50%.

4 Concluding Remarks

This paper describes the overall design of Plethora – a wide area read-write
object repository. It puts Plethora in the context of related efforts, outlines its
novel features, describes the Plethora routing core, and demonstrates consider-
able performance improvements.

Acknowledgements

The first author has been partially funded by CNPq and UFMS, Brazil.

References

1. A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. Howell,
J. Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment. In 5th Symposium on
Operating Systems Design and Implementation, Boston, MA, December 2002.

2. T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverless
Network File Systems. In Proceedings of the 15th Symposium on Operating System
Principles. ACM, pages 109–126, Copper Mountain Resort, Colorado, December
1995.

3. F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-Area Coopera-
tive Storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, Lake Louise, Canada, October 2001.

Plethora: An Efficient Wide-Area Storage System 261

4. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,
and M. West. Scale and Performance in a Distributed File System. ACM Transa-
tions on Computer Systems, 6(1):51–81, Februrary 1988.

5. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File Sys-
tem. In 13th Symposium on Operating Systems Principles, Pacific Grove, CA,
October 1991.

6. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:
An Architecture for Global-Scale Persistent Storage. In Proceedings of the Ninth
international Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000), Cambridge, MA, November 2000.

7. Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an Accurate AS-Level
Traceroute Tool. In Proceedings of the 2003 ACM SIGCOMM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
Karlsruhe, Germany, August 2003.

8. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In Proceedings of the 2001 ACM SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 247–254, San Diego, CA, August 2001.

9. S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:
The OceanStore Prototype. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies (FAST ’03), San Antonio, TX, March 2003.

10. M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-
Structured File System. ACM Transactions on Computer Systems, 10(1):26–52,
1992.

11. A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a
Large-Scale, Persistent Peer-to-Peer Storage Utility. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles, Lake Louise, Canada, October
2001.

12. Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming Aggressive
Replication in the Pangaea Wide-Area File System. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation, Boston, MA, December
2002.

13. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In Proceedings of the
2001 ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 149–160, San Diego, CA, Au-
gust 2001.

14. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-0101141,
UC Berkeley, Computer Science Division, April 2001.

iSAN - An Intelligent Storage Area Network Architecture

Ganesh Narayan and K. Gopinath

Computer Science and Automation,
Indian Institute of Science

{nganesh,gopi}@csa.iisc.ernet.in

Abstract. This paper describes the motivation, architecture and implementation
of iSAN, an “intelligent” storage area network. The main contributions of this
work are: (1) how to architect an intelligent SAN that understands the storage-
consumers1 to serve them better; (2) how to realise this abstract architecture using
existing technologies; and (3) to demonstrate the benefits that would accrue from
such an intelligent SAN. Our results show that the iSAN approach has impor-
tant benefits when compared with conventional SANs: iSAN facilitates storage
sharing, is secure and offers better throughput. In this paper, we discuss two case
studies as well as discuss how iSAN approach has been generic enough to capture
a wide range of other requirements of SANs.

1 Introduction

The Internet revolution drives a relentless demand for data to match the accelerating
growth in users, digital content and network bandwidth availability. The need to scale
data/storage independently has been the primary catalyst for the emergence of a storage
tier providing logical/physical separation of storage from the other services in a data
center. The result is the advent of an I/O architecture wherein the storage devices and
high-speed networks are integrated into forming I/O networks: both the storage and the
storage-consumer remain connected to a high speed network and communicate using
SCSI commands. These I/O networks, called Storage Area Networks (SANs), provide
better scalability and throughput as compared to traditional bus-based storage architec-
tures.

Yet, scalability and throughput requirements are not the only requirements required
from such SANs. Multitude of application domains, from content distribution networks
to providing storage services , demand a range of properties/services that a successful
SAN architecture should support. Unfortunately, SANs, whether based on FC [26] or
iSCSI [22], do not export sufficient functionalities that are of direct use to storage-
consumers. This is because traditionally SANs are seen merely as a replacement for
parallel SCSI bus. But as a distributed shared storage system, SAN is more than an
extended SCSI bus: SAN based systems demands functionalities which are otherwise
not needed in parallel SCSI based systems.

1 A storage-consumer is the software layer that builds storage abstractions from block level
storage provided by SANs. This layer typically includes, but not limited to, Volume Managers,
File Systems and Data Base Management Systems.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 262–273, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

iSAN - An Intelligent Storage Area Network Architecture 263

For instance, consider storage sharing. Coordinating processes that access shared
storage is not a problem in bus-based storage systems as any access to the storage
is arbitrated by the storage-consumer to which the storage is physically connected;
essentially there is no direct sharing of storage. In a shared storage system like a SAN
where storage is directly accessible from multiple storage-consumers, sharing becomes
a critical issue.

Besides, contemporary SANs are generally unaware of storage-consumer’s exact
requirements. For instance, different storage-consumers expect different security guar-
antees from a SAN depending upon the threat model that they foresee. Hence, it is
beneficial to enforce security properties judiciously especially when different secu-
rity guarantees exhibit significantly differing cost/performance profiles. For example,
a storage-consumer that is built assuming a byzantine storage, block level encryption
done in SANs may not be of much use. Similarly, with different concurrency control
schemes providing varying degrees of consistency guarantees with varying costs[15],
one may want to selectively enforce that particular scheme which is economical and
best suits the storage-consumer’s needs. Hence, SANs should be intelligent enough to
provide a set of guarantees that serves a storage-consumer best.

In this paper, we propose a novel SAN architecture called iSAN. iSAN identifies and
provides services that are of direct use to the storage-consumers. In providing these ser-
vices, iSAN also “understands” the service semantics sought by the storage-consumers
and provides the needed service in a way that best suits the storage-consumer’s require-
ments. The proposed iSAN architecture is extensible and generic; it switches the protocol
stack based on the storage consumer.

The rest of the paper is organised as follows. Section 2 discusses the requirements
that an I/O architecture should satisfy. In Section 3, we describe the architecture of iSAN.
Section 4 describes our implementation of the proposed architecture which uses Linux
kernel and Ensemble [10]. In section 5, we discuss how two important SAN services
– concurrency control, security – are realised in iSAN. We compare the performance
of the suggested solutions with that of existing solutions in Section 6. We conclude the
paper in section 8.

2 Design

iSAN design is founded on a number of requirements; some of the them, like throughput
and scalability, are inherited from basic SAN architecture with little or no enhancements.
This section explains each of these requirement and discusses their applicability in state
of the art SANs.

Interoperability. In a SAN, a path from a storage-consumer to any storage device may
include various combinations and permutations of host bus adaptors, hubs or switches
and SCSI peripherals. Not all permutations and combinations are feasible even if all the
subsystems have been built using the same network technology, let alone with dissimilar
technologies. Thus a critical and essential feature of any SAN architecture is ensuring
interoperability of components within the SAN.

Fibre Channel SANs have been suffering from interoperability problems as the higher
level FC standards (especially planned at the FC-3 layer) have never been standardised.

264 G. Narayan, and K. Gopinath

Zoning implementation is very much vendor dependent; FSPF protocol which ensures
switch-to-switch routing is still proprietary; public and private loop devices still have
problems when it comes to fabric logins. While network technologies like TCP/IP and
Ethernet have a strong tradition of multi-vendor interoperability, FC devices often do
not. Only recently, approaches such as SMIS have shown interoperability at the level of
discovery of device information but this does not still guarantee interoperability at the
services level. This poses serious problems in the design, procurement, and operation of
SANs and interoperability is thus becoming an increasingly important requirement.

Throughput. With high speed network and disk interfaces, SANs are expected to be
able to move the data as fast as possible. However, as the carrier bandwidth increases, the
transport protocol inefficiencies at the end-points have a negative impact on the effective
delay and throughput. For instance, the effective throughput of TCP over a gigabit
network, without considerable hardware support from NIC, is only a fraction of the
realisable throughput [9]. Even with zero-copy and checksum support from gigabit NICs,
TCP has other problems. Extensions have been proposed but not many NIC products
properly implement these extensions. In addition, the complexity of TCP has to be taken
into consideration.Also, with multiple independent TCP connection(s) between the SCSI
end-points, iSCSI handles issues like congestion control less effectively. Importantly,
failure detection becomes non-trivial as different TCP connections can break at different
time instants, depending upon their respective past activity. Each of these shortcomings
can affect the observable throughput in iSCSI SANs.

Even though FC SANs have better throughput than iSCSI SANs in local environ-
ments, this advantage is considerably less when it comes to WAN links due to the credit
based flow control scheme used in FC SANs [25]. Given these observations, it is appro-
priate that a SAN leverages a SCSI transport protocol that is fast, efficient and simple,
and has better flow control support.

Availability. Today faced with critical need to ensure the availability and continuous
operation in spite of isolated failures of disk, switch and links or the catastrophic loss
of the computing/communication facilities, SANs need to be highly available. While
FC SANs provide subsecond reconfiguration periods in case of a component failure, the
traditional Spanning Tree Protocol (STP) employed in Ethernet takes tens of seconds to
converge; it is to be noted that during the reconfiguration phase the extended Ethernet
LAN is “frozen”. STP also has other problems: inefficient bandwidth usage, link block-
age and STP is Virtual LAN (VLAN) unaware. A combination of Rapid Spanning Tree
protocol (RSTP) and link aggregation would reduce the reconfiguration stalls to even
tens of milliseconds. However, RSTP does not use the bandwidth effectively and still
has link blockage problems.

Apart from ensuring the availability of SAN infrastructure, a SAN should also pro-
vide primitives that help storage-consumers to ensure data availability: multicast is one
such primitive that helps in providing availability using replication. However, properties
provided by the traditional hardware multicast are not sufficient to ensure the mutual
consistency of replicated copies; often times the network multicast is combined with
protocols providing stronger guarantees like failure atomicity and message ordering to
handle replication more effectively. If a SAN is to provide stronger multicast guarantees,
it will ease the effort needed in providing transparent, block level replication.

iSAN - An Intelligent Storage Area Network Architecture 265

Storage Sharing. An I/O architecture permitting sharing enables seamless fail-over of
the storage-consumers that share data sets. Thus storage sharing is crucial to provide
uninterrupted service. Shared storage architectures also provide better scalability since
storage capacity and processing power could be added dynamically to the pool by adding
more storage-consumers and storage. Additionally, data sharing gives high flexibility
for dynamic load balancing since the data is uniformly accessible from any storage-
consumer. Sharing also facilitates storage consolidation which reduces management
and operation costs while increasing system usage.

But to achieve effective data sharing, SANs may need to assure certain properties at
the network level. For instance, in order for a storage-consumer to failover correctly, SAN
may need to ensure mechanisms such as I/O fencing. In fact, many commercial parallel
database clusters expect the underlying cluster transport to provide I/O fencing. Also,
concurrent access to the shared storage has to be mediated through certain concurrency
control mechanisms. Neither FC nor iSCSI provide any concurrency control primitives;
they do not provide I/O fencing also.

Security. The traditional, bus-based based storage-consumers are built assuming that
the connected storage is inherently secure. But in a distributed storage system like SAN,
such assumptions hold no longer true. In order to bridge the easy migration path for
legacy systems, which were built assuming the physical security of storage, SAN should
provide means of enforcing the needed security by other means, say, cryptographically.
Presentday FC SANs are built around relatively secure fiber transport and are not yet
equipped to enforce cryptographic security. On the other hand, iSCSI SANs – which are
built around insecure IP networks – enforce the necessary security using cryptographic
protocols; to this effect, IPSec/IKE have been chosen as the cryptographic infrastructure
for iSCSI SANs.

But, IPSec has many problems that are yet to resolved [8]; so does IKE ([18], [23]).
Also, the iSCSI level CRC mechanism and TCP checksum do not co-exist harmoniously
owing to strict layering restrictions; with multiple TCP connections and SCSI command
ordering in place, handling CRC error induced resynchronizations efficiently could get
problematic. Comprehensive IP multicast security is still very much in infancy; of the
many suggested key management protocols, only SKIP [2] discusses security in multicast
communications explicitly. However, the problem concerning SKIP, and in general, IP
multicast is the fact that they are membership unaware – a potentially inappropriate
design for a restricted environment like SAN.

Intelligence. Traditional storage-consumers interact with the storage using standard stor-
age protocols like SCSI. The storage-consumers are unaware of the underlying storage
technology. This enables an easy migration path from a direct access storage system
to a SAN. However, the converse is that a SAN is unaware of storage-consumers that
could result in poor performance. For instance, in a shared storage system like SAN,
the correctness criterion for permissible concurrent interleaving is very much storage-
consumer/application dependent.

If a SAN uses strong consistency models like linearizability [16] as default, it may be
grossly inefficient since there are many storage-consumers who can manage with much
weaker consistency guarantees. Thus a SAN should be intelligent enough to deploy the
right concurrency control mechanism that is sufficient for the storage-consumer’s re-

266 G. Narayan, and K. Gopinath

quirements; this is especially important as different consistency mechanisms may incur
different cost/performance tradeoffs [15]. In general, the data access path of a partic-
ular storage-consumer should be efficiently tailored to the exact needs of the storage-
consumer and SANs should have provisions for doing so.

Though the “Keep it Simple, Stupid!” [21] approach works well in networks, it may
not always be efficient: there are certain problems that do not permit efficient solutions
in systems designed strictly using end-to-end arguments. QoS, multicast and VPN are
such problems whose efficient solutions demand certain amount of intelligence in the
intermediate nodes or switches. Thus, SANs should have enough intelligence to handle
these critical problems efficiently.

3 Architecture

iSAN uses Type I Logical Link Control (LLC) [11] for transport, Group Communication
System (GCS) for membership services and VLAN for grouping; VLANs in iSAN,
pruned based on MAC address, provide efficient application/SCSI level routing. The
edge switches that are part of a VLAN form a group with membership respecting strong
virtual synchrony (Fig. 1). The group end-point that is housed in an edge switch, called
Sanlet, acts as a SCSI Target emulator: SCSI commands sent by storage-consumers are
received by the Sanlet and are dispatched to the appropriate physical storage device.
Thus Sanlet can be seen as a thin Volume Manager residing in the edge switch that
manages the virtualized storage. Fig. 2 depicts the flow of data in iSAN.

In iSAN, service discrimination is done by allowing a group to have a tailored pro-
tocol stack that matches the storage-consumers. We argue that this approach – called
protocol composition, provides enough flexibility so that storage-consumers with very
different goals can potentially agree on sharing of a common infrastructure, within which
their commonality is captured by layers that they share, and their differences reflected by
layers built specifically for their needs. Since theVLAN, by construction, houses storage-
consumers with similar requirements, it is natural to use theVLAN tag to choose between
various built-in protocol stacks. Presently all iSAN stacks share a common set of lower
layers – the set formed by set of microprotocols that assure strong virtual synchrony;
any further service specialization is done on the foundation of virtual synchrony.

Fig. 1. Usage of VLANs in iSAN Fig. 2. Flow of data in iSAN

iSAN - An Intelligent Storage Area Network Architecture 267

3.1 Design Criteria Revisited

The iSAN architecture proposed is interoperable and is likely to provide better through-
put and latency guarantees as it is based on standards such as 802.3 LLC and VLAN. By
providing virtual synchrony and stronger multicast guarantees (atomicity and ordering),
iSAN effectively facilitates replication based high availability schemes. However, the
high availability of iSAN infrastructure itself does not directly follow from the pro-
posed architecture. and we do not discuss this aspect of iSAN any further in this paper.
Based on strong virtual synchrony model, iSAN automatically provides basic sharing
protection like I/O fencing. Other critical aspects of sharing like concurrency control are
discussed in section 5.1. As discussed in section 5.2, iSAN deploys Ensemble’s fortress
model of security which is amenable to proofs of correctness. Above all, the protocol
composition mechanism presents iSAN with an efficient means of distinguishing and
servicing different storage-consumers effectively.

4 Implementation

iSAN is implemented using Ensemble group communication system [10] and Linux
kernel v2.4. The reason for choosing Ensemble are many fold. First, it is a well engineered
GCS toolkit with a number of of unique functionalities such as support for composable
protocol stacks. Secondly, Ensemble has a powerful, provably correct, multicast aware
security infrastructure [19]. Besides, Ensemble is event driven and is considered to be
superior to thread based systems like Horus .

Ensemble is implemented using OCaml and is provided as a user level library that
could be linked to an Ensemble application. But for our purposes, we needed a version
of Ensemble that is written in C so that we could port it to Linux kernel. C-Ensemble
serves this purpose precisely. We ported C-Ensemble distribution to Linux kernel with
minimal changes: This is achieved by wrapping system calls to provide a libc like
interface accessible from inside the kernel and by rewriting the event handling code. We
also ported the Ensemble’s total, causal ordering protocols to C-Ensemble Linux kernel
port because C-Ensemble provides only part of Ensembles’ functionality. We added a
simple application level credit based flow control protocol to C-Ensemble. We modified
both Ensemble and C-Ensemble to include LLC transport provided by Linux native LLC
implementation. However, we have not yet ported the security protocols of Ensemble
to C-Ensemble. Hence, iSAN currently uses the Ensemble/user (v1.33) for the security
experiments while the other experiments are done with C-Ensemble/kernel. Sanlet uses
a simple implementation of the target emulator software to emulate the SCSI target. This
has been written from scratch to be Ensemble friendly. Please consult [17] for further
information on implementation and configuring iSAN.

5 Case Studies

This section discusses the implementation of two critical storage services – concurrency
control and storage security – in iSAN and shows how the advantages of the iSAN
approach. We demonstrate that these two critical services, though seemingly dissimilar,

268 G. Narayan, and K. Gopinath

can be implemented efficiently in an iSAN. We believe that this diversity speaks for the
generality and expressibility of iSAN.

5.1 Concurrency Control

In a distributed, shared storage system like SAN, the logical view of the storage seen by
the storage-consumer can be very much different from the physical view. For example,
what the storage-consumers see as a contiguous blocks of storage may not be contigu-
ous at all; worse, may not even be from a single storage device. This is because the
underlying storage system may transparently offer functionalities like striping and vir-
tualization. Also, storage systems might impose hidden relationships among the stored
data, for example, in the form of shared parity blocks which needs careful interleaving
of I/O accesses. Thus, unless proper care is taken to resolve concurrent stripe accesses,
a storage-consumer may see inconsistent data irrespective of the fact that it may itself
be orchestrating some concurrency control mechanism at higher levels [1].

Concurrency control is the activity of coordinating the actions of processes that
operate in parallel, access shared data, and therefore potentially interfere with each
other [3]. The unit of a concurrent access, called transaction, consists of several lower
level operations which are expected to be executed atomically. There are four types of
concurrency control schemes that are prevalent in the literature – locking, timestamp
ordering(TO)2, optimistic and hybrid.

Of the four afore mentioned schemes, TO emerges out as the optimal mechanism for
shared storage ([1], [24]). However, there are atleast three problems that are associated
with TO. First, it requires synchronized clocks. Highspeed networks like SAN may not
increase the synchronization accuracy dramatically for atleast two reasons: synchroniza-
tion accuracy is bound by message delay variance and not by the absolute delay ([14],
[4]); also, clock synchronization messages – being few tens of bytes long, may not see
significant latency reduction even in gigabit networks. However, highspeed networks
will need to handle higher number of active transactions in a given time-slice and hence
require better clocks. Second, if the transactions are to come in some wildly different
order from the original issue order, TO will reject many transactions; [7] shows that
probability of such an occurrence could be high. The magnitude of network reordering
depends on the existence of redundant links, their configuration and network load; not
all of them are completely controllable. Thirdly, the order of transaction executions as
governed by the TO scheduler may or may not be conforming to certain expected order-
ing like causal order [13], depending upon the granularity of clock synchronization and
the delay characteristics prevailing. Fig. 3 depicts how causal violation could happen in
a master slave clock synchronization setting. Thus, if one needs deterministic ordering
of messages, TO cannot be used to enforce such ordering reliably.

iSAN uses message ordering protocols for concurrency control3. It is understood
that different ordering mechanisms – FIFO, casual, causally constrained total order

2 The timestamp ordering discussed here and elsewhere in the paper is Basic Timestamp Ordering;
we also assume strict schedules.

3 We assume that the storage device commits operations in issue order. This is not a unreasonable
assumption as most of the commercial RAID systems guarantee this.

iSAN - An Intelligent Storage Area Network Architecture 269

and unconstrained total order4 – guarantee different consistency semantics with cost
and strictness increasing in that order. iSAN, being storage-consumer aware, deploys
the suitable message ordering that suffices the storage-consumer’s requirements. To
this effect, we have considered five classes of storage-consumers and mapped their
requirements to particular message ordering protocol.

Fig. 3. Master P1 broadcasts the recent clock
reading δ, which includes the drift ρ, to slaves.
Ti represents the clock reading prefixed to the
message(mi) sent. Since these two events, clock
correction and message exchange, happen inde-
pendently, causality violation may occur.

Fig. 4. After sending the write F1 to the data
store, the application deletes the file (delete F1)
and creates a new file using create F2. The
metadata server allocates the deallocated blocks
from F1 to F2. Thus a delayed write F1 corrupts
the F2’s data that was freshly written.

Parallel File Systems. Parallel File Systems (PFS) cater to the I/O requirements of
multiprocessor/computer systems. Traditionally, PFS is organised as a set of clients –
where the applications run, and servers – which serve the storage. Most PFSs do not
favour client side caching and it is to be noted that the PFS clients can tolerate minor
inconsistencies in the shared state when the conflicts occur. In a PFS VLAN, iSAN will
not provide any ordering save the FIFO ordering of stripe updates between the client
and the IOD. This provides the expected behaviour with little or no additional cost. If
one is to deploy TO or strict 2PL, the overhead is very likely to be high as it provides
stricter consistency guarantee than what is actually needed. Thus, by making use of the
semantics of PFS like filesystem, iSAN increases the amount of concurrency available
for shared accesses, leading to better performance.

Hybrid Storage. In many of the SAN based architectures, SAN is hidden behind the
fileservers or database servers and the effective throughput seen by the clients is thus
still limited at the rate at which these storage-consumers are able to cater to the requests.
One way to solve the problem is to let the clients to access storage directly while expect-
ing the storage-consumer to maintain the necessary metadata including the block map
information; once the client gets the metadata information from the storage-consumer,
say after a file open, it can access the storage directly. Any metadata data update will

4 A total order that respects causal order is referred as causally constrained total order while a
total order that may not respect causal order is referred unconstrained total order.

270 G. Narayan, and K. Gopinath

still involve the storage-consumer while the data is accessed directly from the storage.
This architecture will be referred here as hybrid storage (often called as out-of-band
virtualization).

Given that metadata server and the client may both access the storage simultaneously,
one needs to ensure correct interleaving of these operations; Fig. 4 depicts one such
problem case that would arise otherwise. A closer examination of Fig. 4 reveals that
the problem is indeed due to causal violation: delete F1 should have been delivered
after write F1 message as the latter causally precedes the former. So, in hybrid storage,
Sanlets will enforce causal ordering of requests. Such mechanisms would improve the
asynchrony of the system while adding very little overhead.

Database Systems. Database systems do not favour one serial schedule over the other:
all the strict executions are equally correct. Yet, in order to avoid distributed deadlocks,
a DB may want to prune a total order out of conflicting transactions as in TO. However,
the overhead of synchronizing clocks could be averted if one is to use unconstrained total
ordering protocol in place of clocks. The Sanlet connecting DB to storage will thus need
to enforce the unconstrained total order and, as a side effect, will solve the problem of
mis-ordered transactions. [24] provides a total order based concurrency control protocol
that is readily deployable in iSAN.

Replication. Replication is an area of interest to both filesystems and databases and
hence is of interest to iSAN. Replication protocols come in variety of forms and hues,
differing in aspects like models, assumptions, mechanisms, guarantees provided, and
implementation[28]. Many replication schemes, notably the lazy schemes, will require
certain update ordering and in iSAN this ordering is effected by using the causally
constrained or unconstrained total ordering.

Log Enhanced Filesystems. Log enhanced filesystems like VxFS needs to commit
the metadata changes to log before it starts making changes to the on-disk filesystem
structure. But in order to ensure that the log writes reach the disk before filesystem
updates, the log is usually written synchronously. Thus for every metadata change, the
filesystem suffers a synchronous log write. But, if the underlying storage layer, .i.e.
iSAN, is to provide FIFO ordering of commands, the filesystem need not have to write
the log records synchronously; it only has to queue the log write before the corresponding
metadata update. Since the storage layer assures FIFO delivery of commands, by the
time the metadata updates reach the disk, the previously scheduled log writes would
have reached the disk too. Thus, providing FIFO ordering at iSAN layer would improve
the observed filesystem throughput of a journaling filesystem.

5.2 Storage Security

Organizations increasingly depend on their storage infrastructure for storing critical
information. Thus the I/O subsystem should understand the sensitivity of the data its
serving and should ensure confidentiality, integrity, and availability of the data both
in-storage and in-transit. Please consult [17] for further details.

iSAN - An Intelligent Storage Area Network Architecture 271

6 Performance

This section describes the experimental setup and results of the conducted experiments.
The setup consists of Intel machines (≥ 700MHz) running Linux (v2.4) acting as “edge
switches”; these edge switches are connected using a 100Mbps Ethernet. The Target
and Initiator are housed in the same switch to reduce the network interruption; it is a
priori observed that doing so does not significantly change the performance profile. A
FC JBOD, organized as a RAID 5 with three disks, is connected to one of the "edge
switches" and is used as the data store. Block level traces for VxFS are generated in
a Ultra Sparc machine running Solaris by running 4 benchmarks – ssh, ssl, gcc and
postmark [12]. The other traces used are the HP traces [20]. For a detailed description
of experimental setup and the related information, please consult [17].

Table 1. CCTRL - Relative cost of different or-
dering protocols (with FIFO as base)

fifo causal total total+causal

#3 % 0 7.36 17.43 30.06
#4 % 0 3.64 16.04 20.23

Table 2. CCTRL - Ordered Vs Sync Writes -
throughput improvement observed

ssl ssh gcc postmark

% 11.46 20.90 13.64 15.05

Table 3. CBC Vs ECB – Overhead

ssl ssh gcc postmark

% 0.97 1.38 0.41 4.73

Table 4. SEC - Throughput improvement for
7% plain data

ssl ssh gcc postmark

28.90 29.67 16.67 11.29

All the above tables depict the percentage of throughput improvement achieved.
Table 1 shows that the relative overhead of different ordering protocols (with FIFO as
the base) is indeed significant; the rows are indexed by the cardinality of the group and
the traces used are HP traces. Since we did not have any shared traces, we used the 3 disk
streams in HP to emulate shared access. The results signify that the storage consumers
indeed benefit from the selective deployment of ordering mechanisms. For instance,
causally constrained total order is costlier by 30% compared to FIFO for a group size of
3. However, increasing the group cardinality reduces this performance disparity. This is
due to the fact that 100Mbps Ethernet do not have efficient flow control. Lack of proper
flow control at the lower layer significantly penalises the low overhead/high throughput
FIFO ordering and it explains the reduction in relative overhead. Table 2 compares the
performance of ordered log writes compares and synchronous log writes. This supports
our argument that ordering of I/O commands helps even in a non distributed setting.

For the security experiments, the throughput difference between ECB-for-all and
CBC-for-journal-alone are observed to be with less than 5% range(Table 3). iSAN thus
achieves increased security at almost negligible cost. The results of experiments wherein
the storage-consumer/driver controlling the Sanlet dynamically using in-band messages

272 G. Narayan, and K. Gopinath

are depicted in table 4. The experiment is conducted by allowing roughly 7% 5 of the
block access to be transmitted in plain text; this is because the block level traces generated
do not have file names and their attributes. The 7% of block access that are transmitted
in plain is uniformly distributed across the total accesses. The results show that the
throughput improvement observed is indeed significant.

7 Related Work

Intelligence in iSAN is achieved using dynamic protocol composition which stands com-
fortably midway between the Turing complete Active Networks [27] and the quasi-static
Programmable Networks[6]. Composition, unlike Programmable Networks, provides
non trivial specialization, yet, unlike Active Networks, can be very efficient and secure.
A work that is very similar in spirit to the proposed architecture is that of Virtual Overlay
Networks (VON) [5]. However, our work is novel for many reasons: First, the archi-
tecture proposed in [5] is generic while our architecture is tuned to the requirements
of SAN. Secondly, [5] is abstract and leaves many engineering issues like selection of
the minimal Overlay Network, the vantage point where the code-stubs to be deployed,
mode of contacting the code stub etc. open. Our architecture is more concrete, pinning
down these crucial design parameters. Thirdly, to our knowledge, ours is the first appli-
cation/realization of [5]. For a detailed comparison of similar works and iSAN, please
consult [17].

8 Conclusions

In this paper, we have presented a design and implementation of an intelligent SAN
architecture. We have demonstrated how this architecture can be used to efficiently
solve some of the critical problems associated with conventional SANs, and evaluated
the suitability of solutions. We would like to conclude that iSAN approach of architecting
SAN shows great promise as a means of constructing efficient, yet, flexible SANs.

In long run, we would like to extend iSAN design to investigate the following aspects.
First, we plan to add a scalable and manageable virtualization architecture to iSAN. The
idea is to balance the virtualization overhead with the consumer-awareness of iSAN to
arrive at a low cost virtualization scheme. Also, we plan to investigate how increasing
asynchrony/concurrency at lower levels would improve performance in the higher layers
and to suggest such a scheme as a design principle. Finally, through iSAN research, we
are attempting to understand the synergy between virtual synchrony and filesystems.

References

1. K. Amiri, G. Gibson, R. Golding. Highly concurrent shared storage. ICDCS, Apr 2000.
2. A. Aziz, T. Markson, H. Prafullchandra. Simple key mgmt for Internet protocols

(http://www.skip.org/), 1998.

5 This number we have arrived at after observing the amount of public domain data that we found
in our lab machines.

iSAN - An Intelligent Storage Area Network Architecture 273

3. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. 1987.

4. S Biaz and J L.Welch. Closed form bounds for clock synchronization under simple uncertainty
assumption. Info. Processing Letters, 2001.

5. Ken Birman. Technology requirements for virtual overlay networks. IEEE Systems, Man and
Cybernetics: Special issue on Information Assurance, Vol. 31, No 4, July 2001.

6. Jit Biswas, et al. Application programming interfaces for networks - IEEE P1520, Jan 1999.
7. C. Bouras and P. Spirakis. Performance modeling of distributed timestamp ordering: Perfect

and imperfect clocks. In Performance Evaluation Journal, Apr 1996.
8. Niels Ferguson, , and Bruce Schneier. A cryptographic evaluation of IPSec, February 1999.
9. Andrew Gallatin, Jeff Chase, and Ken Yocum. Trapeze/IP: TCP/IP at near-gigabit speeds. In

USENIX Technical Conference, June 1999.
10. M. Hayden. The Ensemble System. PhD thesis, Computer Science Dept, Cornell Univ, 1998.
11. ISO. Logical link control - ISO/IRC 8802-2.
12. J. Katcher. Postmark: A new file system benchmark. TR3022, NetApp, Oct 1997.
13. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cation of the ACM, vol. 21, no. 7, July 1978.
14. J Lundelius and N Lynch. An upper and lower bound for clock synchronization. Information

and Control, Vol. 62, Nos. 2/3, September 1984.
15. David Mosberger. Memory consistency models. Operating Systems Review, 1993.
16. Herlihy M.P and Wing J.M. Linearizability: a correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems, 12(3), October 1990.
17. Ganesh Narayan and K. Gopinath. iSAN - an intelligent storage area network architecture.

TR-IISc-CSA-2004-6, Computer Science and Automation, Indian Inst of Science, Aug 2004.
18. Radia Perlman and Charlie Kaufman. Analysis of the IPSEC key exchange standard. IEEE

Internet Computing 4(6), November 2000.
19. Ohad Rodeh, Ken Birman, and Danny Dolev. The architecture and performance of security

protocols in the ensemble group communication system. TR2000-1822, Computer Science
Dept, Cornell Univ, Oct 2001.

20. Chris Ruemmler and John Wilkes. Unix disk access patterns. TR, HP Labs, Dec 1992.
21. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM

TOCS 2(4), November 1984.
22. J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, Efri Zeidner. iSCSI, 2001.
23. W A Simpson. IKE/ISAKMP considered dangerous, June 1999.
24. Rashmi Srinivasa. Network-Aided Concurrency Control in Distributed Databases. PhD

thesis, University of Virginia, January 2002.
25. Nishan Systems. Data storage anywhere, any time - metro and wide area storage networking

with Nishan systems IP storage switches, 2000.
26. ANSI NCITS T10/1144D. FC protocol for SCSI, second version (FCP-2), rev 5, Nov 2000.
27. D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, G.J. Minden. A survey of

active network research. IEEE Comm. Magazine Vol. 35, No. 1, Jan 1997.
28. M Wiesmann, F Pedone, A Schiper, B Kemme, and G Alonso. Understanding replication in

databases and distributed systems. In ICDCS, Apr 2000.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 274–285, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Static Techniques to Improve Power Efficiency of
Branch Predictors

Tao Zhang, Weidong Shi, and Santosh Pande

College of computing,
Georgia Institute of Technology, USA

{zhangtao, shiw, santosh}@cc.gatech.edu

Abstract. In this paper, we illustrate the application of two static techniques to
reduce the activities of the branch predictor in a processor leading to its
significant power reduction. We introduce the use of a static branch target
buffer (BTB) that achieves the similar performance to the traditional branch
target buffer but which eliminates most of the state updates thus reducing the
power consumption of the BTB significantly. We also introduce a correlation-
based static prediction scheme into a dynamic branch predictor so that those
branches that can be predicted statically or can be correlated to the previous
ones will not go through normal prediction algorithm. This reduces the
activities and conflicts in the branch history table (BHT). With these
optimizations, the activities and conflicts of the BTB and BHT are reduced
significantly and we are able to achieve a significant reduction (43.9% on
average) in power consumption of the BPU without degradation in the
performance.

1 Introduction

Branch prediction has a huge impact on the performance of high end processors
which normally have a very deep pipeline. Many studies have been done to improve
branch prediction rate using complicated designs, those designs often demand a
significant silicon and power budget. As claimed in [5], branch predictor can
potentially take up to 10% of the total processor power/energy consumption. With a
new metric dimension of power, the focus is how to maintain the same prediction rate
as a complex branch predictor but with significantly less power consumption and
area. In [5], the authors use two major techniques to reduce branch predictor power
consumption, banking and PPD (prediction probe detector). PPD is a specialized
hardware that records whether lookups to the BTB or the direction-predictor is
necessary, therefore saving power by reducing lookups to BTB and BHT when
combined with clock gating.

In this paper, we propose two new optimizations to reduce power consumption of
the branch predictor with no degradation in the IPC or prediction accuracy but
significant reduction in the branch predictor power consumption. The power
consumption of a branch predictor is dominated by the large branch target buffer
(BTB) and branch history table (BHT), both of which are introduced to achieve high
prediction accuracy in a high-performance processor. To optimize the power

Static Techniques to Improve Power Efficiency of Branch Predictors 275

consumption of branch target buffer, we introduce static branch target buffer that does
not need state updates during runtime except when the program phase changes; thus
activities in it are reduced significantly. Using static branch target buffer, we are able
to maintain the performance of traditional branch target buffer at the same time
eliminate most of the power consumption due to the updates to traditional branch
target buffer. To reduce power consumption of branch history table, we combine
static branch prediction with hardware dynamic branch prediction. With a hybrid
static and dynamic branch prediction, only those branches that are hard to predict
statically turn to hardware prediction, reducing branch history table activities and
collisions. Such a hybrid predictor can often attain the same prediction rate as a pure
hardware predictor with a much smaller branch history table and much less predictor
lookups and updates, therefore consumes less power.

2 Static Branch Target Buffer

To achieve a good address hit rate in branch target buffer, modern superscalar
processors normally have a very large multi-way branch target buffer. This large
buffer leads to high power consumption. Normally the power consumption of the
branch target buffer takes at least 50% of the total power consumption of the branch
predictor1.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

eon-cook mcf perl vortex vpr gcc

128-FA 256-FA 512-1way 512-2way 512-4way

Fig. 1. Address hit rate of different BTBs

An intuitive approach to reduce the power consumption of BTB is to reduce the
size of it. BTB is designed to be large because of two possible reasons. First, a large
buffer helps reduce conflict misses. Second, a large buffer helps reduce capacity
misses. If the main reason for a large BTB is the conflict misses, we can increase the
associativity of the BTB. However, according to our experiments, capacity misses are
major problems. Some programs have large working sets. To ensure a good address
hit rate for those applications, a large BTB must be deployed. Figure 1 shows the
address hit rate for six SPEC2000 benchmarks. In this paper, we will mainly study
these six benchmarks because they exhibit relatively worse branch prediction

1 In this paper, when we talk about branch predictor, we mean both branch direction predictor

and branch target buffer.

T. Zhang, W. Shi, and S. Pande 276

performance in our experiments. The configurations are 128-entry fully-associative
BTB, 256-entry fully-associative BTB, 512-set 1-way BTB, 512-set 2-way BTB and
512-set 4-way BTB. From Figure 1, for benchmarks like perl, vortex and gcc, even a
256-entry fully-associative BTB cannot achieve a comparable address hit rate to the
other configurations that have much less ways but a larger number of entries. Since a
fully-associative BTB does not have conflict misses, the above finding shows that
some benchmarks have large working sets and complex branch behaviors, requiring a
large BTB.

Fig. 2. Per-access Power Consumption and Delay of Different BTB Configurations

The address hit rate of fully-associative BTBs is very good for some benchmarks
like mcf. For those benchmarks, we can achieve a comparable address hit rate using a
fully-associative BTB with much less entries. However, Figure 2 shows per-access
latency (in ns) and per-access power consumption (in nJ) of different BTBs got using
CACTI timing and power model (version 3.0). From Figure 2, we can see fully-
associative BTBs are not power efficient comparing to multi-way BTBs and the per-
access delay of them are several times larger. Such kind of delay is intolerable to
high-end processors. So the conclusion here is that we have to maintain a large
enough BTB at the same time avoid introducing high associativity into the BTB.

Another way to reduce the power consumption of the BTB is to reduce its
activities. With clock gating used extensively in modern processors, the power
consumption of a particular function unit is significantly impacted by the activities it
undertakes. Unfortunately, to reduce activities of the BTB is also a hard problem. To
minimize pipeline stalls, the processor needs to know the target address of a branch as
soon as possible if the branch is predicted as taken. The target address is provided by
the BTB. In a traditional superscalar processor design, the processor will access BTB
during the instruction fetch stage, so that the predicted target address can be fed into
next fetch stage without stall. In [5], the authors proposed to reduce the activities due
to BTB lookups by only accessing it when necessary. Our work is built upon the
optimization proposed in [5]. We assume non-branch instructions have been filtered
using a mechanism similar to the one in [5] and they will not lead to BTB lookups.
Thus, our scheme can just deal with branch instructions.

We propose static branch target buffer to reduce the activities due to BTB updates.
Traditionally, whenever a branch instruction is completed, the BTB is updated to
remember its target address. With the optimization in [5] enabled, BTB updates may

0

0.5

1

1.5

2

2.5

128-FA 256-FA 512-1way 512-2way 512-4way

Power(nJ) Delay(ns)

Static Techniques to Improve Power Efficiency of Branch Predictors 277

account for half of the BTB activities. The basic idea is that if we fix the content of
the BTB, then no BTB updates are necessary. A naïve implementation could be that
the processor preloads BTB content when the program starts and the BTB content is
never changed during the program run. This naïve implementation may work for
small and simple programs but suffers from a limitation for large and complicated
programs, which may run for a long time and exhibit phase change significantly. On
the other hand, as shown in [13], although a complicated program does not exhibit a
globally stable behavior, its execution can be divided into phases, in each phase the
behavior is quite stable. In our static branch target buffer design, program phases are
dynamically identified and program phase changes are dynamically detected in the
processor. Upon a program phase change, the processor loads the BTB content
corresponding to the new phase then the BTB content is fixed until next program
phase change.

We use profiling to choose the proper branches to reside in the BTB for each
phase. We first categorize branches encountered in the phase according to the set
location it will reside in the BTB. For example, a 512-set BTB will have 512 different
set locations. Normally, there will be multiple branches belonging to one set location
due to collisions. Next, we identify the most frequent ones belonging to a set location
through profiling. The number of branches chosen is equal to the number of ways in
the BTB. In that way, we choose a subset of branches which just fit into the BTB.

This idea works because program phase changes are infrequent events, otherwise,
the power consumed by preloading BTB may eliminate the savings from eliminated
BTB updates. We adopted the phase identification scheme from [13], which is very
cost effective. Our experiment shows that GCC has the most unstable phase behavior,
but on average the phases of GCC still have a length of about 1 million instructions.
As pointed out by [13], integer programs tend to have much shorter program phases
and much more program phase changes. For floating point programs, the length of
program phases is normally tens of million instructions. All of our examined
benchmarks are integer programs to stress test our scheme. Our static branch target
buffer design will achieve even better results with floating point benchmarks.

There are several pitfalls regarding to static branch target buffer idea. Since we fix
the BTB content for each phase now and it is possible that we cannot put all the
branches seen in the phase into the BTB, static BTB may degrade address hit rate and
runtime performance. However, sacrificing performance means the program will run
for a longer time thus the other components in the processor will consume more
power! Thus, although static BTB can reduce branch predictor power significantly, if
the performance is degraded a lot, we may end up consuming more energy on the
whole processor scale. Fortunately, we see near zero performance degradation under
our static branch target buffer design. The major reason is that the phase identification
scheme works well and captures program phases accurately. Another reason is that
lots of BTB misses are actually due to some branches continuously kicking each other
out of the BTB, reducing BTB effectiveness. That means fixing the content of BTB
may instead help in some cases.

Static branch target buffer also introduces additional overhead to context switches.
BTB content now becomes a part of process state. When a process is switched out, the
current BTB of the process has to be saved. After a process is switched back, the
corresponding BTB needs to be restored. However, context switches can be regarded
as rare events in a processor. For example, the default time slice in Linux is 100ms,
during which tens of million instructions could have been executed. In our

T. Zhang, W. Shi, and S. Pande 278

experiments, the power consumption of BTB preloading and phase identification has
been modeled and counted in the total power consumption of the processor.

3 Correlation-Based Static Prediction

The power consumption of branch history table is another major source of branch
predictor power consumption. Branch history table and branch target buffer normally
take more than 95% of total branch predictor power. To reduce the power of BHT, we
propose static branch prediction. The basic idea is that those branches that can be
statically predicted will not go through the normal BHT lookup algorithm thus will
not access BHT. So the accesses to the BHT are reduced, leading to lesser BHT
activities thus reduced power consumption. The reduction of BHT accesses also leads
to reduction of conflicts in BHT. Thus, a small history table can always achieve the
same prediction rate as the traditional predictor with a much larger table. With the
same BHT table, static branch prediction may help achieve a better prediction rate
due to fewer conflicts in BHT.

The possible strategies of static branch prediction could be always predicting a
branch is taken, or always not-taken, or branches with certain op code always taken,
or branches with certain op code always not-taken, or always predict backward
conditional branches as taken. Another approach for static branch prediction is to rely
on compiler program analysis or profiling to come up with a direction hint to a
conditional branch. The hint can be encoded with a single bit in the branch
instruction. [11] shows that a large percentage of branches are highly biased towards
either taken or not-taken. In particular, 26% of conditional branches have a taken-rate
of over 95% and another 36% of branches have a taken-rate below 5%. Together,
over 62% of conditional branches are highly biased toward one direction. For such
conditional branches, their predictions can be hard encoded and this will reduce (1)
accesses to the BHT; (2) branch history table entries required for dynamic branch
prediction; (3) potential conflicts and aliasing effects in BHT [4, 6]. In our approach,
we further extend previous either taken or not-taken static prediction to correlation-
based static prediction.

Fig. 3. Example of branch correlation

[12] shows that many conditional branches can be predicted by using only a short
global history. This is the manifestation of branch correlation and gives the insight
that many conditional branches may have fixed prediction patterns under a short
global branch history. Figure 3 gives an example of branch correlation and prediction
pattern.

if (x>2)
 x = 0;
if (y<10)
 y = 0;
if (x<y)

x>2 y<10 x<y
false false true
false true ?
true false true
true true false

Static Techniques to Improve Power Efficiency of Branch Predictors 279

This leads to the design of correlation-based static branch prediction. Correlation-
based static branch prediction requires hardware assistance to record the recent global
branch history. In many branch predictors, e.g., gshare predictors, such information is
already there for dynamic branch prediction. The hardware chooses a prediction based
on the current global branch history and the correlation pattern provided by the branch
instruction. By using correlation-based static prediction, we can predict more
conditional branches statically, which could further reduce area and power
consumption of a dynamic branch predictor.

Static correlation pattern is conveyed to the hardware using encoding space in the
displacement field of a conditional branch instruction, which is done by the compiler
(binary translator). Other instructions are not affected. Conditional branch instructions
in most RISC processors have a format such as [op code][disp]. For Alpha 21264
processor, the displacement field has 21 bits. However, most conditional branches are
short-range branches. This leaves several bits in the displacement field that can be
used for encoding correlation pattern for most conditional branches. In our scheme,
we use four bits in the displacement field (bit 4 to bit 1) to encode the prediction
pattern based on two most recent branches. There are four possible histories for two
branches: 1) [not-taken, not-taken], 2) [not-taken, taken], 3) [taken, not-taken], 4)
[taken-taken]. Each bit of the four bits corresponds to the static prediction result for
one possibility. Bit 1 corresponds to case 1, and so on. If we statically predict the
branch taken, the corresponding bit is set to 1, otherwise, it is set to 0. Using the same
example in Figure 3, the encoded correlation pattern for the third branch could be
0101, assume through profiling, we found if the branch history is [not-taken, taken],
the third branch has a better chance to be not-taken.

Compiler has the freedom to choose whether correlation-based static prediction
should be used. When it becomes unwise to use static prediction, e.g., hard to predict
branches, or the displacement value is too large, compiler can always turn back to
original branch prediction scheme. In our scheme, we take another bit (bit 0) of
displacement field to distinguish extended branches with correlation information from
original branches. Thus, we take five encoding bits in total from displacement field
for extended branches.

First, we have to decide which conditional branches should use static branch
prediction and which should use dynamic branch prediction. A conditional branch is
classified as using static prediction if it satisfies the following criteria:

− highly biased towards one direction (taken or not-taken) under at least one
correlation path (branch history).

− branch target address’s displacement within the range permitted by the
shortened conditional branch displacement field.

To evaluate the potential gains offered by correlation-based static prediction, we
divide statically predictable conditional branches into three types:

− Non-correlation based type. This corresponds to conditional branches that can
be statically predicted using a single-bit direction prediction.

− Correlation-based type. For this type of branches, prediction is biased towards
different direction depending on the correlation path.

− Others. This type corresponds to the branches that cannot be categorized to type
I or type II.

T. Zhang, W. Shi, and S. Pande 280

Table 1 lists the total number of conditional branches for each type, and the total
number of dynamic executions made by the branches in each type for six SPEC2000
benchmarks running for 200 million instructions with fast-forwarding 1 billion
instructions. As shown in the table, many branches can be predicted statically.

Table 1. Conditional Branch Categorization

 # static
branch

dynamic
branch

type 1
static
(%)

type 1
dyna.
(%)

type 2
static
(%)

type 1 +
2 dyna.

(%)
eon 4006 14381689 34.95 52.32 37.09 62.18
mcf 678 27299410 60.18 79.92 64.45 80.37
perl 4920 29600039 86.63 68.92 89.59 70.51
vortex 7830 32691578 91.74 84.14 93.74 85.52
vpr 1917 38016432 81.27 54.71 86.18 66.32
gcc 18166 34023907 79.58 49.28 86.03 53.56

One pitfall of encoding correlation information into the branch instruction is access
timing. The processor has to know the next PC address for instruction fetch at the end
of current instruction fetch stage. Traditionally, during instruction fetch stage, the
processor has no access to specific bits of the fetched instruction. To enable
correlation-based static prediction, we use a separate extended branch information
table (EBIT) with a number of entries exactly corresponding to the level-1 I-cache
cache lines. Under our processor model, cache line size is 32B and contains 8
instructions. We impose a limitation that in each cache line, there is at most one
extended branch instruction with correlation information, which means that there is at
most one extended branch instruction in every 8 instructions. The limitation has minor
impact in our scheme. As shown in [5], about 40% of conditional branches have
distance greater than 10 instructions. Moreover, only a part of conditional branches
will be converted into extended branches. Each entry of EBIT is 8-bit information. Bit
7 indicates whether the cache line has an extended branch instruction. Bit 6 to 4
encodes the position of the extended branch in the cache line. Bit 3 to 0 records the
correlation information for the extended branch if there is one. The size of EBIT is 4K
bits.

The EBIT is updated with new pre-decoded bits while an I-cache line is refilled
after a miss. During each instruction fetch stage, the EBIT is accessed to detect an
extended branch instruction and obtain the corresponding correlation information. If
the current instruction is an extended branch, further BHT look-up is not necessary.
Otherwise, BHT is accessed. Thus, the EBIT access is done before any necessary
BHT access. Since the EBIT is small, we assume EBIT access and BHT access
together can be done in instruction fetch stage. Note if the current instruction is an
original branch, we end up consuming more power since we have to access EBIT too.
The validity of correlation-based static prediction relies on the fact that a large
percentage of conditional branches can be predicted statically, as shown in Table 1.
The power consumption of EBIT is modeled and counted in our experiments.

Static Techniques to Improve Power Efficiency of Branch Predictors 281

4 Experiments and Results

We use Simplescalar 3.0 plus wattch version 1.02 for performance simulation and
power analysis. We simulated a typical 8-wide 5-stage superscalar processor. We
choose BTB and BHT configurations comparable to the ones in [5].

We chose six SPEC2000 integer benchmarks that exhibit relatively worse branch
prediction performance. Each benchmark was fast-forwarded 1 billion instructions
then simulated for 200 million instructions. The profile information for each
benchmark is gathered using standard test inputs. Then standard reference inputs are
used to measure performance. Unless explicitly stated, all the branch predictor power
consumption results reported are obtained under Wattch non-ideal aggressive clock-
gating model (cc3). The power consumption of BTB preloading, phase identification
and EBIT is measured using Wattch array structure power model.

Our scheme is built upon the scheme in [5]. We assume only branch instructions
will lookup BTB. Thus, BTB updates account for almost half of the BTB activities.

First, we present the results for static branch target buffer. In our study, we assume
a 16K PAg direction predictor without static prediction. Three common BTB
configurations are examined: 512-set 1-way, 512-set 2-way and 512-set 4-way. Figure
4 shows the normalized address hit rate of static branch target buffer scheme. The
address hit rate is normalized to original branch target buffer design. From Figure 4,
the impact of our static branch target buffer to address hit rate is minor. From the
results, we also observe that the degradation on address hit rate becomes even smaller
with the increase of the number of entries in BTB, since now more branches could be
preloaded into BTB upon a phase change. Mcf benchmark under 512-set 1-way
configuration is a corner case in which the address hit rate under static BTB is better
than original BTB design. The reason may be destructive aliasing effect. Now that we
seldom update BTB, we have much less chance to improperly kick out some branches
from BTB.

Figure 5 shows the normalized IPC for static branch target buffer scheme. Note
any optimization of power consumption to one component of the processor should not
sacrifice the processor performance significantly. Otherwise, the program will run for
a longer time and the power savings from the optimized component may be easily
killed by more power consumption in other components. From the results, the IPC
degradation is very small and become even smaller with a larger BTB. For 512-set 4-
way configuration, the degradation is very small thus is not visible in the graph.

0.96
0.97
0.98
0.99

1
1.01
1.02

eon mcf perl vortex vpr gcc

512 1-way 512 2-way 512 4-way

Fig. 4. Normalized Address Hit Rate for Static BTB

T. Zhang, W. Shi, and S. Pande 282

0.96
0.97
0.98
0.99

1
1.01
1.02

eon mcf perl vortex vpr gcc

512 1-way 512 2-way 512 4-way

Fig. 5. Normalized IPC for Static BTB

0.6

0.65

0.7

0.75

0.8

0.85

0.9

eon mcf perl vortex vpr gcc

512 1-way 512 2-way 512 4-way

Fig. 6. Normalized Power Consumption for Static BTB

Figure 6 shows the normalized power consumption for the whole branch
predictor (BTB + direction predictor) with static BTB design against one with
original BTB design. The power saving comes from mostly eliminated BTB
updates. The power consumed by BTB preloading and phase tracking reduces the
saving but our experiments show they have insignificant impact. After all, our
implemented phase tracking hardware is very simple and phase changes are very
low-frequency events during execution. For 512-set 1-way configuration, the
average power reduction is 14.89%. For 512-set 2-way configuration, the average
power reduction is 22.41%. For 512-set 4-way configuration, the average power
reduction is 27.88%. For each configuration, static BTB is able to reduce the BTB
activities (dynamic power) by almost half. A larger BTB leads to larger power
reduction in percentage because the percentage of BTB power is larger in the whole
branch predictor power.

Next, we present the results for correlation-based static prediction. Static prediction
works along with a dynamic hardware predictor, which handles branches not
predicted by static prediction. A large number of hardware branch prediction schemes
have been proposed in the literature. It is impossible for us to examine all of them. In
this paper, we limited our scope to two types of predictors, i.e., gshare [9] and PAg [1,
2, 10] because they are the most basic ones and they can represent two large
categories of predictors. We studied them separately to get a deep understanding of
the impacts of correlation-based static prediction to different types of predictors.
Further, we can derive the impact of our proposed technique to more complicated
predictors like the tournament predictor in Alpha, which is basically composed of two
global predictors and one local predictor.

Static Techniques to Improve Power Efficiency of Branch Predictors 283

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

eon mcf perl vortex vpr gcc

gshare_12 gshare_14 PAg_12 PAg_14

Fig. 7. Normalized Direction Prediction Rate

Fig. 8. Normalized IPC

Figure 7 shows branch direction prediction rate under our correlation-based static
prediction and dynamic prediction hybrid scheme. The prediction rate is normalized
to original pure dynamic direction predictor. In the study of direction predictor, we
assume a 512-set 4-way BTB configuration. For gshare-based predictors, we
experimented two sizes, 4K and 16K. For PAg based predictors, we also explored two
configurations, 4K first level entries –11 bit local history and 16K first level entries –
13 bit local history. From the results, correlation-based static prediction helps
prediction rate for gshare-based predictor significantly. For a 4K size gshare
predictor, the average improvement in prediction rate is 4.39%. For a 16K size gshare
predictor, the average improvement is 2.32%. With the increase of predictor size, the
improvement on prediction rate due to correlation-based static prediction becomes
smaller. Correlation-based static prediction cannot achieve significant improvement
for PAg based predictors, since collision has much smaller impact to the performance
of PAg based predictors. For a 4K size PAg predictor, the average improvement is
1.37%. For a 16K size PAg predictor, the average improvement is 1.05%.

Figure 8 shows normalized IPC for the same configurations. For 4K gshare
predictor, the average improvement is 13.02%. For 16K gshare predictor, the average
improvement is 8.61%. For 4K PAg predictor, the average improvement is 4.97%.
For 16K PAg predictor, the average improvement is 4.52%.

Figure 9 shows the normalized whole branch predictor power consumption under
correlation-based static prediction and dynamic prediction hybrid scheme. For 4K
gshare predictor, the average power reduction is 6.2%. For 16K gshare predictor, the
average power reduction is 7.2%. For 4K PAg predictor, the average reduction is
14.8%. For 16K PAg predictor, the average reduction is 22.2%. The reduction for
gshare predictors is much smaller since there is no local history table and the power
consumed by the EBIT is relatively large.

0.7

0.8

0.9

1

1.1

1.2

1.3

eon mcf perl vortex vpr gcc

gshare_12 gshare_14 P Ag_12 P Ag_14

T. Zhang, W. Shi, and S. Pande 284

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

eon mcf perl vortex vpr gcc

gshare_12 gshare_14 PAg_12 PAg_14

Fig. 9. Normalized Predictor Power Consumption

Fig. 10. Results for Combined Architecture

Our static BTB and correlation-based static prediction could be integrated together
into the processor, so that we can achieve significant branch predictor power
reduction at the same time with at least no performance degradation in branch
predictor. For some benchmarks, the performance of branch predictor is actually
improved. Figure 10 shows the results after integration. All the results are normalized
against original branch predictor design. We assume a 512-set 4-way BTB
configuration and a 16K PAg direction predictor. From the results, for all
benchmarks, our optimizations never degrade IPC, i.e., the processor performance.
For benchmark vpr, the performance is improved significantly instead. The average
power consumption reduction is 43.86%. We also show the energy-delay product
results, which is a metric to show the trade off between power consumption and
performance. The average reduction in energy-delay (ED) product is even better,
which is 47.73%.

5 Conclusion

In this paper, we proposed two optimizations to reduce the power consumption of the
branch predictor in a high-performance superscalar processor. We raised the idea of
static branch target buffer to eliminate most of the update power of BTB. We also
pointed out that a hybrid branch predictor combining static prediction and dynamic
prediction not only can reduce branch predictor size and destructive aliasing but
branch prediction power consumption as well. We extended the conventional static
prediction by putting branch correlation pattern into spare bits in the conditional
branches when they are not used. Such correlation-based static prediction can further
improve static branch prediction rate comparing to single direction static prediction.
We explored the effects of the two proposed optimizations on the trade off between

0

0.2

0.4

0.6

0.8

1

1.2

1.4

eon mcf perl vortex vpr gcc

IPC Power ED

Static Techniques to Improve Power Efficiency of Branch Predictors 285

performance and power consumption. Our simulation results show that the integration
of the proposed optimizations can reduce the branch predictor power consumption by
44% and branch predictor energy-delay product by 48% while never degrading
overall processor performance.

References

[1] T. Y. Yeh, and Y. N. Patt. "Two Level Adaptive Branch prediction". 24th ACM/IEEE
International Symposium on Microarchitecture, Nov. 1991.

[2] T. Y. Yeh, and Y. N. Patt. "A Comparison of Dynamic Branch Predictors that Use Two
levels of Branch History". 20th Annual International Symposium on Computer
Architecture, May 1996.

[3] Cliff Young, Nicolas Gloy, and Michael D. Smith. "A Comparative Analysis of Schemes
For Correlated Branch Prediction". ACM SIGARCH Computer Architecture News ,
Proceedings of the 22nd annual International Symposium on Computer Architecture May
1995, Volume 23 Issue 2.

[4] S. Sechrest, C. C. Lee, and Trevor Mudge. "Correlation and Aliasing in Dynamic Branch
Predictors". ACM SIGARCH Computer Architecture News , Proceedings of the 23rd
annual international symposium on Computer architecture May 1996, Volume 24 Issue 2.

[5] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. "Power Issues Related to
Branch Prediction". In Proc. of the 2002 International Symposium on High-Performance
Computer Architecture, February, 2002, Cambridge, MA.

[6] Harish Patil and Joel Emer. "Combining static and dynamic branch prediction to reduce
destructive aliasing". Proceedings of the 6th Intl. Conference on High Performance
Computer Architecture, pages 251-262, January 2000.

[7] Cliff Young, Michael D. Smith. "Improving the Accuracy of Static Branch Prediction
Using Branch Correlation". ASPLOS 1994: 232-241.

[8] Cliff Young, Michael D. Smith. "Static correlated branch prediction". TOPLAS 21(5):
1028-1075. 1999.

[9] S. McFarling. "Combining branch predictors". Tech. Note TN-36, DEC WRL, June 1993.
[10] Shien-Tai Pan, Kimming So, Joseph T. Rahmeh, “Improving the Accuracy of Dynamic

Branch Prediction Using Branch Correlation”, ASPLOS 1992: 76-84.
[11] Michael Haungs, Phil Sallee, Matthew K. Farrens. "Branch Transition Rate: A New

Metric for Improved Branch Classification Analysis". HPCA 2000: 241-250.
[12] D. Grunwald, D. Lindsay, and B. Zorn. "Static methods in hybrid branch prediction". In

Proc. Of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), Oct. 1998. Pages:222 – 229.

[13] A. S. Dhodapkar and J. E. Smith, "Managing Multi-Configuration Hardware via Dynamic
Working Set Analysis," Proc. of the 29 Intl. Sym. on Computer Architecture, May 2002,
pp. 233 –244.

Realistic Workload Scheduling Policies for
Taming the Memory Bandwidth

Bottleneck of SMPs

Christos D. Antonopoulos1,�, Dimitrios S. Nikolopoulos1,
and Theodore S. Papatheodorou2

1 Department of Computer Science, The College of William & Mary,
118 McGlothlin-Street Hall, Williamsburg, VA 23187-8795, U.S.A.

{cda, dsn}@cs.wm.edu,
2 High Performance Information Systems Lab,

Computer Engineering & Informatics, Department,
University of Patras, 26500 Patras, Greece

tsp@hpclab.ceid.upatras.gr

Abstract. In this paper we reformulate the thread scheduling problem
on multiprogrammed SMPs. Scheduling algorithms usually attempt to
maximize performance of memory intensive applications by optimally
exploiting the cache hierarchy. We present experimental results indicat-
ing that - contrary to the common belief - the extent of performance loss
of memory-intensive, multiprogrammed workloads is disproportionate to
the deterioration of cache performance caused by interference between
threads. In previous work [1] we found that memory bandwidth satu-
ration is often the actual bottleneck that determines the performance
of multiprogrammed workloads. Therefore, we present and evaluate two
realistic scheduling policies which treat memory bandwidth as a first-
class resource. Their design methodology is general enough and can be
applied to introduce bus bandwidth-awareness to conventional schedul-
ing policies. Experimental results substantiate the advantages of our
approach.

1 Introduction

Conventional schedulers for shared-memory multiprocessors are practically or-
ganized around the well-known UNIX multilevel priority queue mechanism, with
limited extensions for support of multiprocessor execution. These schedulers try
to achieve a balanced allocation of threads to processors. They also favor cache
affinity, by preserving a long-term association between threads and the proces-
sors they are executed on.

� This work has been partially carried out while the first author was with the High
Performance Information Systems Lab, University of Patras, Greece.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 286–296, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Realistic Workload Scheduling Policies 287

This paper argues that for memory-intensive multiprogrammed workloads, it
is often the consumed memory bandwidth and not necessarily the cache affin-
ity that should be considered as a first-class citizen in the development of an
effective multiprocessor kernel scheduler. Our recent work [1] indicated that bus
saturation can be harmful enough to nullify the benefits of parallelism. This
paper shows that in certain memory-intensive workloads, memory bandwidth
saturation is more harmful for performance that the loss of cache affinity.

We introduce two realistic workload schedulers, Bus Bandwidth-Aware Round
Robin (B2ARR) and Bus Bandwidth-Aware Dynamic Space Sharing (B2ADSS),
that effectively control bandwidth consumption. The methodologies used for
their design are general and can be applied to introduce bus bandwidth con-
sciousness to conventional, bandwidth-oblivious policies. The effectiveness of the
new scheduling policies is evaluated using multiprogrammed workloads which
consist of instances of NAS benchmarks [2].

Cache affinity scheduling is well studied in previous work [3, 4, 5]. Depend-
ing on the workload, it may provide substantial impact over a naive scheduling
algorithm. This paper shows that for memory-intensive workloads, bandwidth
consumption generally has a more significant impact than cache affinity, there-
fore it should be integrated as a criterion in multiprocessor schedulers. However,
our policies do not prevent the use of cache affinity heuristics, since they are
in general orthogonal to the criteria used for cache affinity preservation. Cache
affinity heuristics usually control the association between processor and threads,
whereas our policies focus on the optimal selection of coscheduled threads.

Symbiotic job scheduling [6, 7] proposes the use of event monitoring hardware
to infer the interference between threads on shared execution resources and make
informed online scheduling decisions based on this interference. It targets simul-
taneous multithreaded processors. Out policies target more conventional SMPs,
however they could benefit multithreaded processors as well. They use a single
additional metric (bus bandwidth consumption) as opposed to a complete array
of microarchitectural events, in the case of symbiotic job scheduling. They are
implemented with the efficiency of on-line monitoring as a principle, as opposed
to symbiotic co-scheduling, which is a simulation-driven study.

Scheduling with runtime metrics such as the runtime speedup of parallel
applications in multiprogrammed workloads has been investigated in related
work [8, 9]. Our algorithms also use runtime metrics to improve scheduling deci-
sions, however they focus on memory bandwidth consumption, a specific aspect
of system performance, with a farther goal of maximizing system throughput.

This paper is organized as follows: Section 2 outlines the software and hard-
ware configuration of our experimental platform. In Section 3 we present ex-
perimental results which indicate that cache affinity is not as important as bus
bandwidth consumption for the performance of multiprogrammed SMPs. Sec-
tion 4 introduces B2ARR and B2ADSS, two bus bandwidth-aware scheduling
algorithms. In Section 5 we provide experimental evidence on the efficiency of
the new algorithms. Finally, Section 6 concludes the paper.

288 C.D. Antonopoulos, D.S. Nikolopoulos, and T.S. Papatheodorou

2 Experimental Platform Configuration

For the purposes of our work we have used the NANOS compilation and execu-
tion environment on a system running Linux 2.4.25. The environment consists
of an OpenMP compiler, a run-time threads package and a CPU manager. The
front-end of the environment is NanosCompiler [10], an OpenMP Fortran77 com-
piler which creates executables that can dynamically adapt the degree of their
parallelism to the available processors.

We have developed a customized user-level CPU manager for testing kernel
scheduling policies, without actual kernel hacking. Our CPU manager borrows
several ideas from the NANOS CPU manager which we co-developed for cache-
coherent NUMA multiprocessors [11], but uses a simplified internal structure
and interface. The CPU manager communicates its scheduling decisions to the
applications to allow them adapt to their execution environment. Moreover,
it allows them to recover from inopportune thread preemptions by resuming
preempted threads at the expense of executing threads of the same application.

The policies we introduce exploit performance related information available
by all modern processors through performance monitoring counters. We have ex-
perimented on a dedicated, bus-based SMP system. The system is equipped with
4 hyperthreaded Intel Xeon MP processors, running at 1.4 GHz, with 256KB L2
cache each. We had to disable hyperthreading due to limitations in the con-
current performance monitoring of threads executing on the same processor.
The system is also equipped with 1GB main memory. The practically attain-
able bandwidth of the bus which connects processors to main memory has been
experimentally evaluated to be 1797 MB/sec.

Throughout our experiments we have used class W, OpenMP versions of
benchmarks from the NAS 2.3 suite [2]. We did not use a higher class of NAS,
such as class A or B, because the memory footprints of most benchmarks are
large with respect to the physical memory of our system. In any case, the com-
putational weight of applications is not as important as their computation /
memory transfers ratio. We have also used three synthetic microbenchmarks:
FLUSH, BBMA and nBBMA. Each time FLUSH is executed on a processor, it
completely flushes the cache and then reuses data from it until getting suspended
by the scheduler. BBMA is similar to FLUSH. The sole difference is that, beyond
flushing the cache, BBMA continuously performs back-to-back accesses to the
main memory. A single instance of BBMA can bring the system bus close to the
limit of saturation. nBBMA, in turn, causes practically negligible interference to
both the cache of the processors that execute it and the system bus.

3 Sensitivity of Workload Performance to Cache Affinity
and Bus Saturation

In this section, we present experiments that quantify the impact of cache affin-
ity and memory bandwidth-saturation on the performance of multiprogrammed

Realistic Workload Scheduling Policies 289

workloads. The experiments have been executed using the CPU manager with a
round-robin scheduling policy. The use of the CPU manager allows applications
to adapt to the available processors and to minimize the adverse effects due to
the non-coscheduled execution of their threads.

We executed 2 sets of experiments in order to evaluate the effect of mul-
tiprogramming on cache performance and the effect of cache affinity on work-
load performance. In the first set, each application is executed alone, using 4
threads. In the second set, we execute each application, which again requests 4
threads, together with 1, 2, 4 and 8 instances of the FLUSH microbenchmark.
The slowdowns and the normalized L2 cache miss rates (CMR) with respect to
the standalone execution are depicted in Figure 1.

1 Appl (4 thr.) with multiple instances of FLUSH

0

1

2

3

4

5

6

7

1.25 1.5 2 3

Multiprogramming Degree

S
l
o
w
d
o
w
n

BT

CG

FT

MG

SP

Expected

1 Appl (4 thr.) with multiple instances of FLUSH

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.25 1.5 2 3

Multiprogramming Degree

N
o

r
m

a
l
i
z
e
d

C

a
c
h

e

M

i
s
s

R
a
t
e

BT

CG

FT

MG

SP

Fig. 1. Slowdowns (left) and normalized cache miss rates (right) from the multipro-
grammed execution of NAS applications with instances of FLUSH

Despite the close cooperation between applications and the CPU manager,
applications suffer a performance penalty higher than expected, i.e. equal to the
multiprogramming degree. Following the common belief, one would attribute
the excessive performance penalty to the cache pollution introduced by FLUSH.
However, the normalized CMR diagram reveals that, in most cases, the cache
performance of this class of applications does not degrade severely due to FLUSH
interference. Some workloads even experience a cache performance improvement
in the presence of multiprogramming. As the CPU manager reduces the number
of processors allocated to each application, applications react by reducing the
number of threads they create and use. As a consequence, the effects of true- and
false-data sharing are minimized. Moreover, in case two or more threads which
share data happen to time-share the same processor, each one may benefit from
the data fetched to the L2 cache by the others.

As a next step, we repeated the same experiments using nBBMA instead
of FLUSH. nBBMA does not interfere with processor caches. If cache affinity
was a determinative factor for workload performance, the slowdowns suffered by
applications should this time be lower. The results are summarized in Figure 2.
The comparison with Figure 1 reveals similar performance deterioration in both
cases. The cache performance of applications is also similar (the diagram is not
reported due to space limitations).

290 C.D. Antonopoulos, D.S. Nikolopoulos, and T.S. Papatheodorou

1 Appl (4 thr. with multiple instances of nBBMA

0

1

2

3

4

5

6

7

1.25 1.5 2 3

Multiprogramming Degree

S
l
o
w
d
o
w
n

BT

CG

FT

MG

SP

Expected

Fig. 2. Slowdown of the multipro-
grammed execution of NAS applications
with instances of nBBMA

1 Appl (4 thr.) with multiple instances of BBMA

0

2

4

6

8

10

12

14

16

18

20

1.25 1.5 2 3

Multiprogramming Degree

S
l
o
w
d
o
w
n

BT

CG

FT

MG

SP

Expected

Fig. 3. Slowdown of the multipro-
grammed execution of NAS applications
with instances of BBMA

We then used BBMA in the workloads and repeated the experiments. BBMA
continues causing traffic on the bus even after the cache has been flushed.
Figure 3 depicts the slowdowns which are, this time, remarkably higher. The
cache performance of applications is more diverse compared with the two previ-
ous experiments. However, there is again no clear cache performance deteriora-
tion trend which would justify the excessive performance loss.

These results are a strong indication that bus bandwidth is a valuable re-
source on bus-based SMP systems.The diverse effects of bus saturation prove to
be more harmful for performance than the loss of locality on multiprogrammed,
multiprocessor systems.

4 Bus Bandwidth Conscious Scheduling Policies

We introduce B2ARR and B2ADSS, two realistic scheduling policies which target
bus bandwidth as a scheduling resource of primary importance. The policies are
based on typical round-robin (RR) and on a variant of dynamic space sharing
(DSS) presented in [12]. The scheduling quantum is fixed to 100 msec, equal
to the scheduling quantum of the standard Linux scheduler. Ready to execute
threads are conceptually organized as a linked list.

At the end of each scheduling quantum B2ARR deallocates all executing
threads are enqueues them to the tail of threads queue. It also updates the
performance related statistics for all threads that executed during the latest
quantum and calculates the Bus Transactions Rate (BTR) of each thread. BTR,
measured as transactions/μsec, is a metric of the bandwidth consumption of
the thread during its last execution and is used as an estimation of its future
requirements. The Available Bus Transactions Rate (ABTR) is then initialized
to be equal to the Systems Bus Transactions Rate (SBTR), a constant value
which characterizes the system bus throughput. ABTR represents the available
bus transactions rate for allocation to the remaining processors. It is calculated
by subtracting the requirements of already allocated threads from SBTR.

Realistic Workload Scheduling Policies 291

Scheduling is divided in 2 phases. During the first phase, a portion of the sys-
tem processors are allocated in a round robin way to the threads that reside at
the head of the threads queue. Each time a processor is allocated to a thread, the
BTR of that thread is subtracted from ABTR and the thread is dequeued from
the threads queue. The remaining system processors are allocated to threads
during the second scheduling phase, following bus bandwidth consumption cri-
teria. The processors are allocated in rounds, one processor at a time. At the
beginning of each round the policy calculates the Average Bus Transactions
Rate per Unallocated Processor (ABTRproc). ABTRproc corresponds to the bus
transactions requirements of the ideal candidate for scheduling in this round. All
threads in the queue are then scanned in order to locate the fittest thread for
allocation in that round. Formula 1 estimates thread fitness:

Fitness =
1000

1 + |ABTRproc −BTR| (1)

The fitness value quantifies the distance between the estimated (BTR) and
the ideal (ABTRproc) bus bandwidth consumption. At the end of each round a
processor is allocated to the fittest thread. Formula 1 favors an optimal bus band-
width exploitation. If, for example, threads with high bandwidth requirements
have already been allocated, ABTRproc is low and threads with low require-
ments are preferred for allocation. The formula works well even in cases bus
saturation can not be avoided. If the bus gets overcommitted, ABTRproc turns
negative. As a result, the thread with the lowest bus bandwidth requirements is
the fittest.

Bookkeeping and statistics collection are organized in B2ADSS similarly to
B2ARR, however the scheduler also calculates the Average System Bus Trans-
actions Rate (SBTRavg), i.e. the average bus transactions rate of all active
threads in the system. During the first phase of B2ADSS , the typical DSS
algorithm is applied to allocate processors to applications. However, it allo-
cates a multiple mult of system processors (mult ∗ System Processors). At
the second phase, the scheduler forms mult chunks of threads to execute during
the next mult quanta using bus bandwidth optimization criteria. Only threads
that belong to applications which have been allocated processors during the
first phase are candidates for selection. Formula 1 is used again for the fit-
ness characterization of threads, however the target this time is to achieve a
bus bandwidth utilization from each chunk of threads as close as possible to
SBTRavg.

The design of the new scheduling policies implicitly provides two general
methodologies which can be applied to introduce bus bandwidth-consciousness
to conventional, bandwidth-oblivious policies. The first method is to allocate a
subset of system processors with the conventional policy. The remaining proces-
sors are allocated to threads with the goal of optimizing bus bandwidth con-
sumption. The decision on the percentage of processors that are allocated by
the conventional policy introduces an interesting tradeoff. If that percentage is
low, threads with bus bandwidth requirements ‘incompatible’ with those of the
other threads in the workload may experience large delays between two consec-

292 C.D. Antonopoulos, D.S. Nikolopoulos, and T.S. Papatheodorou

utive activations by the scheduler. On the other hand, allowing the conventional
policy to allocate too many threads minimizes the opportunities for optimally
co-scheduling threads that optimize bus bandwidth usage. In B2ARR we have
heuristically chosen to allocate 50% of the system processors using RR.

The second method applies the conventional policy to allocate processors to
applications for a scheduling epoch, namely a number of scheduling quanta. The
chunks of specific threads that execute during each quantum are then formed
with the objective of equilibrating bus bandwidth consumption among quanta.
A similar tradeoff applies to this methodology as well. Using an epoch of few
quanta may not allow an optimal exploitation of bus bandwidth. On the other
hand, a wide epoch would introduce a significant delay between the first phase of
scheduling and the actual execution of the threads in the last quanta of the epoch,
increasing the risk of applying outdated scheduling decisions. For B2ADSS the
epoch has been heuristically chosen to be 2 quanta long.

The heuristic choice of the values of 50% and 2 for the percentage of proces-
sors allocated by the conventional policy and the epoch length respectively, has
been experimentally driven. However, we intend to evaluate other heuristics as
well. For example, it might be beneficial to allocate a percentage of the available
bus bandwidth using the conventional policy, instead of a percentage of system
processors.

In previous work [1] we have presented two variants of a scheduling policy
which also schedules applications taking into account their bus bandwidth re-
quirements. The two variants, namely Latest Quantum Gang (LQG) and Quanta
Window Gang (QWG) are gang-like and target each application as a single en-
tity. The fitness metric used to select and schedule applications is quite similar to
Equation 1. LQG uses performance data collected only during the latest execu-
tion of each application, whereas QWG uses the average over a moving window
which spans several previous quanta.

LQG and QWG, as typical gang-like policies, have the disadvantage of often
resulting to suboptimal utilization of system processors. The rigid requirement of
co-executing all application threads may leave processors idle during one or more
scheduling quanta. B2ARR and B2ADSS alleviate this disadvantage by allowing
an arbitrary number of threads of each application to execute simultaneously.
On the other hand, the concurrent execution of all application threads minimizes
synchronization and unbalancing problems which may appear due to inoppor-
tune preemptions of threads by the OS scheduler. However, the adaptability of
applications created by the NanosCompiler, combined with the information and
mechanisms offered by the CPU manager, allow threads scheduled with B2ARR
and B2ADSS to minimize the adverse effects of such situations.

The new policies do not require any a-priori knowledge on the requirements
of threads and their interaction with the hardware. Instead, they exploit perfor-
mance data monitored in the past to predict thread behavior in the near future.
This property, combined with the aforementioned characteristics make the new
policies flexible and realistic. As a result, they are good candidates for adoption
in a real-world system.

Realistic Workload Scheduling Policies 293

5 Experimental Evaluation

In order to evaluate the effectiveness of the new policies we have executed a set
of workloads using the CPU manager with the new scheduling policies, the cor-
responding bandwidth-oblivious policies and LQG. Moreover, we have scheduled
the same workloads using the native Linux scheduler, without the intervention
of the CPU manager. We did not experiment with QWG, since NAS applica-
tions have regular, smooth transaction patterns and are generally insensitive to
external noise. For such applications, LQG performs better than QWG [1].

Table 1. Workload Composition

Max. Max.
Multipr. Multipr.

ID Description Degree ID Description Degree
A.1 2BT(3)+2CG(1) 2 B.3 2BT(4)+2SP(4) 4
A.2 4BT(1)+4CG(1) 2 C.1 (FT(1);FT(3))+(MG(3);MG(1))+ 3
A.3 2BT(4)+2CG(4) 4 +(FT(3);FT(1))+(MG(1);MG(3))
B.1 2BT(1)+2SP(3) 2 C.2 4FT(1)+4MG(1) 2
B.2 4BT(1)+4SP(1) 2 C.3 2FT(4)+2MG(4) 4

Table 1 describes the workloads we have used. A(n) means that application A
is executed with n threads. A+B represents the concurrent execution of applica-
tions A and B. Similarly, mA represents the concurrent execution of m instances
of application A. Finally, A;B means that application B starts right after the
termination of application A. The rightmost column of Table 1 reports the max-
imum multiprogramming degree exposed by each workload. However, the actual
multiprogramming degree may vary during execution.

Performance Improvement over Native Scheduler

-10

-5

0

5

10

15

20

25

30

35

40

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3

P
e
r
f
o

r
m

a
n

c
e

I
m

p
r
o

v
e
m

e
n

t

(
%

)

RR

DSS

LQG

B

2

ARR

B

2

ADSS

Fig. 4. Average workload turnaround
time improvement, with respect to the ex-
ecution with the native Linux scheduler

Performance Improvement over Corresponding Bus

Bandwidth Oblivious Policy

0

5

10

15

20

25

30

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3

P
e
r
f
o

r
m

a
n

c
e

I
m

p
r
o

v
e
m

e
n

t

(
%

)

B

2

ARR

B

2

ADSS

Fig. 5. Average workload turnaround
time improvement when B2ARR and
B2ADSS are applied, compared with the
execution with RR and DSS respectively

Figure 4 depicts the performance improvement attained by the new policies,
executed in the context of the CPU manager, over the native Linux scheduler.
A first important observation is that our CPU manager, even with bandwidth-
oblivious policies such as RR or DSS, outperforms the native Linux scheduler by
11% and 14% respectively. This performance improvement can be attributed to

294 C.D. Antonopoulos, D.S. Nikolopoulos, and T.S. Papatheodorou

the information and mechanisms provided to applications by the CPU manager,
in order to assist them adapt to the available processors and make progress on
the critical path of their computation. Only in few cases (workloads A.1, B.2
and C.3) RR and DSS perform slightly worse (up to 3.2%) than the native
scheduler. The average performance improvements attained by bus bandwidth-
conscious policies, namely LQG, B2ARR and B2ADSS, are 9%, 23% and 18%
respectively. In 2 workloads (A.1 and C.1) LQG performs worse than Linux
scheduler. The reason is explained in detail in the next paragraph.

We then compare the performance of bandwidth-conscious policies with that
of RR. The comparison isolates the performance gains due to application adapt-
ability to the available processors and focuses on the impact of the policies them-
selves. LQG is in average 1% worse than RR. Although LQG performs in most
cases better than RR, 3 workloads experience severe performance degradation.
These workloads reveal the fundamental weakness of gang-like policies: the rigid
rule of scheduling all threads of each application together results to low utiliza-
tion of system processors. If the three problematic workloads are excluded, LQG
is 4% more efficient than RR. In workload C.3 LQG also performs 4% worse than
RR. In this case, RR forces the application to reduce the degree of parallelism
in the presence of multiprogramming instead of time-sharing applications on the
same processors. This choice proves to be beneficial for performance. B2ARR
and B2ADSS, on the other hand, do not suffer from the same problems as LQG.
They perform, in average, 28% and 17% better than RR.

As a next step, we quantify the performance improvement attained by B2ARR
and B2ADSS over LQG. Although not co-scheduling application threads may in-
troduce overheads, B2ARR and B2ADSS perform in average 13% and 9% better
than LQG. Workloads A.2, B.2 and C.2 are the only exceptions. In these cases
B2ADSS performs up to 3% worse than LQG. Since all applications that par-
ticipate in these workloads are single-threaded, they contribute equally to the
total workload and the DSS phase of B2ADSS has practically no effect.

Figure 5 summarizes the performance gains of bus bandwidth-aware schedul-
ing policies over the corresponding bus bandwidth-oblivious ones. This compar-
ison quantifies the performance improvement due to the optimal exploitation of
bus bandwidth. It is important to notice that in all cases the new scheduling
policies perform better than conventional policies. B2ARR is in average 13%
faster than RR. B2ADSS also outperforms DSS, this time by 5%.

We expect our policies to perform even better on a system where more than
4 processors share a bus, since the bus saturation problem our policies cope
with will be more acute on such a machine. However, commercial, bus-based
SMPs are usually limited to 8 processors due to bus scalability issues. Multiple
buses are used to integrate even 8 processors on a bus-based system. In such
architectures, a slightly modified version of our policies would have additional
choices for optimal bandwidth exploitation. It would be possible to even move
threads among buses in order to optimize the bus bandwidth usage on each bus.

Significant effort has been paid to enhance the scalability of the Linux sched-
uler on large-scale multiprocessors. A new O(1) scheduler, present in 2.6.x ker-

Realistic Workload Scheduling Policies 295

nels, allows constant overhead scheduling, independently of the number of tasks
(N) and processors (P) in the system. The overhead related to the preservation of
load-balancing between processors grows linearly with the number of processors.
The current implementation of our scheduling policies has an O(N2) overhead,
which can be reduced to O(NlogN) if tasks are organized in priority queues,
according to their BTR. The overhead is in any case higher than that of the
standard Linux scheduler. However, as aforementioned, the policies target bus-
based SMPs, which are limited to small- or medium-scales. For such systems the
overhead of our policies has practically proven to be negligible.

6 Conclusions

In this paper we first presented experimental results which indicate that, for
the class of memory-intensive, numerical applications, executed on multipro-
grammed SMP systems, it is often bus bandwidth consumption and not cache
affinity that determines application performance. Driven by this observation, we
introduced B2ARR and B2ADSS, two realistic scheduling policies that target
bus bandwidth as a top-importance scheduling resource. The new policies mea-
sure the bus-bandwidth requirements of threads during their execution and use
the collected performance data to estimate thread behavior in the close future.
They select threads to be co-scheduled during each quantum with the goal of
neither wasting bus bandwidth, nor saturating the bus. The scheduling policies
have been implemented in the context of a CPU manager, a user-level process
that applies scheduling policies and precisely controls thread execution. The
CPU manager is part of a compilation and execution environment which allows
multithreaded applications to minimize the adverse effects of multiprogramming.

We evaluated the effectiveness of B2ARR and B2ADSS using workloads
consisting of instances of applications from the NAS benchmarks suite. Our
algorithms have been compared with the native Linux scheduler, the correspond-
ing bus bandwidth-oblivious policies RR and DSS, and LQG, a gang-like, bus
bandwidth-aware scheduling policy presented in our earlier work. B2ARR and
B2ADSS attained significant performance gains over the Linux scheduler. More-
over, they turned out to be an important improvement over RR, DSS and LQG.

We plan to investigate the impact of sharing resources other than bus band-
width on job scheduling. Such an investigation would be of particular interest for
emerging architectures such as SMTs or HyperThreaded (HT) processors, where
various execution units and levels of the on-chip memory hierarchy are shared
among threads. We also intend to apply the idea of optimally using the available
memory bandwidth to other levels of the memory hierarchy, beyond the front-
side bus. Possible targets are the bandwidth of cache ports in SMTs, HT, and
multi-core processors, or the bandwidth of network links in clusters of SMPs.

Acknowledgements

The first author is supported by a grant from ‘Alexander S. Onassis’ public
benefit foundation and the European Commission through IST grant No. 2001-

296 C.D. Antonopoulos, D.S. Nikolopoulos, and T.S. Papatheodorou

33071. The first two authors are supported by NSF awards ITR/ACI-0312980
and CAREER/CCF-0346867.

References

1. Antonopoulos, C.D., Nikolopoulos, D.S., Papatheodorou, T.S.: Scheduling Algo-
rithms with Bus Bandwidth Considerations for SMPs. In: Proceedings of the 33d
International Conference on Parallel Processing (ICPP ’03), Kaohsiung, Taiwan,
ROC (2003) 547–554

2. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance. Technical Report NAS-99-011, NASA Ames
Research Center (1999)

3. Squillante, M., Lazowska, E.: Using Processor-Cache Affinity Information in
Shared-Memory Multiprocessor Scheduling. IEEE Transactions on Parallel and
Distributed Systems 4 (1993) 131–143

4. Torrellas, J., Tucker, A., Gupta, A.: Evaluating the Performance of Cache-Affinity
Scheduling in Shared-Memory Multiprocessors. Journal of Parallel and Distributed
Computing 24 (1995) 139–151

5. Vaswani, R., Zahorjan, J.: The Implications of Cache Affinity on Processor Schedul-
ing for Multiprogrammed Shared Memory Multiprocessors. In: Proc. of the 13th
ACM Symposium on Operating System Principles (SOSP’91), Pacific Grove, Cal-
ifornia (1991) 26–40

6. Snavely, A., Tullsen, D.: Symbiotic Job Scheduling for a Simultaneous Multi-
threading Processor. In: Proc. of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’IX),
Cambridge, Massachusetts (2000) 234–244

7. Snavely, A., Tullsen, D., Voelker, G.: Symbiotic Jobscheduling with Priorities
for a Simultaneous Multithreading Processor. In: Proc. of the ACM 2002 Joint
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’2002), Marina Del Rey, CA (2002) 66–76

8. Corbalan, J., Martorell, X., Labarta, J.: Performance Driven Processor Alloca-
tion. In: Proc. of the 4th USENIX Symposium on Operating System Design and
Implementation (OSDI’2000), San Diego, California (2000)

9. Nguyen, T., Vaswani, R., Zahorjan, J.: Maximizing Speedup through Self-Tuning
Processor Allocation. In: Proc. of the 10th IEEE International Parallel Processing
Symposium (IPPS’96), Honolulu, Hawaii (1996) 463–468

10. Ayguadé, E., Gonzàlez, M., Labarta, J., Martorell, X., Navarro, N., Oliver, J.:
NanosCompiler: A Research Platform for OpenMP Extensions. Technical Re-
port UPC-DAC-1999-39, Dept. D’ Arquitectura de Computadors - Universitat
Politècnica de Catalunya (1999)

11. Martorell, X., Corbalan, J., Nikolopoulos, D.S., Navarro, N., Polychronopoulos,
E.D., Papatheodorou, T.S., Labarta, J.: A Tool to Schedule Parallel Applications
on Multiprocessors. The NANOS CPU Manager. In: Proceedings of the 6th IEEE
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP’2000). Vol-
ume 1911., LNCS (2000) 87–112

12. Polychronopoulos, E.D., Martorell, X., Nikolopoulos, D.S., Labarta, J., Pap-
atheodorou, T.S., Navarro, N.: Kernel-Level Scheduling for the Nano-Threads
Programming Model. In: Proceedings of the 12th ACM International Conference
on Supercomputing (ICS’98), Melbourne, Australia, ACM Press (1998) 337–344

A Parallel State Assignment Algorithm
for Finite State Machines

David A. Bader1,� and Kamesh Madduri2,��

1 Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM 87131

2 Department of Electrical Engineering,
Indian Institute of Technology – Madras, India 600036

{dbader, kamesh}@ece.unm.edu

Abstract. This paper summarizes the design and implementation of a
parallel algorithm for state assignment of large Finite State Machines
(FSMs). High performance CAD tools are necessary to overcome the
computational complexity involved in the optimization of large sequen-
tial circuits. FSMs constitute an important class of logic circuits, and
state assignment is one of the key steps in combinational logic opti-
mization. The SMP-based parallel algorithm – based on the sequential
program JEDI targeting multilevel logic implementation – scales nearly
linearly with the number of processors for FSMs of varying problem sizes
chosen from standard benchmark suites while attaining quality of results
comparable to the best sequential algorithms.

1 Introduction

Parallel architectures have promised high performance computing, but their use
remains largely restricted to well structured numeric applications. Exploiting
parallelism at the level of large distributed memory systems is hindered by
the cost of message passing. However, Symmetric Multiprocessors (SMPs) with
modest shared memory have emerged as an alternative platform for the de-
sign of scientific and engineering applications. SMP clusters are now ubiquitous
for high-performance computer, consisting of clusters of multiprocessors nodes
(e.g., IBM Regatta, Sun Fire, HP AlphaServer, and SGI Origin) interconnected
with high-speed networks (e.g., vendor-supplied, or third party such as Myri-
com, Quadrics, and InfiniBand). Current research has shown that it is possible
to design algorithms for irregular and discrete computations [1–4] that provide
efficient and scalable performance on SMPs.

With the rapid strides in VLSI technology, circuit design and analysis are
becoming increasingly complex. There is a growing need for sophisticated CAD

� This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR
ACI-00-81404, ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO
03-31654; and DARPA contract NBCH30390004.

�� Supported in part by an NSF Research Experience for Undergraduates (REU) grant.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 297–308, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

298 D.A. Bader and K. Madduri

tools that can handle large problem sizes and quicken the synthesis, analysis, and
verification steps in VLSI design. CAD applications are inherently unstructured
and non-numerical, making them difficult to parallelize effectively. The state as-
signment problem for Finite State Machines is one such application. It can be
formulated as an optimization problem that is NP-complete. Sequential heuris-
tics that try to solve this task are computationally intensive and fail for large
problem instances. The parallel implementation discussed in the paper, which
is based on the sequential algorithm JEDI [5], overcomes this limitation and
attains better results, i.e., designs with fewer literals (a Boolean variable or its
negation) and hence, faster circuits with reduced size and power consumption,
as well as faster execution times for the design and analysis.

The Finite State Machine (FSM) is a device that allows simple and accurate
design of sequential logic and control functions. Any large sequential circuit can
be represented as an FSM for easier analysis. For example, the control units of
various microprocessor chips can be modeled as FSMs. FSM concepts are also
applied in the areas of pattern recognition, artificial intelligence, language and
behavioral psychology.

An FSM can be optimized for area, performance, power consumption, or
testability. The various steps involved in optimizing an FSM are state mini-
mization, state assignment, logic synthesis, and logic optimization. SIS [6] is a
popular tool for synthesis and optimization of sequential circuits. Many differ-
ent programs and algorithms have been integrated into SIS, allowing the user
a range of choices at each step of the optimization process. The first step of
optimization, state minimization, is performed using STAMINA [7]. Two state
assignment programs, NOVA [8] and JEDI, are distributed with SIS. After state
assignment, the resulting logic for the output can be minimized by the logic
minimizer ESPRESSO [9] which tries to find a logic representation with the
minimum literals while preserving the functionality of the FSM.

2 Problem Overview

The State assignment problem deals with assignment of unique binary codes to
all of the states of the FSM so that the resulting binary next-state and output

st1 st2

st3st0

00 / 0

11/ 101/1

10/1 00/ 1

00/ 1

11/ 1

10
 /

1

10 / 1

01/1

01
/110

/X

01
/X

00/X

Fig. 1. train4 FSM

A Parallel State Assignment Algorithm for Finite State Machines 299

functions can be implemented efficiently. Most of the algorithms optimize for
the area of logic implementation. The number of literals in the factored form of
logic is the accepted and standard estimate [10] for area requirements of a logic
implementation. The parallel algorithm discussed here minimizes this measure
and thus optimizes for the area.

To illustrate the significance of state assignment, consider the following ex-
ample. The FSM train4 (Fig. 1) consists of four symbolically encoded states st0 ,
st1 , st2 and st3 . These states can be assigned unique states by using a minimum
of two bits, say y1 and y2. The input can be represented by two bits x1 and x2
and the the single bit output by z. y1ns and y2ns represent the next state bits
of y1 and y2, respectively. Suppose the following states are assigned:

st0 ← 00, st1 ← 01, st2 ← 11, st3 ← 10.

The resulting logic equations after multilevel logic optimization would be

y1ns = z(x1y1 + x2y
′
2ns + k) + x′

1x
′
2y2ns

y2ns = y′
1k

′(x1 + x2) + y2(x′
1x

′
2 + k)

z = y′
2(y

′
1 + k)

k = x1x2

This implementation results in a literal count of 22 after logic optimization
and requires 15 gates to realize assuming the complements of inputs are present.
However, if the state assignments were

st0 ← 00, st1 ← 10, st2 ← 01, st3 ← 11,

the logic equations after optimization would be

y1ns = z(y1 + y′
2ns)

y2ns = x1x
′
2 + x′

1x2

z = y1y2y
′
2ns + y′

1y
′
2

The literal count is only 12 in this case and 8 gates are sufficient to implement
the logic. Optimal State assignment becomes computationally complex as well
as crucial for larger FSMs.

2.1 Previous Research

There is significant prior research in the area of state assignment algorithms.
KISS is one of the first algorithms proposed targeting a PLA-based implemen-
tation. NOVA improves on KISS and is based on a graph embedding algorithm.
Genetic algorithms [11] and algorithms based on FSM decomposition [12] are
also proposed.

The sequential logic optimization tool SIS uses algebraic techniques to factor
the logic equations. It minimizes the logic by identifying common subexpressions.

300 D.A. Bader and K. Madduri

The algorithms MUSTANG [13] and JEDI use this fact and try to maximize the
size as well as the number of common subexpressions. These algorithms target a
multilevel logic implementation and the number of literals in the combinational
logic network after logic optimization is taken as the measure of the quality of
the solution.

The ProperCAD project [14] aims to develop portable parallel algorithms for
VLSI CAD applications. Parallel algorithms for state assignment [15] based on
MUSTANG and JEDI have also been proposed as part of this project. However,
the speedups in case of shared memory implementations were not significant.
The shared memory algorithm discussed here improves on this work as it attains
better speedups without compromising the quality of results.

3 JEDI

JEDI is a state assignment algorithm targeting a multi-level logic implementa-
tion. The program involves two main stages, the weight assignment stage and
the encoding stage.

Weight Assignment: In this stage, JEDI assigns weights to all possible pairs of
states, which is an estimate of the affinity of the states to each other. It chooses
the best of four heuristics for this purpose: input dominant, output dominant,
coupled, and variation.

The input dominant algorithm assigns higher weights to pairs of present
states, which assert similar outputs and produce similar sets of next states. It
has the effect of maximizing the size of common cubes in the implemented logic
function. The output dominant algorithm assigns higher weights to pairs of next
states, which are generated by similar input combinations and similar sets of
present states. It has the effect of maximizing the number of common cubes
in the logic function. The coupled algorithm adds up the weights generated by
both the input and output dominant algorithms and the variation algorithm
takes into consideration the number of input and output bits also in the weight
computation.

In the input dominant heuristic, an Input State Assignment matrix MI is
computed. This matrix is an Ns ×Ns symmetric matrix with each element mij

corresponding to the weight of the edge (si, sj). In general, mij is defined by
mij =

∑Oi

a=1
∑Oj

b=1 P (oia, ojb) where Oi and Oj are the number of transitions
out of states si and sj of the STG, oia is the set of binary outputs produced by
transition a out of state si, and P (oia, ojb) are the corresponding product terms.

To illustrate these weight assignment algorithms, consider again the example
of the FSM train4 (Fig. 1). It has four states: st0 , st1 , st2 , and st3 . The input
is two bits and the output is a single bit. Let us determine the weight of the
edge (st1 , st2).

Firstly, for the states st1 and st2 , the states they fan out to and their corre-
sponding frequency are determined. The FSM, represented in the State Transi-
tion Table (STT) form is input to JEDI. A transition corresponds to an edge in
the State Transition Graph (STG) or a row in the STT.

A Parallel State Assignment Algorithm for Finite State Machines 301

st1 → (st1 2, st2 2), st2 → (st2 2, st3 2)

Next, all the outputs produced by these transitions are inspected. In this
case, there is a single output bit and both st1 and st2 produce an output of 1
for all of the transitions. Thus, the value of m12 = m21 = 4 ∗ 4 = 16 in this case.

For the output dominant case, an Output State Assignment matrix is defined
and the weights are calculated similarly.

Encoding Phase – Simulated Annealing: JEDI tries to encode states with
high edge weights closely. This step can be formulated as minimization of the
sum

∑Ns

i=1
∑Ns

j=1 mij ∗ dist(si, sj) where mij is the edge weight from the input
assignment matrix and dist(si, sj) denotes the Hamming distance between two
codes si and sj when they are encoded using the minimum number of bits. The
Hamming distance between two binary codes is the number of bits in which the
codes differ. For example, the codes 1000 and 1110 have a Hamming distance of 2.

Encoding is done using Simulated Annealing, a probabilistic hill climbing
heuristic. The general algorithm is as follows:

1. Start with an initial temperature T and a random configuration of
states.

2. For a given temperature, pick two states at random and assign new
encodings or exchange their encodings.

3. Calculate the change in cost function.
4. Accept the exchange for a decrease in the cost function. Allow some

encodings to be accepted even if it leads to an increase in the cost
function in order to avoid local minima.

5. Repeat steps 2–4 until a certain number of moves are made. Then
lower the temperature and continue with the process.

6. Stop when the temperature reaches the minimum temperature.

After the encoding and simulated annealing is done, the output can be written
in a BLIF (Berkeley Logic Interchangeable Format) file. This file is then passed
into the sequential logic synthesizer, and logic optimization is carried out using
ESPRESSO. The required parameters such as the literal count and final output
logic then can be retrieved for further analysis.

4 Parallel Implementation

We parallelize JEDI using the SMP Node primitives of SIMPLE [16], a method-
ology for developing high performance programs on clusters of SMPs. Both the
weight computation and the encoding stages (the computationally expensive
steps) have been parallelized. Our source code for parallel JEDI is freely-available
from our web site, http://hpc.ece.unm.edu/.

The programming environment for SMPs is based upon the SMP node library
component of SIMPLE, that provides a portable framework for developing SMP
algorithms using the single-program multiple-data (SPMD) programming style.

302 D.A. Bader and K. Madduri

This framework is a software layer built from POSIX threads that allows the
user to use either the already developed SMP primitives or the direct thread
primitives. The SMP Node library contains a number of SMP node algorithms for
barrier synchronization, broadcasting the location of a shared buffer, replication
of a data buffer and memory management. In addition to these functions, there
is a parallel do that schedules n independent work statements implicitly to p
processors as evenly as possible.

Weight Computation Stage: The parallel algorithm for weight computation
is detailed in Algorithm 1. To calculate the weight matrix, all of the state pairs
are inspected first. For state i, the edge weights of state pairs (1, i) to (i− 1, i)
are checked. The i − 1 states are distributed among the processors using the
pardo primitive. Thus no two processors get the same edge pair and so there
are no conflicts. Each processor updates the weight matrix independently. Since
it is a shared memory implementation, no merging of local weight matrices is
required.

Result : Weight computation of the states in parallel
compute the weight assignment matrix;
(the inner loop is executed in parallel:)
for i = 1 to Ns do

for j = 1 to i − 1 in parallel do
calculate the edge weight (si, sj);

end
end
synchronize;

Algorithm 1: Weight computation stage after the KISS format file is read into
the appropriate data structure

Encoding Stage – Simulated Annealing: The encoding stage involves as-
signment of unique binary codes to each state such that the literal count of
the combinational logic is minimized. This is done using simulated annealing,
which is a computationally intensive process. A lot of research has been done in
parallelizing it for the placement problem in VLSI CAD applications [17].

Our implementation implements simulated annealing using the divide and
conquer strategy as well as the parallel moves technique. Previous research shows
that these techniques of parallel simulation are well-suited for shared memory
multiprocessors [18].

A unique global configuration is maintained in divide and conquer and paral-
lel moves, which simplifies the implementation for shared memory. The principle
of parallel moves applies multiple moves to a single configuration simultane-
ously. On the other hand, the divide and conquer method lets processors make
simultaneous moves within preset boundaries of the configuration.

We use the same default Initial and Stopping temperatures of JEDI in the
parallel implementation. At higher temperatures, some encodings are accepted

A Parallel State Assignment Algorithm for Finite State Machines 303

even if they do not reduce the cost function in order to avoid local minima. But
for low temperature values, the acceptance rate decreases. Hence, the number of
attempted moves increases as the temperature increases. The number of moves
are also varied according to the problem size.

Algorithms 2 and 3 detail the Simulated Annealing strategies.

Result : Simulated Annealing by ‘Divide and Conquer’
(initialization:)
1. Set the initial and stopping temperatures;
2. Set the cooling parameter;
3. Calculate the initial no. of moves per stage;
4. Divide the state space into P partitions;
(annealing in parallel:)
while Current temp > Stopping Temp do

for i = 1 to maxgen do
(maxgen is the max. no. of moves for a temp. value);
compute cost function in the local encoding space;
generate two random codes;
check whether they are already assigned;
if states are assigned then

exchange the codes of the two states;
else

assign new codes to states;
end
calculate the additional cost in the local space;
accept or reject the exchange;
update the local data structure;

end
synchronize;
update the temperature value;
calculate the cost function of the entire state space;

end

Algorithm 2: Simulated Annealing by ‘divide and conquer’

Error and Quality Control: The parallel simulated annealing stage has been
implemented such that there are no conflicts. In the parallel moves method
of annealing, each processor can choose moves independently from the entire
set of available moves. When moves are evaluated in parallel, it is important to
control how the moves are to be accepted. Firstly, it must be ensured that moves
in parallel are not contradictory. For example, two different codes must not be
assigned to the same state in parallel. This case does not arise due to the global
data structure and shared memory configuration.

In case of sequential simulated annealing, the cost function needs to be deter-
mined only once for a particular temperature, and then, only the change in the
cost is evaluated when deciding whether to accept or reject a state. But in par-
allel, the cost is evaluated every time a decision has to be made, since the global

304 D.A. Bader and K. Madduri

Result : Simulated Annealing by ‘Parallel moves’
(initialization:)
1. Set the initial and stopping temperatures;
2. Set the cooling parameter;
3. Calculate the initial no. of moves per stage;
(annealing in parallel:)
while Current temp > Stopping Temp do

for i = 1 to maxgen do
(maxgen is the max. no. of moves for a temp. value);
(the maxgen moves are divided among p processors);
compute cost function;
generate two random codes;
check whether they are already assigned;
if codes are assigned then

exchange the codes of the two states;
else

assign new codes to two states;
end
calculate the additional cost;
accept or reject the exchange;
update the data structure;

end
synchronize;
update the temperature value;

end

Algorithm 3: Simulated Annealing by ‘parallel moves’

data structure can be changed by any processor. This is an additional overhead
in the case of the parallel moves implementation. But this does not affect the
quality of the annealing. However, it is possible that there is a repetition of the
same moves by different processors leading to redundant moves.

In case of the divide and conquer strategy, a serious issue needs to be consid-
ered. If the local state space partitions are static, then the number of potential
moves is reduced as the number of processors increase. This would lead to a
degradation of quality, and the algorithm may not even converge. To avoid this,
the states need to be shuffled and distributed in such a manner that it is possible
to realize all possible moves in the global state space. This is ensured by chang-
ing the partitions for a change in temperature so that all the possible moves
are probable. However, the probability that a move is realized decreases when
compared to the sequential algorithm. This leads to a degradation in the quality
for some runs.

To illustrate how the repartitioning is done, consider the following example.
Suppose an FSM has 28 states. The minimum number of bits needed to encode
all states is 5, and this gives a state space of size 32. Consider a four processor
parallel annealing algorithm carried out in this space. Each processor is assigned

A Parallel State Assignment Algorithm for Finite State Machines 305

8 codes initially, processor 1 getting codes 0–7, processor 2 getting codes 8–
15, and so on. If no repartitioning is done, then the exchange of states 1 &
8, 2 & 9, etc., is not possible. However, for the next temperature change, if
the partitions are modified such that processor i gets codes 4k + i, for 0 ≤
k < 8, (processor 0 getting 0, 4, 8, 12, . . . , 28, and so on), then all exchanges are
theoretically possible. This partitioning scheme can be be extended for a general
case, an N -bit encoding space and P = 2k processors.

5 Experimental Results

We present an experimental study to compare our parallelized state assignment
algorithm to the state-of-the-art sequential approach, both in terms of quality
and running time. As we will show, our new approach scales nearly linearly with
the number of processors, while maintaining a similar quality of solution. We
compare our parallel JEDI approach with a simplified version of the sequential
algorithm distributed with SIS. These algorithms converge to the same solutions
and preserve most of the features of the original algorithm. The FSMs used for
testing are from the MCNC benchmark suite. After state assignment, the output
in PLA file format is passed through MV-SIS [19], a multilevel multi-value logic
synthesis tool from Berkeley. The quality of the solution is given by the literal
count after multilevel logic optimization. Lower literal count implies less area
of implementation. We use the SMP programming environment previously de-

Fig. 2. Literal Counts for Various Fi-
nite State Machines using Sequential
and Parallel Codes. p = 1 is the parallel
code run on a single processor; p = 2,
4, 8, and 12 is the number of processors
running the parallel code. (Missing bars
indicate that the sequential algorithm
we compared against could not handle
the problem instance)

Fig. 3. Total Execution time (in seconds)
for a suite of Finite State Machines. Note
that this is a log-log plot

306 D.A. Bader and K. Madduri

Fig. 4. Performance for the weight computation and simulated annealing steps for two
different Finite State Machines, s298 (top) and scf (bottom)

scribed and discuss next the multiprocessor environment used in this empirical
study.

We test the shared-memory implementation tested on a Sun E4500, a uniform-
memory-access (UMA) shared memory parallel machine with 14 UltraSPARC
II 400MHz processors and 14 GB of memory. Each processor has 16 Kbytes of
direct-mapped data (L1) cache and 4 Mbytes of external (L2) cache.

We measure the quality of the solution by the literal count after multilevel
logic optimization (see Fig. 2) for FSMs of varied problem sizes, when the parallel

A Parallel State Assignment Algorithm for Finite State Machines 307

algorithm is run on one processor. (See [20] for corresponding tables.) The count
reported is the best value obtained among the four weight generation heuristics.
The literal count reported by JEDI in [5] and the uniprocessor results obtained
by the parallel implementation ProperJEDI [15] are also listed for comparison.

The quality of the solution for multiprocessor runs is reported in detail in
[20]. Simulated annealing on multiple processors leads to slightly varying results
for successive runs of the same problem, so we report the average literal count
obtained over five test runs. The results listed are the ones obtained from the
parallel moves simulated annealing technique as they give better results than
the divide and conquer technique.

Figure 3 shows the total execution time for different FSMs on multiprocessor
runs. (See [20] for detailed running times.) The reported speedups are good for
all problem sizes (number of states) but are higher for larger problem sizes.
Figure 4 shows the execution time and corresponding speedup for the weight
computation and simulated annealing steps separately for two different FSMs.
It is observed that the execution time for the weight computation phase scales
nearly linearly with the number of processors for all problem sizes.

6 Conclusions

Our new parallel implementation of the popular state assignment algorithm
JEDI has been developed, specifically targeting shared memory multiproces-
sors. The present sequential algorithms fail to give good results for large Finite
State Machines. However with the parallel implementation, significant reduction
in implementation time can be achieved without compromising the quality of the
solution. The algorithm can also be re-structured in order to run on distributed
memory systems. In the gain computation step, the local data structures need
to be merged to generate the weight assignment matrix and in the simulated an-
nealing step, periodic global update of the data structure has to be done to avoid
conflicting state assignments. For future work, better results can be obtained if
parallel logic optimization tools are also developed.

References

1. Bader, D., Illendula, A., Moret, B.M., Weisse-Bernstein, N.: Using PRAM al-
gorithms on a uniform-memory-access shared-memory architecture. In Brodal,
G., Frigioni, D., Marchetti-Spaccamela, A., eds.: Proc. 5th Int’l Workshop on Al-
gorithm Engineering (WAE 2001). Volume 2141 of Lecture Notes in Computer
Science., Århus, Denmark, Springer-Verlag (2001) 129–144

2. Bader, D., Sreshta, S., Weisse-Bernstein, N.: Evaluating arithmetic expressions
using tree contraction: A fast and scalable parallel implementation for symmetric
multiprocessors (SMPs). In Sahni, S., Prasanna, V., Shukla, U., eds.: Proc. 9th
Int’l Conf. on High Performance Computing (HiPC 2002). Volume 2552 of Lecture
Notes in Computer Science., Bangalore, India, Springer-Verlag (2002) 63–75

308 D.A. Bader and K. Madduri

3. Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric
multiprocessors (SMPs). In: Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS 2004), Santa Fe, NM (2004)

4. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the min-
imum spanning forest of sparse graphs. In: Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS 2004), Santa Fe, NM (2004)

5. Lin, B., Newton, A.: Synthesis of multiple level logic from symbolic high-level
description language. In: Proc. of the IFIP TC 10/WG 10.5 Int’l Conf. on Very
Large Scale Integration, Germany (1989) 414–417

6. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj,
H., Stephan, P., Brayton, R., Sangiovanni-Vincentelli, A.: SIS: A system for se-
quential circuit synthesis. Electronics Research Laboratory, University of Califor-
nia, Berkeley. Ucb/erl m92/41 edn. (1992)

7. Rho, J.K., Hachtel, G., Somenzi, F., Jacoby, R.: Exact and heuristic algorithms for
the minimization of incompletely specified state machines. IEEE Trans. Computer-
Aided Design 13 (1994) 167–177

8. Villa, T., Sangiovanni-Vincentelli, A.: NOVA: State assignment of finite state
machines for optimal two-level logic implementation. IEEE Trans. Computer-
Aided Design 9 (1990) 905–924

9. Theobald, M., Nowick, S., Wu, T.: Espresso–HF: A heuristic hazard-free minimizer
for two-level logic. In: Proc. 33rd ACM Design Automation Conf., Las Vegas, NV
(1996) 71–76

10. Brayton, R., McMullen, C.: Synthesis and optimization of multistage logic. In:
Proc. IEEE Int’l Conf. Computer Design (ICCD), Portchester, NY (1984) 23–30

11. Almaini, A., Miller, J., Thomson, P., Billina, S.: State assignment of finite state
machines using a genetic algorithm. IEEE Proc. Computers and Digital Techniques
142 (1995) 279–286

12. Ashar, P., Devadas, S., Newton, A.: A unified approach to the decomposition
and re-decomposition of sequential machines. In: Proc. 27th ACM/IEEE Design
Automation Conf., Orlando, FL (1990) 601–606

13. Devadas, S., Ma, H.K., Newton, A., Sangiovanni-Vincentelli, A.: MUSTANG: State
assignment of finite state machines for optimal multi-level logic implementations.
IEEE Trans. Computer-Aided Design 7 (1988) 1290–1300

14. Ramkumar, B., Banerjee, P.: ProperCAD: A portable object-oriented parallel envi-
ronment for VLSI CAD. IEEE Trans. Computer-Aided Design 13 (1994) 829–842

15. Hasteer, G., Banerjee, P.: A parallel algorithm for state assignment in finite state
machines. IEEE Transactions on Computers 47 (1998) 242–246

16. Bader, D.A., JáJá, J.: SIMPLE: A methodology for programming high perfor-
mance algorithms on clusters of symmetric multiprocessors (SMPs). Journal of
Parallel and Distributed Computing 58 (1999) 92–108

17. Kim, S., Chandy, J., Parkes, S., Ramkumar, B., Banerjee, P.: ProperPLACE: A
portable parallel algorithm for standard cell placement. In: Proc. 8th Int’l Parallel
Processing Symp. (IPPS’94), Cancún, Mexico (1994) 932–941

18. Kravitz, S., Rutenbar, R.: Placement by simulated annealing on a multiprocessor.
IEEE Trans. Computer-Aided Design 6 (1987) 534–549

19. Gao, M., Jiang, J.H., Jiang, Y., Li, Y., Sinha, S., Brayton, R.: MVSIS. In: Proc.
Int’l Workshop on Logic Synthesis, Tahoe City, CA (2001) 138–144

20. Bader, D.A., Madduri, K.: A parallel state assignment algorithm for finite state
machines. Technical report, Electrical and Computer Engineering Department,
The University of New Mexico, Albuquerque, NM (2003)

A Novel Scheme to Reduce Burst-Loss and Provide QoS
in Optical Burst Switching Networks

Ashok K. Turuk and Rajeev Kumar

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur,

Kharagpur, WB 721 302, India
{akturuk, rkumar}@cse.iitkgp.ernet.in

Abstract. Burst loss due to contention is a major issue in optical burst switching
networks. In this paper, we propose a contention resolution scheme that uses a
offset time different from that of conventional optical burst switching (OBS) to
reduce burst loss and to provide QoS in optical burst switching networks. The
proposed scheme can be tuned to both prioritized traffic and delay constraint
traffic by changing the offset time. For selecting a data-channel, we propose three
channel selection algorithms, namely Least Recently Used (LRU), First Fit (FF),
and Priority Set (PS) algorithms. We simulate and compare proposed scheme with
the preemptive priority just-enough-time (PPJET) contention resolution scheme.
We consider bursty traffic in our simulation. It is found that our scheme outperforms
PPJET in burst-loss.

1 Introduction

There has been a phenomenal increase in the number of Internet users and the variety of
Internet applications in recent years. This has resulted in exponential growth of Internet
traffic, demanding a huge bandwidth at the backbone network. To meet this growing
demand for bandwidth, wavelength division multiplexing (WDM) network has become
the de-facto choice for the backbone network. IP over WDM networks have drawn much
attention among researchers, and many integration schemes between IP and WDM layers
have been proposed [1].

To carry IP traffic over WDM networks three switching technologies have been
studied: optical circuit switching, packet switching and burst switching. Optical circuit
switching and packet switching have their own limitations when applied to WDM net-
works. Circuit switching is not bandwidth efficient unless the duration of transmission
is greater than the circuit establishment period. It is shown that establishment of circuits
(lightpaths) in optical networks is an NP-hard problem [2]. Many heuristics and approx-
imation algorithms exist for establishing lightpaths in optical networks e.g., see [3] and
the references therein. Packet switching is hop-by-hop store and forward scheme and,
needs buffering and processing at each intermediate node. It is flexible and bandwidth
efficient. However, technology for buffering and processing in optical domain is yet to
mature for this scheme to commercialize. Fiber delay lines proposed in literature provide
limited buffer capability and are suitable for delays of fixed duration only.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 309–318, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

310 A.K. Turuk and R. Kumar

In this context optical burst switching (OBS) is emerging as the new switching
paradigm for the next generation optical networks [4, 5]. It combines features of both
circuit and packet switching. As such there exists no formal definition of OBS, the
features defined by Yoo and Qiao [4] for OBS have become de-facto standards. The
burst-size granularity (which lies between circuit and packet switching), separation of
control and data bursts, one-way (for most cases) or two-way reservation scheme, and
no optical buffering are important characteristics of the OBS paradigm.

Some major issues in optical burst switching networks are: (i) contention resolu-
tion, (ii) burst assembly, and (iii) quality-of-service (QoS) support. In a buffer-less OBS
network contending burst is lost. Therefore, burst-loss should be minimized in OBS
networks, is the key design parameter. A few approaches to contention resolution used
in OBS are: buffering [6], deflection routing [7], burst segmentation [8, 9] and win-
dow based technique [10]. Burst assembly is the process of aggregating and assembling
IP packets into bursts[11]. With increase in variety of Internet applications, different
applications such as voice-over-IP (VoIP), video-on-demand, video conferencing etc.
demand different QoS requirements. To meet the QoS requirements of different ap-
plications, IETF proposed IntServ and DiffServ schemes. However, such conventional
priority schemes are defined for electronic domain which trivially mandates the use of
buffers at intermediate nodes. Such schemes cannot be used directly to support QoS in
buffer-less OBS networks. Thus, any scheme to support differential QoS requirements
in OBS networks should not mandate the use of buffers at intermediate nodes.

Many schemes, in recent years, have been suggested to support priority based QoS
in OBS networks. All the proposed schemes have tried to reduce the burst loss. It is
not the burst-loss only but also the number of packet-loss that matters. For example,
consider three bursts b1, b2 and b3 of size 10, 20 and 50 number of packets each. A
loss of any of the bursts indicates 33% of the burst loss. However, if we consider loss
in terms of packets, the packet-loss comes out to be 14%, 28% and 64% respectively.
Therefore, it is desirable that a contention resolution scheme should take care of the
losses calculated in terms of packets. Consider Fig. 1(a) and assume both requests r1
and r2 have the same priority and arrive at a node at the same time. In OBS, the burst
b2 is always dropped. However, if the burst-size is taken into account the larger burst
b2 could have succeeded and the smaller burst b1 is dropped. This will result into larger
number of packets transmitted and higher resource utilization.

Next, consider Fig. 1(b) having two bursts of the same priority. In OBS, both the
bursts are dropped. However, taking the burst-size or the number of hops traversed into
contention resolution scheme one of the bursts succeeds. This gives rise to lower burst
loss and larger number of packets transmitted. Thus, if we consider two more parameters
– burst-size and number of hops traversed – in resolving contention, this will guarantee
that at least one of the bursts succeeds and larger number of bits transmitted.

End-to-end delay is another key parameter for QoS provisioning. All delay sensitive
applications demand that end-to-end delay is bounded by the delay constraints imposed
by the respective application. Contention should be resolved by considering the delay
factor too.

In this paper, we present a flexible algorithm for contention resolution to support a
larger set of QoS parameters in OBS networks. We consider packet loss and number of

A Novel Scheme to Reduce Burst-Loss and Provide QoS in OBS Networks 311

r

r

1

2

t

t

1

2

d

b

b

1

2

b

b

t

t

t

r

r

1

22

1

1

2

’’

(a) (b)

Fig. 1. Illustrations for Contention Resolution : (a) two requests are partially overlapped for a
period d, (b) two requests have the same reservation instance

hops traversed, in addition to priority, for resolving contention. Our scheme is generic
and can easily be adapted to satisfy delay-constraints. The aim is to reduce blocking
probability of the bursts arising due to resource contention at intermediate nodes as
well as to meet the delay constraints of the delay sensitive traffic. The proposed scheme
guarantees that at least one of the bursts succeeds when contention occurs; the contention
should be resolved in accordance with satisfaction of QoS parameters. To select data-
channel, we propose three channel selection algorithms – (i) Least Recently Used (LRU),
(ii) First Fit (FF), and (iii) Priority Set (PS). Channel selection algorithms run at the
ingress routers to select a data-channel for reservation and for subsequent transmission.
We evaluate the proposed scheme with the above channel selection algorithms.

The rest of the paper is organized as follows. Section 2 explains the contention
resolution technique; few assumptions and notations used are described in Sub-section
2.1. Channel selection algorithms are explained in Section 3. Simulation results are
presented in Section 4 and compared with PPJET. Finally, some conclusions are drawn
in Section 5.

2 Proposed Contention Resolution Scheme

2.1 Assumptions and Notations

We model an optical network by means of a undirected graph G(V, E) where V is the
set of vertices (nodes) and E represents the set of links/edges in the network. Two types
of nodes (here after, we use the terms node and router interchangeably) are identified:
edge routers and core routers. Every edge router has (ne − 1) × P electronic buffers
where ne is the number of edge routers, P is the number of priority classes supported in
the system. Each buffer belongs to a specific pair of priority class and an egress router.
The core router has no buffer; this is a desirable feature of the optical burst switching
networks. A core router acts as a transit router for data-traffic. Thus, the data-traffic
remains in optical domain from ingress to egress router. Propagation delay, tp, between
every pair of adjacent vertices in graph G is assumed to be the same. Processing delay
of the control packet at each router is assumed to be δ. We use the following notations
in rest of the paper:

Hsd
t (r): Number of hops for the request r between source - destination pair (s, d),

Hsd
i (r): Remaining number of hops for the request r between source - destination pair

(s, d) at node i.

312 A.K. Turuk and R. Kumar

Original burst: A burst for which resources are already reserved at the core router,
Contending burst: A burst whose reservation request has resulted in resource con-
tention at the core router.

We define the following three situations that can occur when an intermediate router
receives a reservation request:

– No contention (NC): When no contention for resources occurs at the intermediate
core router.

– Contention resolved (CR): When a contention occurs at an intermediate core router
i and for at least one of the requests Hsd

i (r) > Hsd
t (r)/2.

– Contention-not-resolved (CNR):When contention occurs at intermediate core router(s)
and for none of the request Hsd

i (r) > Hsd
t (r)/2.

2.2 Proposed Scheme

OBS is based on either one way or two way reservation protocol. The minimum latency
in one way reservation protocol is P + δ · H where the minimum latency in two way
reservation protocol is 2P +δ ·H . Our proposed scheme is a one way reservation protocol
however it differs from other OBS schemes in two aspects - one, the offset time, and
second, the methods adopted for contention resolution. In other OBS schemes, the offset
time is δ ·H where δ is the processing delay of control packet at each node and, H is
the number of hops between source-destination pair. In our scheme, we take the offset
time to be P + δ ·H where P is the propagation delay between source-destination pair.
The need for the additional P units of time is explained subsequently. The minimum
latency of burst in other OBS schemes, is P + δ · H which is same if a burst is sent
along with control packet in optical packet switching. The minimum latency in optical
circuit switching is 3P + δ ·H . In the proposed scheme, the minimum latency of a burst
is 2P + δ · H . Thus, we can say the minimum latency in our scheme is identical to
OBS with two way reservation protocol. However, the proposed scheme is a one way
reservation protocol where each burst experiences an additional delay of P units. The
scheme is also tunable to delay sensitive traffic. For delay sensitive traffic the offset time
in the proposed scheme is taken to be δ ·H which is the same as that in OBS. However,
this offset can be made adaptive to the application needs. In the scheme, if a contention
occurs and the situation is a CR one as mentioned in Section 2.1 then a burst is further
delayed for the contention period. However, this delaying technique of our scheme is
not applicable in case of delay sensitive traffic. For delay sensitive traffic if the required
resources are not available within that amount of time, the burst is dropped.

Secondly, the proposed scheme differs from OBS in the method adopted for con-
tention resolution. In OBS, the resource conflict is resolved on the basis of request
priority and the time instance for which request is made. In addition to the above two
parameters, we take burst-size and the number of hops traversed to resolve contention.
A higher priority request is given a priority. However, for the same priority requests,
the one that has traversed the maximum number of hops, is accepted for better resource
utilization. The request that has traversed the maximum number of hops have more re-
sources reserved on the path. Accepting this request will give rise to higher resource
utilization. For same priority and the equal number of hops traversed the burst that has

A Novel Scheme to Reduce Burst-Loss and Provide QoS in OBS Networks 313

larger burst-size is accepted. For same priority, equal number of hops traversed and the
same burst-size their instance of reservation is taken for resolving the conflict. Thus, the
tie in contention resolution is resolved in order of priority, number of hops traversed,
burst-size and delay.

Next, we explain the basis of having P additional units of delay in offset time with
the help of timing diagrams illustrated in Figures 2 and 3. The total delay encountered
by a control packet for source-destination pair (s, d) is no greater than Δ = δ×Hsd

t (r).
The offset-time, T , in OBS is taken to be at least Δ. In Fig. 2 the number of hops between
source - destination pair (s, d) is 4. Therefore, the offset-time T in OBS is 4δ. In OBS,
if a contention occurs say at node A or at node C then the burst is dropped at A or at B
as shown in Figures 2(b) and 2(c) respectively. With this offset time a contending burst
cannot be further delayed.

(a)

δ

T δ

A B Cs d

t t t

T δ

δ

t t t

A B Cs d

(b) (c)

T

δ

A B Cs d

δ

δ

t t t

t t t

Fig. 2. Timing Diagram of burst switching network: (a) no contention occurs at intermediate nodes,
(b) contention occurs at node A and (c) contention occurs at node C

A B Cs d

T

(a)

T ’

d

T δ

δ

δ

(b)

t t t

A B Cs d

δ

δ

δ

δ

t t t

t t

Fig. 3. Timing Diagram for the proposed scheme: (a) contention at node A is resolved, and (b)
contention at node C but the burst is dropped at node B

In our proposed scheme, the offset, T , between source-destination pair (s, d) is taken
to be (t + δ)Hsd

t (r). For the above example the offset time between source-destination
pair (s, d) is 4(t + δ). Let us consider Fig. 2(b) where contention has occurred at node
A and, d be the duration of the contention period. The control packet has taken one

314 A.K. Turuk and R. Kumar

hop to reach the node A from the source s. If a message is sent from node A to the
source s to delay the transmission of burst for the contention period d it will reach s at
T

′
= 2(t + δ) after the source s has sent the control packet (Fig. 3(a)). The offset-time

T > T
′
i.e., source s will receive the message to delay the transmission before the expiry

of offset-time. Hence, the transmission of the burst is delayed and is not dropped at node
A as shown in Fig. 3(a).

Let us consider Fig. 2(c) where contention has occurred at node C and, d be the
duration of the contention period. If a message is sent from node C to the source s to delay
the transmission of burst for the contention period d it will reach s at T

′
= 6(t+ δ). The

offset-time T < T
′
, i.e., source s will receive the delay message after it has transmitted

the burst and the burst is dropped at node C. Therefore, instead of sending a delay
message if a resource-release message is sent from node C, the message will release the
resources reserved at node B before the burst arrives at node B and is dropped at node
B rather than at node C. This gives rise to better utilization of the resources on link BC
which was earlier occupied by the request.

Thus, in the proposed scheme, a contention occurs at node i and Hsd
i (r) > Hsd

t (r)/2
(this is the CR situation as described in Section 2.1), a message is sent to delay the trans-
mission of the burst for duration of the contention period. For Hsd

i (r) <= Hsd
t (r)/2

(this is the CNR situation as described in Section 2.1), a message is sent to release the
reserved resource.

We illustrate below possible cases of contention and the way contention is resolved
in the scheme. For all the cases we refer to Fig. 1(a). In Fig. 1(a), the value of t1 and
t2 indicates the time of arrival of requests r1 and r2 respectively, at a core router i.
Burst-size of the requests r1 and r2 is indicated by b1 and b2 respectively. Below, we
give interpretation for Case 1; the rest of the cases are interpreted in the same way. In
Case 1 the contention has occurred due to the arrival of requests r1 and r2 at the core
router i at the same time (t1 = t2). The remaining number of hops to be traversed for
request r1 is Hsd

i (r1) > Hsd
t (r1)/2 and, for r2 is Hmn

i (r2) > Hmn
t (r2)/2. We have

assumed that the contention has occurred at the core router i.

Case 1: t1 = t2, Hsd
i (r1) > Hsd

t (r1)/2, Hmn
i (r2) > Hmn

t (r2)/2.
Accept the high priority request and send a message to the ingress router of low priority
request to delay the transmission for the contention period d. For same priority of both
the requests, accept the request that has traversed the maximum number of hops and
send a message to the ingress router of the other request to delay the transmission for the
contention period d. For same priority and the equal number of hops traversed, accept
the request that has larger burst-size and send a message to the ingress router of other
request to delay the transmission for the contention period d.

Case 2: t1 = t2, Hsd
i (r1) ≤ Hsd

t (r1)/2, Hmn
i (r2) > Hmn

t (r2)/2.
Accept the high priority request. If the low priority request is r1 then it is dropped else
a message is sent to the ingress router of r2 to delay the transmission for the contention
period d. For same priority of both the requests, accept the one that has traversed the
maximum number of hops. Other request is processed as explained. For same priority

A Novel Scheme to Reduce Burst-Loss and Provide QoS in OBS Networks 315

and equal number of hops traversed, accept the one with higher burst-size. Other request
is processed as explained earlier.

Case 3: t1 = t2, Hsd
i (r1) > Hsd

t (r1)/2, Hmn
i (r2) ≤ Hmn

t (r2)/2.
Requests are processed as explained in Case 2. Here, the request that is to be dropped
is r2.

Case 4: t1 = t2, Hsd
i (r1) ≤ Hsd

t (r1)/2, Hmn
i (r2) ≤ Hmn

t (r2)/2.
Requests are processed as in Case 1. Here the request that is not accepted is dropped.

Case 5: t1 < t2, Hmn
i (r2) > Hmn

t (r2)/2.
In this case the request r1 has arrived before r2 and resources are already reserved for
the request r1. For request r2 a message is sent to the ingress router to further delay the
transmission of burst for the contention period d.

Case 6: t1 < t2, Hmn
i (r2) ≤ Hmn

t (r2)/2.
As in Case 5 resources are already reserved for the request r1. Request r2 is dropped.

Case 7: t1 > t2, Hmn
i (r2) > Hmn

t (r2)/2.
In this case request r1 has arrived at a later point of time than r2 and is contending with
request r2. Requests are processed similar to Case 5.

Case 8: t1 > t2, Hsd
i (r1) ≤ Hsd

t (r1)/2.
As in Case 7, request r1 has arrived at a later point of time than r2 and is contending
with request r2. Requests are processed similar to Case 6.

In the above cases, cases 4, 6 and 8 are CNR situations and the rest are CR situations
as defined in Section 2.1.

3 Channel Selection Algorithms

In this section, we describe three channel selection algorithms called (i) Least Recently
Used (LRU), (ii) First Fit (FF), and (iii) Priority Set (PS) algorithms used in channel
selection for our proposed contention resolution scheme (Section 2.2). The channel
selection algorithms are run only at the edge routers to find the data-channels for which
reservation request is to be made and subsequently transmit the data-burst. In LRU, a
data-channel which is idle for the maximum duration is selected. In FF, data-channels
are searched from the lowest index and the one that is available first, is selected. For
example, consider Fig. 4, LRU channel selection algorithm selects the data-channel 2
as it is idle for the maximum duration where as FF channel selection algorithm selects
the data-channel 0.

In PS approach, we decompose the set of data-channels, S, into P sub-sets, Si, of
data-channel. P is the number of priority classes supported. S = S0 ∪S1 ∪ · · · ∪SP−1.
A priority class i selects the data-channel from the set Si. If no data-channel is available
in the set Si then it selects from the set Si−1 and if not available then from the set Si−2.
This process is iterated till the lowest priority set S0 is searched. If no data-channel is
available in the set S0 then the burst is dropped at the ingress router. The number of data
channels in the set Si is in proportion to the traffic of priority class i.

316 A.K. Turuk and R. Kumar

For the priority class 0, if no data-channel is available in the set S0 then the burst
is dropped at the ingress router. To illustrate the working of Priority Set approach, we
consider two priority classes 0 and 1; class 1 has higher priority than class 0. We divide
the available data-channel as shown in Fig. 5 in two sets S0 = {0, 1} and S1 = {2, 3}.
Let a burst of class 1 arrive at ta and it is to be transmitted at ts after the base-offset time
toffset. Since all the data-channels in the set S1 are busy at ts, channel 0 from the set
S0 is selected.

t2

0

1

2

3

t

t

t

0

1

offset

t ta s

Fig. 4 Illustration for selection of data-channel in LRU and FF algorithms

ta

toffset

ts

0

1

2

3

Fig. 5 Illustration for selection of data-channel in PS algorithm

4 Simulation Results

We assume the following time-units for different tasks to carry out the simulation. The
propagation delay, tp, between any two adjacent nodes in the burst switching network
is assumed to be 1ms. The processing time of control packet at the router is assumed to
be 2μs. We assume there is no wavelength conversion and there exists no optical buffer
in the switch. For simplicity and without loss of generality, we consider two classes of
traffic: class 0 (low priority) and class 1 (high priority). We generate high priority traffic
with a probability of 0.4. Traffic is generated only at the edge router and, the load is
measured in Erlang.

.

.

A Novel Scheme to Reduce Burst-Loss and Provide QoS in OBS Networks 317

We compare the simulation results of our proposed scheme with PPJET [12]. We
consider burst blocking probability as the performance metric for comparison. We have
taken number of wavelengths available on each link to be seven. Traffic in the Internet
is reported to be bursty in nature [13]. We consider bursty traffic with Pareto (α = 1.1)
distributed burst length and Pareto (α = 1.1) distributed inter-arrival time.

We include the overall burst loss for the proposed scheme with three channel selection
algorithms, in Fig. 6 and compare with PPJET. It is observed from Fig. 6 that the overall
burst loss in our scheme is lower than that in PPJET. Of the proposed channel selection
algorithms, LRU algorithm gives lower overall burst loss, and PS gives higher. The higher
overall burst loss in PS is due to the higher low priority burst loss. We generated many
more results through simulation by varying various parameters; the detailed results will
be presented during the conference.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bu
rs

t b
lo

ck
in

g
pr

ob
ab

ili
ty

load (Erlang)

LRU
FF
PS

PPJET

Fig. 6. Overall burst loss in the proposed scheme with different channel selection algorithms and
PPJET. Pareto distributed burst-size and Pareto distributed inter-arrival of burst is considered

5 Conclusions

In this paper, we proposed a contention resolution scheme for OBS networks. The scheme
takes the following three parameters – priority, number of hops traversed and burst-size -
into account to resolve contention. The proposed scheme is adaptable to both prioritized
and delay constraint traffic. We also proposed three channel selection algorithms called,
LRU, FF and PS algorithms to select data-channel at the ingress router for the proposed
scheme. We simulate our scheme with each of the channel selection algorithms and
compare the results with PPJET. We consider bursty traffic in our simulation. Simulations
were carried out for prioritized traffic. We observed that LRU channel selection algorithm
gives lower overall burst loss. In addition, Priority Set channel selection algorithm gives
the lowest high priority burst loss.

We compared our scheme with another contention resolution scheme called PPJET.
We found lower overall blocking probability in our proposed scheme using LRU than

318 A.K. Turuk and R. Kumar

PPJET for all load. The proposed scheme using PS channel selection algorithm gives
the lower blocking for high priority traffic than PPJET. Thus we can conclude that if a
lower overall burst loss is required then our scheme with LRU selection algorithm can
be used. If a low blocking of high priority traffic is desired then the proposed scheme
with PS algorithm may be the choice.

The lower blocking in our scheme comes with an additional delay. In PPJET an
incoming burst is delayed for an amount of time which is equal to the total processing
time of the control token at each node. However, in our scheme an additional delay which
is equal to the propagation time between source to destination, is involved.

References

1. Yao, S., Yoo, S.B., Mukherjee, B., Dixit, S.: All-Optical Packet Switching for Metropolitan
Area Networks: Opportunities and Challenges. IEEE Communications Magazine 39 (2001)
142 – 148

2. Chlamtac, I., Ganz, A., Karmi, G.: Lightpath Communications: An Approach to High Band-
width Optical WANs. IEEE Transactions on Communications 40 (1992) 1171 – 1182

3. Dutta, R., Rouskas, G.: A Survey of Virtual Topology Design Algorithm for Wavelength
Routed Optical Networks. Optical Network Magazine 1 (2000) 73–89

4. Yoo, M., Qiao, C.: Optical Burst Switching (OBS) - A New Paradigm for an Optical Internet.
Journal of High Speed Network 8 (1999) 69 – 84

5. Qiao, C.,Yoo, M.: Choices, Features and Issues in Optical Burst Switching. Optical Network
Magazine 1 (2000) 36 – 44

6. Yoo, M., Qiao, C., Dixit, S.: QoS Performance in IP over WDM Networks. IEEE Journal on
Selected Areas in Communications, Special Issues on Protocols for Next Generation Optical
Internet 18 (2000) 2062 – 2071

7. Kim, H., Lee, S., Song, J.: Optical Burst Switching with Limited Deflection Routing Rules.
IEICE Trans. Commun. E86-B (2003)

8. Vokkarane, V.M., Zhang, Q., Jue, J.P., Chen, B.: Generalized Burst Assembly and Scheduling
Techniques for QoS Support in Optical Burst-Switched Networks. In: Global Telecommuni-
cations Conference, 2002, GlOBECOM’02. Volume 3. (2002) 2747 – 2751

9. Zhang, Q., Vokkarane, V.M., Chen, B., Jue, J.P.: Early Drop Scheme for Providing Absolute
QoS Differentiation in Optical Burst-Switched Networks. In: Workshop on High Performance
Switching and Routing, 2003, HPSR. (2003) 153 – 157

10. Farahmand, F., Jue, J.P.: Look-ahead Window Contention Resolution in Optical Burst
Switched Networks. In: Workshop on High Performance Switching and Routing, 2003,
HPSR. (2003) 147 – 151

11. Düser, M., Bayvel, P.: Analysis of a Dynamically Wavelength-Routed Optical Burst Switched
Network. Journal of LightWave Technology 20 (2002) 574 – 585

12. Kaheel, A., Alnuweiri, H.: A Strict Priority Scheme for Quality-of-Service Provisioning in
Optical Burst Switching Networks. In: Proceedings of the Eight IEEE International Sympo-
sium on Computers and Communication (ISCC’03). (2003) 16 – 21

13. Paxson, V., Floyd, S.: Wide Area Traffic: The Failure of Poisson Modeling. IEEE/ACM
Transaction on Networking 3 (1995) 226 – 244

Single FU Bypass Networks for
High Clock Rate Superscalar Processors

Aneesh Aggarwal

Department of Electrical and Computer Engineering,
Binghamton University, Binghamton, NY 13902

aneesh@binghamton.edu

Abstract. Microprocessors depend heavily on broadcast-based bypass
networks, to eliminate pipeline hazards arising due to data dependen-
cies. However, even though bypassing is logically simple, increasing clock
speeds make broadcasting slower and difficult to implement, especially
for wide issue and deeply pipelined processors. The problem is exacer-
bated by shrinking feature size, as wire delays become more important
than the gate delays.

In this paper, we propose Single FU bypass networks for high clock
rate superscalar processors where, instead of a fully connected broadcast-
based bypass network, results from an FU are forwarded only to itself.
The new bypass network design is based on the observations that a result
produced by an instruction is mostly required by just one other instruc-
tion and that the operands of many instructions come from a single other
instruction. The new bypass network results in significant reduction in
the data forwarding latency, while incurring only a small impact (about
2% for most of the SPEC2K benchmarks) on the instructions per cycle
(IPC) count. However, reduced bypass latency has a high potential for
increased clock speeds. Single FU bypass networks are also much more
scalable than the broadcast-based bypass networks, for more wide and
more deeply pipelined future microprocessors.

1 Introduction

The bypass network lies in the most critical loop in pipelined processors that
enables data dependent instructions to execute in consecutive cycles [5]. Prior
studies [4][9][10] have shown that an increase of a single cycle in this critical loop
reduces the instruction throughput dramatically. Most modern processors use a
broadcast-based bypass network, where a result produced by a functional unit
(FU) is made available at the inputs of all the other FUs. With a broadcast-
based bypass network, bypassing can take significant amounts of wiring area
on the chip [2], especially for wide-issue and deeply pipelined processors. In
addition to a large wiring area, studies [2][6] show that with broadcast-based
bypass networks, the wire complexity grows proportional to the square of the
issue width and the pipeline depth. This leads to a significant increase in the
wire path delay from the source to the destination. This problem is further

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 319–332, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

320 A. Aggarwal

exacerbated with the growing wire delays in the sub-micron technology era
[1][11]. In addition, large number of bypass paths increase the fan-out delay
at the source and the fan-in delay at the destination, by increasing both the
capacitive load within the network and the multiplexor complexity at each des-
tination. The fan-out at each source and the fan-in at each destination increases
roughly with the product of the pipeline depth and the pipeline width [8]. In
fact, bypass network latency is expected to set the cycle time of future micro-
processors [6][8].

The overall impact of the broadcast-based bypass network complexity is that
multiple cycles may be required to forward the values [8]. With a multi-cycle
bypass network, dependent instructions are not able to execute in consecutive
cycles, resulting in a decrease in the instruction throughput and a corresponding
decrease in the overall performance. Increased bypass widths not only impact
performance, but also increase the power consumption (which has become a
primary design issue [22][23]) due to the wide multiplexors at each destination
and the increased number of long wires, and reduce reliability by increasing the
cross-talk between the wires and by reducing the signal strength.

In this paper, we propose a Single FU bypass network for high clock rate
superscalar processors. In this bypass network, instead of a fully connected
broadcast-based forwarding, an FU’s output is only forwarded to its own inputs.
Single FU bypass network facilitates low latency and energy-efficient
data-forwarding because of a reduction in the fan-in at the inputs of the FUs,
a reduction in the fan-out at the outputs of the FUs, and a reduction in the
lengths and the number of bypass paths. We found that with a Single FU by-
pass network, the bypass latency reduces significantly, while the IPC is only
about 2% less than that of a broadcast-based bypass network. We also discuss
further reducing the number of bypass paths using a Single Input Single FU
bypass network.

The rest of the paper is organized as follows. Section 2 discusses the moti-
vation behind Single FU bypass networks. Section 3 presents a description of
the Single FU bypass network. Section 4 presents IPC results and their analysis,
and techniques to reduce the IPC impact of Single FU bypass network. Section 5
discusses further reduction of bypass paths using Single Input Single FU bypass
network. Section 6 concludes the paper.

2 Motivation and Background

2.1 Impact of Multi-cycle Forwarding

First, we measure the impact of increased forwarding latency on IPC. For this,
we use the parameters given in Table 1 (on page 15) for a superscalar pipeline
shown in Figure 11. The forwarding latency is increased from 0 cycles to 2
cycles. Dependent instructions can execute in consecutive cycles only with a

1 Our pipeline resembles closely to that of Intel Pentium 4 Netburst architecture [7].

Single FU Bypass Networks for High Clock Rate Superscalar Processors 321

0-cycle forwarding latency. Figure 2 shows the IPC (along the Y-axis), with
varying forwarding latencies, for many of the SPEC2000 Integer and Floating
Point benchmarks.

F
e

tc
h

F
e

tc
h

D
e

c
o

d
e

D
e

c
o

d
e

R
e

n
a

m
e

R
e

n
a

m
e

Q
u

e
u

e

S
c

h
e

d
u

le

Is
s

u
e

R
e

a
d

R
e

g
is

te
r

R
e

a
d

R
e

g
is

te
r

E
x

e
c

u
te

C
a

c
h

e
A

c
c

e
s

s

W
ri

te
b

a
c

k

W
ri

te
b

a
c

k

C
o

m
m

it

Fig. 1. Base Pipeline

gzip vpr gcc mcf parser bzip2 twolf
0

0.5

1

1.5

2

2.5

3

IP
C

0-Cycle Forwarding
1-Cycle Forwarding
2-Cycle Forwarding

(a)
wupwise swim mesa art equake ammp apsi

0

0.5

1

1.5

2

2.5

3

IP
C

0-Cycle Forwarding
1-Cycle Forwarding
2-Cycle Forwarding

(b)

Fig. 2. Impact of Multi-cycle Bypass Networks (a)Integer Benchmarks (b)Floating
Point Benchmarks

As can be seen in Figure 2, there is a significant reduction in the IPC counts of
the programs as the forwarding latency is increased. For instance, as compared to
a 0-cycle forwarding latency, IPC reduces by about 15% for a 1-cycle forwarding
latency for both integer and floating point benchmarks. The impact of increased
forwarding latency is relatively higher for higher IPC benchmarks. In addition,
the IPC impact is very similar for all the integer benchmarks (except for gcc,
which has a relatively lower impact). The IPC impact for the FP benchmarks,
on the other hand, is much more varied.

2.2 Data Dependence Characteristics

Next, we look at the typical data dependence characteristics in the programs.
For this, we measure the type of instruction producing a value and the type
and number of instructions using that value. The type of an instruction is de-
fined by type of the functional unit it uses to execute. We define 6 types of
instructions: IALU (simple integer instructions using an ALU), IMULT (com-
plex integer instructions using a multiplier), LOAD (load instructions), STORE
(store instructions), FPALU (simple floating point instructions using an ALU),
and FPMULT (complex floating point instructions using a multiplier). These
measurements depict the actual data dependence present in the dynamic trace

322 A. Aggarwal

of instructions along the correct execution path of the programs. However, these
statistics may vary depending on the compiler optimizations performed, and on
the Instruction Set Architecture used. We work with the PISA ISA, which is a
typical RISC ISA. Figure 3 presents these measurements in the form of a stacked
bar graph. For each integer benchmark, there are 2 sets of stacked bars, where
each stacked bar represents the type of instruction producing the register value.
Similarly, for each FP benchmark, there are 4 sets of stacked bars. The value
on top of each stacked bar represents the percentage of results (out of the total)
produced by instructions of that particular type and used by other instructions
(depicted by the stacks). The total of all the stacked bars is less than 100%
because some results are not used at all and some results are produced by in-
structions of other types. For instance, for gzip, about 35% of the values (out of
the total produced) are produced by an IALU instruction and used by just one
other IALU instruction. Equake has 0 FP instructions, because FP instructions
in equake are encountered beyond the range of instructions simulated.

gzip vpr gcc mcf parser bzip2 twolf

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
R

es
ul

ts
 P

ro
du

ce
d

Other
One Integer ALU + One Store
One Integer ALU + One Load
Two Integer ALUs
One Load
One Store
One Integer ALU

IA
L

U
L

O
A

D

70

27

57

30

50

40

47
51

58

37

35

73

24

59

(a)
wupwise swim mesa art equake ammp apsi

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
R

es
ul

ts
 P

ro
du

ce
d

Other
One Floating Point ALU
One Floating Point Multiplier
Two Integer ALUs
One Load
One Store
One Integer ALU

IA
L

U

L
O

A
D

65

56

40

52

61

28

43

29

14

41
39

31

68

20

4

15

8

3
0 1

15

2
6

4
0 0 0

10

F
A

L
U

F
M

U
L

T

(b)

Fig. 3. Result Usage Characteristics for SPEC2K (a) Int and (b) FP Benchmarks

As can be seen in Figure 3, most of the values (about 70%) produced are only
used by just one instruction. Figure 3 also explains the different reduction in IPC
observed for different benchmarks, in Figure 2. In general, for benchmarks where
more results are used by just one other instruction and fewer results are used
by store instructions, increased forwarding latency has a larger impact on IPC.
This is because, when a result is used by more instructions, after the forwarding
latency delay more instructions get ready at the same time, resulting in less
effective average forwarding latency per instruction. The effect is exactly opposite
in case a result is mostly used by just one instruction. Similarly, if the number of
results used by store instructions is higher, the impact of increased forwarding
latency is lower, because a delayed store instruction does not have a significant
impact on the execution of other instructions (store instructions do not produce
any result). This is the reason for high IPC impact for wupwise, swim, art, and
apsi, and low IPC impact for gcc. Ammp also has a high percentage of instructions
with just one consumer, but its extremely low IPC results in a low IPC impact in

Single FU Bypass Networks for High Clock Rate Superscalar Processors 323

its case. Other factors affecting the IPC impact of higher bypass latency are the
percentage of results (out of the total produced) that are actually used, branch
prediction accuracy, and load miss rate.

Next we look at the data dependence characteristics of programs from the
perspective of the consumer. Figure 4 presents these statistics2 in a manner
similar to Figure 3, except that each stack now represents operand-producing
instructions rather than result-using instructions. For instance, for gzip, about
68% of the instructions (out of the total executed) are IALU instructions, and
about 30% of instructions (out of the total executed) are IALU instructions
whose operands are produced by just one other IALU instruction. An important
observation that can be made from the Figure 4 is that a significant percentage
(about 70%) of the total instructions executed have their operands produced
either by just one other instruction or by no instructions. The load instructions
that do not have any producer instructions for their operands are the ones which
use the same register operand and this register operand is produced before the
start of the collection of the statistics (we collect the statistics after skipping the
first 500 million instructions). The integer ALU instructions that do not have
any producer instructions for their operands are mostly the ones which load an
immediate value, or the ones that use register r0 to set a register to an immediate
value.

Overall, it is observed that for most of the instructions, their results are used
by just one other instruction and their operands are produced by just one other
instruction. This motivates us to investigate Single FU bypass networks, where
the results produced in a FU are only forwarded to its own inputs .

2.3 Related Work

Bypassing is an old idea and was first described in 1959 by Bloch [3]. Since
then, the issue width of the processors and the number of functional units in the
processors have increased considerably. Unfortunately, not enough work has been
done for efficient data forwarding. Here, we classify the proposed efficient bypass
networks into 2 broad categories: limited bypassing, and partitioned bypassing.

In limited bypassing, certain paths are missing from the bypass network.
Ahuja et al [2] study bypass networks where the results from the FUs are for-
warded to only one of the inputs of all the FUs. They propose simple code
transformations such as interchange of operands and instruction scheduling to
avoid the stalls generated due to missing bypasses. For efficient bypassing, the
Pentium 4 processor [7], limits the number of bypass inputs into each FU as
well as the number of bypass outputs from each FU. For this, [7] uses a complex
multi-stage bypass network that stores and selectively forwards the results to be
bypassed from the latter stages of the pipeline.

2 We only show Integer instructions even for the FP benchmarks because of the very
low percentage of FP instructions in the benchmarks. However, the FP instructions
showed very similar characteristics.

324 A. Aggarwal

gzip vpr gcc mcf parser bzip2 twolf

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

ta
ge

 o
f

In
st

ru
ct

io
ns

Other
Two Loads
Two Integer ALUs
None
One Integer ALU + One Load
One Load
One Integer ALU

IA
L

U

L
O

A
D

S
T

O
R

E

(a)
wupwise swim mesa art equake ammp apsi

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
In

st
ru

ct
io

ns

Other
Two Loads
Two Integer ALUs
None
One Integer ALU + One Load
One Load
One Integer ALU

IA
L

U
L

O
A

D

S
T

O
R

E

(b)

Fig. 4. Operand Production Characteristics for SPEC2K (a) Int and (b) FP Bench-
marks

Partitioned bypassing is used in clustered processor architectures. In these ar-
chitectures, there is typically a broadcast-based bypassing within a cluster, and
either broadcast-based inter-cluster bypassing [16][15][13][6], or point-to-point
inter-cluster bypassing [14][17][18][19][20]. Intra-cluster bypassing is fast because
of reduction in the number of the bypass paths, whereas inter-cluster bypass-
ing may take additional cycles because of longer wires and/or multiple hops
required. However, clustered architectures do not achieve the single-threaded
IPCs obtained with a centralized superscalar [21].

3 Single FU (SFU) Bypass Network

3.1 Basic Idea

Based on the observations in Section 2, we propose Single FU (SFU) bypass
networks, where the results produced in a FU are forwarded only to itself, thus
reducing the bypass network latency and facilitating high clock rates.

Figure 5(a) shows a Pentium 4 [7] style broadcast-based bypass network for
the integer units. A similar bypass network could be implemented for the floating
point units. This design reduces the fan-in and the fan-out for the FUs, as well as
the number and lengths of the bypass paths. The multi-stage bypass network is
responsible for forwarding the correct values from the other FUs and the latter
stage of the pipeline. Figure 5(b) shows one configuration of the SFU bypass
network for the same set of integer FUs. In this configuration, the output of
an ALU is immediately forwarded to only its own inputs. However, the values
loaded are typically required in IALU instructions. Hence, instead of forwarding
the output of the load unit to itself, it is forwarded to one of the ALUs. In
addition, load units typically read the base address from the register file or are,
in some cases, forwarded the value from the ALUs. Hence, the output of one of
the ALUs is also forwarded to the load unit. Without loss of generality, in Figure
5(b), the output of ALU2 is also forwarded to the load unit and that of load
unit is forwarded to ALU2. The rest of the bypass network remains the same. In

Single FU Bypass Networks for High Clock Rate Superscalar Processors 325

this configuration, the results from an FU are immediately available to the ones
it is directly connected to, and are available to all the FUs after an additional
cycle. We call this bypass network as Limited SFU (LSFU) bypass network.
Figure 5(c) illustrates another configuration of the SFU bypass network. In this
configuration, the multiplier and store units are completely isolated, i.e. their
results are available only from the register file and they read their operands only
from the register file. In addition, the results from an FU are only available
to the one it is directly connected to, even for bypasses from the latter stages
of the pipeline. We call this bypass network as Extreme SFU (ESFU) bypass
network. For all the configurations, a similar bypass network can be assumed
for the floating point units. The primary advantages of a SFU bypass network
design include shorter and fewer bypass paths, reduced fan-in and fan-out for
each FU, and narrower multiplexors. This not only reduces the bypass latency,
but also significantly reduces the bypass power consumption.

L1
Data
Cache

M
u

lt
i−

s
ta

g
e

 B
y

p
a

s
s

 N
e

tw
o

rk

To other bypass inputs

L1
Data
Cache

(a)

M
u

lt
i−

s
ta

g
e

 B
y

p
a

s
s

 N
e

tw
o

rk

To other bypass inputs

(b)

L1
Data
Cache

M
u

lt
i−

s
ta

g
e

 B
y

p
a

s
s

 N
e

tw
o

rk

(c)

A
L

U
0

A
L

U
1

A
L

U
2

L
D

L
D

A
L

U
2

A
L

U
1

A
L

U
0

L
D

A
L

U
2

A
L

U
1

A
L

U
0

Fig. 5. (a) Conventional Bypass Network; (b) Limited SFU; (c) Extreme SFU

3.2 FU Assignment

The performance of the new SFU bypass network design relies heavily on the abil-
ity to assign instructions to the FUs where their operands are available through
the bypass network. We propose a post-schedule FU assignment scheme. In this
scheme, the FUs assigned to the instructions by the select logic are selectively
discarded3.

Once an instruction is scheduled for execution, it is assigned an FU based
on where its operands will be available. Figure 6 shows the new pipeline for this
FU assignment scheme. All the scheduled instructions access an FU table (in
the FU assign/arbiter stage), for each valid operand, to get an FU assigned to
them. From the FU table, the following information is obtained for each valid
operand: (i) whether it is available from the bypass network, and if it is, then

3 However, the conventional select logic is still needed to select the right instructions
(based on the priority scheme used, which could be the “oldest” first) to be scheduled.

326 A. Aggarwal

in which FU, or (ii) whether it is available from the register file. Based on the
information obtained regarding an instruction’s operands, an FU is assigned for
the instruction as follows:

– If an instruction has only one operand with a valid FU where the operand
is available from the bypass network, and the other operand is either not
present or is available from the register file or is available in any FU from
the bypass network (for the LSFU network), then it is assigned the valid FU.

– If an instruction has multiple operands with valid FUs or an operand can-
not be obtained from the bypass network, then that instruction is marked
“unscheduled” and it remains in the issue queue.

– If an instruction does not have any register operands or all its operands are
available from the register file or all its operands are available in all the FUs
from the bypass network (for the LSFU network), then the FU assigned by
the select logic is used.

Once the FU for an instruction is decided, the FU table is updated.

F
e

tc
h

F
e

tc
h

D
e

c
o

d
e

D
e

c
o

d
e

R
e

n
a

m
e

R
e

n
a

m
e

Q
u

e
u

e

S
c

h
e

d
u

le

F
U

Is
s

u
e

R
e

g
is

te
r

R
e

a
d

R
e

g
is

te
r

R
e

a
d

E
x

e
c

u
te

C
a

c
h

e
A

c
c

e
s

s

W
r
it

e
b

a
c

k

W
r
it

e
b

a
c

k

C
o

m
m

it

a
r
b

it
e

r
a

s
s

ig
n

/

Fig. 6. Post-schedule FU Assignment Pipeline

In this scheme, one apparent issue that needs to be addressed is what happens
if multiple scheduled instructions are assigned the same FU? This issue can
be resolved by using FU arbitration, once FUs are assigned. All the scheduled
instructions (that get an FU assigned) send a request for the assigned FU. FU
arbiters grant the requests of the scheduled instructions, based on priorities
which could be the same as that used by the scheduler. In case an instruction
cannot acquire the assigned FU, it is “unscheduled” and is again scheduled in
the following cycles.

Figure 7 shows the operation of the FU assign/arbiter stage for one instruc-
tion. The register operands are used to index into the FU table (storing the FUs
where the registers are produced) and the valid bit table (indicating whether the
FU table entry is valid). Based on the valid bits and the FU mappings read from
the table, an FU is assigned to the instruction. Based on the assigned FU, the
instruction sends a request to that particular FU’s arbiter, and the FU table is
updated simultaneously.

To perform FU assignment and arbitration in a single pipeline stage, these
operations need to be fast. FU arbitration is very similar to the select logic, but
of significantly lower complexity than the select logic (because of the maximum
number of requests that can be generated). Our investigations (using the calcu-
lations in [6]) suggest that the latency of FU arbitration is about 60% less than

Single FU Bypass Networks for High Clock Rate Superscalar Processors 327

V
al

id
 B

it
s

FU Table

R
eg

is
te

r
O

p
er

an
d

s

FU Maps

Mux

FU D
ec

o
d

e

ar
b

it
er

F
U

−1

ar
b

it
er

F
U

−n

Fig. 7. Schematic FU assign/arbiter stage

that of the select logic, for the parameters in Table 1. For a faster FU table access
(for fast FU assignment), we propose a FU table organization in which the FUs
for multiple registers are stacked together in a single FU table entry. The higher
end bits of a register tag are used to index into the table and the lower end
bits give the offset of the FU for a particular register tag. With this design, the
access latency of a FU table is about 90% less than that of a 128-entry physical
register file used for a 6-way issue processor, based on the calculations in [6].
The FU table is read during FU assignment and updated during FU arbitration.
With such small FU assignment and arbitration latencies, we assume a single
FU assign/arbiter stage.

To execute the dependent instructions in consecutive cycles, a scheduled in-
struction immediately wakes up the dependent instructions. In this case, “un-
scheduling” a scheduled instruction may lead to the consumer instruction getting
executed before the producer instruction. This situation is avoided by keeping a
bit-vector (of size equal to the number of physical registers) to indicate whether
instruction producing a particular register has been dispatched to the FUs. The
instructions check this bit-vector in parallel to FU arbitration. If the producer
of an instruction’s operand has not been dispatched to the FU, it is also “un-
scheduled”.

4 Results

4.1 Experimental Setup

The processor parameters used in our experiments are given in Table 1. We
use a modified version of the Simplescalar simulator [24] for our experiments.
For benchmarks, we use benchmarks from the 7 Integer (gzip, vpr, gcc, mcf,
parser, bzip2, and twolf) and 7 FP (wupwise, art, swim, ammp, equake, apsi,
and mesa) benchmarks from the SPEC2K benchmark suite compiled with the
options provided with the suite. Latency calculations are performed for a 0.18μm
feature size.

328 A. Aggarwal

Table 1. Default Parameters for the Experimental Evaluation

Parameter Value Parameter Value
Fetch/Decode Width 8 instructions Instr. Window Size 128 instructions
Phy. Register File 128 Int/ 128 FP Int. FUs 3 ALU, 1 Mul/Div, 2 ld/2 st

Issue/Commit Width 6 instructions FP FUs 3 ALU, 1 Mul/Div
Branch Predictor bi-modal 4K entries BTB Size 2048 entries, 2-way assoc.

L1 - I-cache 32K, direct-map, L1 - D-cache 32K, 4-way assoc.,
2 cycle latency 2 cycle latency

Memory Latency 40 cycles first chunk L2 - cache unified 512K,
1 cycles/inter-chunk 8-way assoc., 6 cycles

In our experiments, we experiment with 4 different bypass network config-
urations — a fully connected 0-cycle latency bypass network (FUL0), a fully
connected 1-cycle latency bypass network (FUL1), LSFU, and ELSFU. The for-
warding latencies for the LSFU and ELSFU bypass networks is 0 cycles for direct
connections.

4.2 IPC Results and Analysis

We use the calculations in [6] to compare the forwarding latencies of the FUL0
bypass network (Figure 5(a)) and the SFU bypass network (Figure 5(b)), for the
FUs given in Table 1. Note that, we assume that only the ALUs and the load
units are directly connected to each other in Figure 5(a) and values from the
other FUs are forwarded using the multi-stage bypass network. We found that
the forwarding latency of the SFU bypass network is about 70% less than the
FUL0 bypass network.

Figure 8 gives the IPCs for the SPEC 2000 INT and PF benchmarks. As
seen in Figure 8, the IPC from LSFU bypass network is very close to that
obtained from the FUL0 network, and significantly higher than that from the
FUL1 network. However, the ELSFU network with minimal bypass hardware
incurs more IPC impact than the LSFU network because of more instructions
getting delayed due to extremely limited bypassing. However, for many of the
benchmarks, ELSFU configuration is quite close to or even higher than the
FUL1 network. LSFU network performs better than the FUL1 network, because
in case of the FUL1 network, all the instructions incur a 1 cycle forwarding
latency. However, in the LSFU network, most of the instructions do not incur
any delays due to forwarding, a few instructions suffer a 2-cycle delay because
of getting re-scheduled and a negligible number of instructions incur a delay
of more than 2 cycles (if they do not get any FU during the second try as
well). The fact that most of the instructions do not incur any forwarding latency
delays is also the reason that the IPC of the ELSFU network does not reduce
significantly. However, in case of ELSFU network, if an instruction is not able
to get its operands from the bypass network, then it has to wait at least 4 cycles
so that it can read the operand values from the register file (it takes 2 cycles to
write the values into the register file).

Single FU Bypass Networks for High Clock Rate Superscalar Processors 329

gzip vpr gcc mcf parser bzip2 twolf
0

0.5

1

1.5

2

2.5

3

IP
C

FUL0
FUL1
LSFU
ELSFU

(a)
wupwise swim mesa art equake ammp apsi

0

0.5

1

1.5

2

2.5

3

IP
C

FUL0
FUL1
LSFU
ELSFU

(b)

Fig. 8. IPCs for SPEC 2000 (a) INT and (b) FP Benchmarks

4.3 Lower Priority to Branch Instructions

One of the main reasons for the performance impact when using single FU by-
pass network is the delayed execution of some of the instructions. To recover the
performance loss, we investigate a technique that gives lower priority to branch
instructions. Not all the branch instructions affect performance. Only the mispre-
dicted branches affect performance, and delayed execution of correctly predicted
branches does not impact performance. However, branches with low prediction
accuracy need to be executed at the earliest to know their outcome. Branch in-
structions, on the other hand, compete with other instructions for the valuable
forwarding paths. For instance, if a branch instruction and a result-producing
instruction are both dependent on the same instruction, then both the instruc-
tions will be assigned the FU used by the producer instruction. In this case, if the
branch instruction gets the FU, and the result-producing instruction is delayed,
the performance will be hit. However, if the branch instruction is delayed, then
the performance is hit only if the branch instruction is mispredicted. Hence, to
improve performance with a SFU bypass network, branch instructions are given
a lower priority during FU arbitration. For this, each instruction is assigned a
bit (called the “type bit”), which indicates whether the instruction is a branch
instruction or not, and in case of a collision for the same FU, lower priority
branch instruction gets “un-scheduled”.

Figure 9 shows the IPC results when this technique is employed for the SFU
bypass network. As can be seen in Figure 9, a significant performance improve-
ment is observed for many benchmarks, bringing the IPC of the LSFU bypass
network almost equal to that of the FUL0 network.

5 Single Input Single FU Bypass Network

The bypass network complexity can be further reduced by half by forwarding the
values to only one of the inputs of the FUs [2]. Since, in the SFU bypass network
design, only the instructions that have at most one operand forwarded from
the bypass network are scheduled, having a single input forwarding is a natural
extension of this design. This would require a switch in the operand locations in

330 A. Aggarwal

gzip vpr gcc mcf parser bzip2 twolf
0

0.5

1

1.5

2

2.5

3

IP
C

FUL0
LSFU-Original
LSFU-Lower Priority to Branches
ELSFU-Original
ELSFU-Lower Priority to Branches

(a)
wupwise swim mesa art equake ammp apsi

0

0.5

1

1.5

2

2.5

3

IP
C

FUL0
LSFU-Original
LSFU-Lower Priority to Branches
ELSFU-Original
ELSFU-Lower Priority to Branches

(b)

Fig. 9. IPCs for SPEC 2000 (a) INT and (b) FP Benchmarks

the instructions, so that the correct operand is bypassed the correct value. Since
the values are forwarded to the inputs of the same FU in the SFU design, the
switch can be performed once the operand that will be forwarded is known. No
additional performance loss is observed for a Single Input SFU bypass network,
because as explained earlier, only the instructions that need at most one operand
from the bypass network are scheduled for execution. However, with single input
SFU bypass network, the forwarding latency further reduces to about 85% less
than the broadcast-based bypass network. This kind of data forwarding has one
of the minimum bypass network hardware, apart from the case when there is no
data forwarding.

6 Conclusions

Microprocessors usually use broadcast-based bypass networks to execute depen-
dent instructions in consecutive cycles, to better performance. However, for a
wide-issue and deeply pipelined processor, broadcasting the results can take
multiple cycles, especially with the wire delays increasing in the sub-micron
technology era, reducing performance significantly.

In this paper, we observed that the results of most of instructions are used
by just one other instruction and the operands of many instructions come from
a single other instruction. Based on this observation, we proposed a Single FU
bypass network, where the results for an FU are only bypassed to its own inputs,
thus reducing the bypass network complexity significantly, and facilitating fast
forwarding. Our studies showed that the forwarding latency can be reduced by
more than 70%, while incurring a small IPC impact of about 2% for most of
the benchmarks. Since the bypass network is a big factor in determining the
clock speed, Single FU bypass networks have a high potential of increasing the
clock speed. Single FU bypass networks are also much more scalable than the
broadcast-based bypass networks, as the future microprocessors become more
wide and more deeply pipelined.

Single FU Bypass Networks for High Clock Rate Superscalar Processors 331

References

1. V. Agarwal, M. S. Hrishikesh, S. W. Keckler and D. Burger, “lock rate versus
IPC: the end of the road for conventional microarchitectures,” Proc. ISCA-27,
2000.

2. P. Ahuja, D. Clark, and A. Rogers, “The performance impact of incomplete by-
passing in processor pipelines,” Proc. Micro-28, 1995.

3. E. Bloch, “The Engineering Design of the Stretch Computer,” Proc. Eastern Joint
Computer Conference, 1959.

4. M. Brown, J. Stark and Y. Patt, “Select-free Instruction Scheduling Logic,” Proc.
Micro-34, 2001.

5. J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative Ap-
proach,” Morgan Kaufmann Publishers, 2002.

6. S. Palacharla, N. P. Jouppi and J. E. Smith, “Complexity-Effective Superscalar
Processors,” Proc. ISCA, 1997.

7. G. Hinton, et al, “A 0.18-um CMOS IA-32 Processor With a 4-GHz Integer
Execution Unit,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 11,
Nov. 2001.

8. K. Sankaralingam, V. Singh, S. Keckler and D. Burger, “Routed Inter-ALU Net-
works for ILP Scalability and Performance,” Proc. ICCD, 2003.

9. E. Sprangle and D. Carmean, “Increasing Processor Performance by Implementing
Deeper Pipelines,” Proc. ISCA-29, 2002.

10. J. Stark, M. Brown and Y. Patt, “On Pipelining Dynamic Instruction Scheduling
Logic,” Proc. Micro-33, 2000.

11. The National Technology Roadmap for Semiconductors, Semiconductor Industry
Association, 2001.

12. E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace Processors,” Proc.
30th International Symposium on Microarchitecture, 1997.

13. D. Leibholz and R. Razdan, “The Alpha 21264: A 500 MHz Out-of-Order Execu-
tion Microprocessor,” Proc. Compcon, pp. 28-36, 1997.

14. K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The Multicluster Architecture:
Reducing Cycle Time Through Partitioning,” Proc. 30th International Symposium
on Microarchitecture, 1997.

15. R. Canal, J. M. Parcerisa, and A. Gonz?lez, “Dynamic Cluster Assignment Mecha-
nisms,” Proc. Int. Symp. on High-Performance Computer Architecture (HPCA-6),
2000.

16. A. Baniasadi and A. Moshovos, “Instruction Distribution Heuristics for Quad-
Cluster, Dynamically-Scheduled, Superscalar Processors,” Proc. International
Symp. on Microarchitecture (MICRO-33), 2000.

17. J. M. Parcerisa, J. Sahuquillo, A. Gonzalez and J. Duato, “Efficient Interconnects
for Clustered Microarchitectures,” Proc. PACT-11, 2002.

18. R. Nagarajan, et al, “A design space evaluation of grid processor architectures,”
Proc. Micro-34, 2001.

19. E. Waingold, et al, “Baring it all to software: RAW machines,” IEEE Computer,
30(9):86-93, September 1997.

20. M. Fillo, et al, “The M-Machine Multicomputer,” Proc. Micro-28, 1995.
21. A. Aggarwal and M. Franklin, “Instruction Replication: Reducing Delays due to

Inter-Communication Latency,” Proc. PACT, 2003.

332 A. Aggarwal

22. M. K. gowan, et. al., “Power Considerations in the Design of the Alpha 21264
Microprocessor,” Proc. DAC, 1998.

23. V. Tiwari, et al., “Reducing Power in High-performance Microprocessors,” Proc.
DAC, 1998.

24. D. Burger and T. Austin, “The Simplescalar Tool Set,” Technical Report, Computer
Sciences Department, University of Wisconsin, June 1997.

DSP Implementation of Real-Time JPEG2000
Encoder Using Overlapped Block Transferring

and Pipelined Processing

Byeong-Doo Choi1, Min-Cheol Hwang1, Ju-Hun Nam1,
Kyung-Hoon Lee2, and Sung-Jea Ko1

1 Department of Electronics Engineering,
Korea University, 5-1 Anam-Dong,
Sungbuk-ku, Seoul 136-701, Korea

2 Electronics and Telecommunications Research Institute
sjko@dali.korea.ac.kr

Abstract. This paper presents a DSP implementation of real-time JPEG
2000 encoder system. Among several modules in JPEG 2000 encoder, the
lifting algorithm for discrete wavelet transform (DWT) and the embed-
ded block coding with optimized truncation (EBCOT) comprise more
than 85% of the encoding complexity. Thus, it is very important to de-
sign and optimize these two modules in order to increase the encoding
performance. First, we propose a overlapped block transferring (OBT)
method that can significantly improve the performance of the lifting al-
gorithm for DWT by increasing the cache hit rate. Next, we introduce
a pipelined processing of passes (PPP) method for fast implementation
of EBCOT Tier-1. This method reduces the processing time of EBCOT
Tier-1 by processing the three coding passes of the same bit-plane like
pipeline. Moreover, we propose a computationally efficient method of
EBCOT Tier-2 to predict the truncation point by using the temporal
redundancy in the image sequence. Experimental results show that our
developed Motion-JPEG 2000 DSP system meets the common require-
ment of the real-time video coding [30 frames/s (fps)] and is proven to
be a practical and efficient DSP solution.

1 Introduction

JPEG2000 compression standard has been created to provide high compres-
sion efficiency compared to JPEG [1]. It includes a rich set of features such
as improved compression efficiency, lossy to lossless compression, multiple res-
olution representation, embedded bit-stream, region-of-interest (ROI) coding,
and error resilience [2, 3]. Motion-JPEG2000 (MJP2) is intended to create a
new coding system required by video communication market and applications
based on JPEG2000. It is notable that Motion-JPEG2000 provides high com-
pression performance, strong error resilience, and good perceptual image
quality [4].

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 333–341, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

334 B.-D. Choi et al.

Among several modules in JPEG2000 encoder, the lifting algorithm for dis-
crete wavelet transform (DWT) and the embedded block coding with optimized
truncation (EBCOT) comprise more than 85% of the encoding complexity. Thus,
it is very important to design and optimize these two modules in order to in-
crease the performance. The latest DSP chip can enable the real-time implemen-
tation of the DWT and adaptive binary arithmetic coding. Utilizing the hard-
ware features of the DSP chip, we optimize wavelet filtering and the EBCOT
algorithm.

In this paper, we propose the overlapped block transferring (OBT) method,
based on the cache performance to improve DWT. Instead of the line-based lift-
ing scheme, an image is divided into overlapped subblocks and then each over-
lapped subblock is processed by a 2-D lifting algorithm to increase the cache hit
rate. We show that the OBT-based lifting scheme can increase the performance
of the DWT drastically. Next, we propose a pipelined processing of passes (PPP)
for fast implementation of EBCOT Tier-1. This method reduces the processing
time of EBCOT Tier-1 by processing the three coding passes of the same bit-
plane in parallel. Moreover, we propose a scheme to reduce the computation of
EBCOT Tier-2 by predicting the truncation point using the temporal redun-
dancy in the image sequence instead of calculating the optimal bit-rate of each
frame independently.

The paper is organized as follows: The OBT-based lifting scheme is proposed
in Section 2, and pipeline processing of passes for EBCOT is proposed in Section
3. We propose a computational reduction method of EBCOT Tier-2 in Section 4.
In Section 5, the performance of the proposed system is discussed and conclusions
are given in Section 6.

2 OBT-Based Lifting Scheme for Efficient Cache
Utilization

The lifting algorithm is a fast computing technique of the DWT. However, in
a point of view of memory management, it still has severe cache-miss prob-
lems during the execution of the vertical wavelet filtering. A number of cache-
misses make the processing time increase critically. Thus, even though the lifting
algorithm requires few execution of CPU, the processing time of DWT can-
not be reduced remarkably without the memory management to reduce cache-
misses.

This problem can be improved by partitioning an entire image to blocks.
Conventionally, in order to perform a lifting scheme, the image rows are filtered
in the horizontal direction, and the image columns are filtered in the vertical
direction. However, our approach partitions an entire image into blocks to fit
into the cache size and reorders the processing sequence to be processed block by
block. It reduces the cache miss rate because data, which is fetched in horizontal
filtering, is remained on cache until the vertical filtering of current block is
completed. Thus, a whole image data can not be loaded on data cache.

DSP Implementation of Real-Time JPEG2000 Encoder 335

Fig. 1. Memory manipulation of proposed OBT

This method is seemed to remove perfectly a cache-miss problem. However,
two problems exist in the proposed method. One is that coefficients of edge
cannot be filtered independently without coefficients of adjacent blocks. The
other is that the data, which is not aligned by cache block size, must be fetched
two times. This means that the redundancy of re-fetch exists yet.

In order to solve these two problems, we propose an overlapped block transfer-
ring (OBT) method. This method is based on hierarchical memory architecture.
The memory architecture of JPEG2000 encoding system is composed of two
layers of data caches (L1D, L2D) and an external memory.

The principle of the OBT method is that DMA operating independently with-
out CPU execution transfers the image data to L2D from the external memory
by block size equal to the cache size. Unlike the external memory, the address of
the data memory on L2D is aligned by cache block size. Since the L2D can not
hold a whole image of large size, DMA transfers data blocks from the external
memory to L2D and from L2D to the external memory repeatedly like double-
buffering. Fig. 1 shows this mechanism. The data of the first column of blocks
is transferred to L2D. After the first column of blocks is processed, this data is
moved to the external memory and the next column of blocks is transferred to
same location of L2D by DMA.

Fig. 2 shows that the adjacent blocks are overlapped with each other along
the horizontal direction. Area 1 in light gray is completely wavelet processed,

Fig. 2. Overlapped block configuration

336 B.-D. Choi et al.

whereas Area 2 in dark gray contains data lifted partially. Thus, the next
block for the 2-D lifting is placed to include Area 2 as well as Area 3 in light
gray. The remaining horizontal lifting steps for pixel values in Area 2 are com-
pleted, and then the 2-D lifting scheme is processed for Area 3. As a result,
the data in light gray is fetched onto cache one time, and the data in dark
gray is fetched two times. It means that the cache miss rate is reduced
drastically.

3 Pipelined Processing of Passes for EBCOT Tier-1

Embedded block coding with optimal truncation (EBCOT) is the most compli-
cated part in JPEG2000. The context of a sample coefficient is formed according
to the significant state of the sample and its eight neighbors within 3x3 context
window. Then the context data is processed by the arithmetic coder. Each bit-
plane is encoded through three coding passes, called significant propagation pass
(Pass 1), magnitude refinement pass (Pass 2) and clean up pass (Pass 3). In con-
ventional EBCOT method, each pass is processed independently, although the
processing of these three passes is very similar. Thus, if the redundancy between
three passes, e.g. extraction of bit-plane data and context information from im-
age data (16bits), is removed, it is possible to reduce remarkably the processing
time of EBCOT.

Fig. 3. Pipeline processing of three passes

Parallel processing can be utilized to remove the redundancy. However, due
to the dependency of passes, it is difficult to process three passes of one stripe
simultaneously. In detail, in order to process Pass 2 of current stripe, the con-
text information of current and adjacent stripes, which is updated by processing
Pass 1, is required. In case of Pass 3, the context information to be acquired
by processing Pass 1 and Pass 2 is also needed. We use a pipelined process-
ing of passes (PPP) scheme as an alternative method of parallel processing.
The strategy is to process the three coding passes of the same bit-plane us-
ing pipeline architecture as shown in Fig. 3. First, the bit-plane data of the
first stripe is calculated for Pass 1. Second, the bit-plane data of the first and
second stripes is calculated for Pass 2 and Pass 1 respectively. Third, the bit-
plane data of the first, second and third stripes is processed for Pass 3, Pass

DSP Implementation of Real-Time JPEG2000 Encoder 337

2 and Pass 1 respectively. Third step is iterated until the coding block is com-
pletely processed. As a consequence, all the three passes are processed in one
scan.

4 Fast Rate Distortion Optimization Method for EBCOT
Tier-2

Post-Compression Rate-Distortion Optimization (PCRD Opt.) can find the trun-
cation point which attains the best image quality. However, this scheme requests
Tier-1 coding of all the bit-plane data, which is the most computationally inten-
sive process in JPEG2000 coding.

previous frame current frame

ba
dc

A B

C D

A B

C D

Fig. 4. Example of the adaptive prediction scheme

Our approach predicts the truncation point by using the temporal redun-
dancy in the image sequence, which is viable for real-time processing. Because
two adjacent frames in the image sequence tend to have temporal redundancy,
truncation points of code-blocks in the current frame can be very close to ones in
the previous frame. Therefore, using the number of coding passes of code-blocks
in the previous frame, we can predict the number of coding passes in the current
frame.

In the proposed method, the first frame is encoded in the full mode due to
the lack of the reference frame. Then the currently encoded frame becomes the
reference frame for the next frame. The truncation point of each code-block in
the next successive frames is predicted using that of the previous frame. Each
sub-band is further divided into several blocks. A best matching block is selected
among the blocks in the same sub-band of the previous frame using the Sum
of Absolute Difference (SAD). The truncation point of the best matching block
becomes the predicted truncation point of the block at the same position of
the current frame. Since the LL sub-band is a downscaled image of the whole
image, the motion activities for the sub-bands are highly correlated. Hence,
the procedure to find the best matching block is performed only for the LL

338 B.-D. Choi et al.

sub-band and the location information of the best matching block obtained in
the LL sub-band is utilized for the other sub-bands (LH, HL, and HH).

5 Experimental Results

The proposed OBT-based lifting scheme, the PPP method and fast PCRD Opt.
method for EBCOT are demonstrated in this section. To prove the effectiveness
of the proposed method, simulations were conducted using on a TMS320C6416
(600Mhz, 4800MIPS).

Table 1 shows the number of cache misses produced by the proposed OBT
method. In the horizontal filtering, the OBT method produces more cache misses
than the conventional method, because the data of overlapped area are fetched
twice. However, in the vertical filtering, the OBT method completely removes
the cache misses. Consequently, the OBT method reduces the cache-miss rate
by 98%.

Table 2 shows the processing time of the DWT using the two existing method,
which are Meerwald’s method (Row extension, Aggregation) [7] and Chatter-
jee’s method (Strip-mining, Data layout) [8], and the proposed OBT method.
For all image sizes, there is no improvement in the horizontal filtering. But
all three methods are effective in vertical filtering. Row extension, aggrega-
tion and the combination of both methods reduce the processing time by 78,
88 and 90%, respectively, in the vertical filtering. Strip mining, recursive data
layout and the combination of both methods reduce the processing time by
73, 66 and 82%, respectively, in the vertical filtering. Our method reduces the
processing time by 98% in the vertical filtering. Note that the speed of hor-
izontal filtering is almost identical to that of vertical filtering. It means that
the proposed method eliminates most cache misses in vertical filtering, as we
expected.

Table 3 shows the performance improvement by using the proposed PPP
algorithm for EBCOT Tier-1. As shown in Table 3, for Pass 1, the proposed
method does not affect the execution time because there is no difference between
the proposed method and the conventional method. However, for Pass 2 and 3,
the proposed method reduces the calculation time up to 41% (Pass 2) and 32%
(Pass 3). This result indicates that the proposed method significantly reduces the

Table 1. Comparison of number of cache misses

Image Lifting Number of cache misses
size direction Conventional lifting Overlapped Block Transferring

256x256
Horizontal 1024 1280
Vertical 65,536 0

512x512
Horizontal 4096 4608
Vertical 262,144 0

DSP Implementation of Real-Time JPEG2000 Encoder 339

Table 2. Comparison of processing time of wavelet lifting scheme

Different Execution time of DWT
method Horizontal(ms) Vertical(ms) Total(ms) Speed-up

Image size: 256x256
Original wavelet-lifting 2.65 111.63 120.28 1

Row extension 2.85 24.66 27.51 4.38
Meerwald’s method Aggregation 2.95 14.14 17.09 7.04

Combination 2.88 10.88 13.76 8.74
Strip-mining 2.71 32.27 33.98 3.54

Chatterjee’s method Data layout 2.87 41.12 43.99 2.76
Combination 2.77 20.26 23.03 5.22

Overlapped block transferring 3.81 3.22 7.03 17.18
Image size: 512x512

Original wavelet-lifting 12.74 659.35 672.09 1
Row extension 12.98 143.77 156.75 4.28

Meerwald’s method Aggregation 12.85 77.15 89.10 7.54
Combination 13.02 61.27 74.29 9.04
Strip-mining 12.89 175.90 188.79 3.56

Chatterjee’s method Data layout 12.95 225.71 238.66 2.82
Combination 12.87 115.40 128.27 5.24

Overlapped block transferring 17.94 17.35 35.29 19.04

Table 3. Comparison of consuming time of EBCOT between conventional method and
pipelined processing of passes

Image Lena Baboon Peppers

Conventional
method (ms)

Pass 1 297.8 277.9 269.7
Pass 2 140.3 156.8 157.2
Pass 3 522.8 531.7 533.9

PPP method
(ms)

Pass 1 298.6 281.6 272.8
Pass 2 88.5 96.3 92.6
Pass 3 357.4 369.5 378.3

Improvement 23% 25% 24%

processing time for scanning and masking in case of Pass 2 and 3 by reusing the
parameter and data used in Pass 1. Generally, the computation complexity of the
whole EBCOT Tier-1 can be reduced by 24% as compared with the conventional
architecture.

Fig. 5 shows the comparison of the normalized processing time of EBCOT
Tier-2 at various bit rates. As shown in Fig. 5, in case of the full mode, the
processing time of EBCOT Tier-2 is independent of the bit rate. Note that

340 B.-D. Choi et al.

0 20 40 60 80 100

0

20

40

60

80

100

120

0.125 bpp

0.25 bpp

0.5 bpp

1 bpp

full mode

N
or

m
al

iz
ed

 ti
m

e
of

 E
B

C
O

T
 T

ie
r-

2

Frame index

0 20 40 60 80 100

0

20

40

60

80

100

0.125 bpp

0.25 bpp

0.5 bpp

1 bpp

full mode

N
or

m
al

iz
ed

 ti
m

e
of

 E
B

C
O

T
 T

ie
r-

2

Frame index

(a) (b)

Fig. 5. Comparison of the normalized processing time of EBCOT Tier-2. (a) “Football”
sequence. (b) “Flower Garden” sequence.(Grayscale, 512x512 size, 1 tile, 1 layer, 5
decomposition levels, 5/3 filter)

the proposed method reduces considerable computation since a large part of
unnecessary processes is skipped. The proposed method reduces the processing
time of EBCOT Tier-2 down to about 40% at 0.5bpp(1/16) compression.

6 Conclusions

In this paper, we have presented a real-time embedded Motion-JPEG 2000 en-
coding system using a fixed-point DSP chip. To improve the performance of the
system, we have proposed OBT-based lifting scheme to increase the cache hit
rate. The OBT-based lifting scheme is over five times faster than the line-based
lifting scheme. In addition, we showed that the proposed PPP algorithm and
fast rate distortion optimization method can significantly reduce the execution
time of EBCOT. Consequently, the Motion-JPEG2000 implementation on a DSP
meets common requirement of real-time video coding [30 frames/s (fps)] and is
proven to be a practical and efficient DSP solution.

References

1. Rabbani, M., Joshi, R.: An overview of the JPEG2000 still image compression stan-
dard. Signal Processing and Image Communication. 17 (2002) 3-48

2. Taubman, D.S., Marellin, M.W.: JPEG2000: Image compression fundamentals, stan-
dards and practice. Kluwer Academic Publishers. (2002)

3. Information Technology - JPEG2000 Image coding system:Part 1. ISO/IEC Inter-
national Standard. 15444-1 (2000)

4. Yu, W., Qiu, R., Fritts, J.: Advantages of motion-jpeg2000 in video processing. in
Proceedings of the SPIE, Visual Commmunications and Image Processing. 4671
(2002) 635-645

DSP Implementation of Real-Time JPEG2000 Encoder 341

5. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting scheme. The
J. of Fourier Analsys and Applications. 4 (1998) 247-269

6. Taubman, D.S.: High performance scalable image compressin with EBCOT. IEEE
Trans. Image Processing 9 (2000) 1158-1170

7. Meerwald, P., Norecn, R., Uhl, A.: Cache issues with JPEG2000 wavelet lifting,
Proc. SPIE, Electron. Imaging, Vis. Commun. Image Process. 4671 (2002) 626-634

8. Chatterjee, S., Brooks, C.D.: Cache-efficient wavelet lifting in JPEG2000. IEEE Int.
Conf. on Multimedia and Expo. 1 (2002) 797-800

Dynamic Load Balancing for a Grid Application

Menno Dobber, Ger Koole, and Rob van der Mei

Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam,
The Netherlands

{amdobber, koole, mei}@few.vu.nl
http://www.cs.vu.nl/~amdobber

Abstract. Grids functionally combine globally distributed computers
and information systems for creating a universal source of computing
power and information. A key characteristic of grids is that resources
(e.g., CPU cycles and network capacities) are shared among numerous
applications, and therefore, the amount of resources available to any
given application highly fluctuates over time. In this paper we analyze
the impact of the fluctuations in the processing speed on the performance
of grid applications. Extensive lab experiments show that the burstiness
in processing speeds has a dramatic impact on the running times, which
heightens the need for dynamic load balancing schemes to realize good
performance. Our results demonstrate that a simple dynamic load bal-
ancing scheme based on forecasts via exponential smoothing is highly
effective in reacting to the burstiness in processing speeds.

1 Introduction

Often, grid environments are seen as the successors of distributed computing en-
vironments (DCEs). Nevertheless, these two environments are fundamentally dif-
ferent. A DCE environment is rather predictable: the nodes are usually homoge-
neous, the availability of resources is based on reservation, the processing speeds
are static and known beforehand. A grid environment, however, is highly unpre-
dictable in many respects: resources have different and usually unknown capaci-
ties, they can be added and removed at any time, and the processing speeds fluc-
tuate over time. In this context, it is challenging to realize good performance of
parallel applications running in a grid environment. In this paper we focus on the
fluctuations in processing speeds. First, we conducted elaborate experiments in
the Planetlab [1] grid environment, in order to investigate over which time scales
the processing speed fluctuates. Experimental results show fluctuations over dif-
ferent time scales, ranging from several seconds to minutes. Second, we analyze
the potential speedup of the application by properly reacting to those fluctu-
ations. We show that dynamic load balancing based on forecasts obtained via
exponential smoothing can lead to a significant reduction of the running times.

Fluctuations in processing speeds are known to have an impact on the run-
ning times of parallel applications, and several studies on analyzing the impact
of the fluctuations on the running time have been conducted. However, these

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 342–352, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Dynamic Load Balancing for a Grid Application 343

fluctuations are typically artificially created, and hence controllable (see for ex-
ample [2]), whereas the fluctuations in grid environments are not controllable.
In the research community several groups focus on performance aspects of grid
applications. A mathematicians’ approach is to develop stochastic models for
processing speeds, latencies and dependencies involved in running parallel appli-
cations, to propose algorithms for reduction of the running time of an application,
and to provide a mathematical analysis of the algorithm [3, 4, 5]. Such a mathe-
matical approach may be effective in some cases; however, usually unrealistic as-
sumptions have to be made to provide a mathematical analysis, which limits the
applicability of the results. On the other hand, computational grid experts de-
velop well-performing strategies for computational grids, i.e., connected clusters
consisting of computational nodes. However, due to the difference in fluctuations
between general grid environments and computational grids, the effectiveness of
these strategies in a grid environment is questionable [6]. A third group of re-
searchers focuses on large-scale applications with parallel loops (i.e., loops with
no dependencies among their iterations) [7, 8], combining the development of
strategies based on a probabilistic analysis with experiments on computational
grids with regulated load. However, due to the absence of dependencies among
the iterations of those applications, these strategies are not applicable to parallel
applications with those dependencies. These observations heighten the need for
an integrated analysis of grid applications (including dependencies among their
iterations), combining a data approach with extensive experimentation in a grid
environment.

The increasing popularity of parallel applications in a grid environment cre-
ates many new challenges regarding the performance of grid applications, e.g.,
in terms of running times. To this end, it is essential to reach a better under-
standing of (1) the nature of fluctuations in processing speeds and the relevant
time scale of these fluctuations, (2) the impact of the fluctuations on the running
times of grid applications, and (3) effective means to cope with the fluctuations.
The goal of this paper is to address these questions by combining results from
lab experiments with mathematical analysis. To address these questions we have
performed extensive test-lab experiments in a grid environment called Planetlab
[1] with the classical Successive Over Relaxation (SOR) application. First, we
provide a data analysis showing how processing speeds change over time. The
results show fluctuations over multiple time scales, ranging from seconds to min-
utes. Then, we focus on the impact of the fluctuations on the running times for
SOR at different time scales. The results show a dramatic influence of fluctu-
ating processing speeds on running times of parallel applications. Subsequently,
we focus on a dynamic load balancing scheme to cope with the fluctuations
in processing speeds. We show that significant reductions in running times can
be realized by performing load balancing based on predictions via the classical
exponential smoothing technique.

This paper is organized as follows. In Section 2 we will describe the Planetlab
testbed environment and the SOR application used in our experiments. Section 3
will show the data collection procedure and results about the different time scales

344 M. Dobber, G. Koole, and R. van der Mei

of the fluctuations in processing speeds. In Section 4 different load balancing
strategies will be presented. Finally, in Section 5 the results and in Section 6 the
conclusions will be addressed.

2 Experimental Setup

Experiments were performed with a parallel application on a grid test bed. A
main requirement for the test bed is that it needs to use a network with intrinsic
properties of a grid environment: resources with different capacities and many
fluctuations in load and performance of geographically distributed nodes. We
have performed our experiments on the Planetlab test bed [1], which meets
these requirements. PlanetLab is an open, globally distributed processor-shared
network for developing and deploying planetary-scale network services.

The application has also been carefully chosen so as to meet several require-
ments. On the one hand, the application must have dependencies between its it-
erations, because most of the parallel applications have that property, while on
the other hand the structure of the dependencies should be simple. A suitable
application is the Successive Over Relaxation (SOR) application. SOR is an iter-
ative method that has proven to be useful in solving Laplace equations [9]. Our
implementation of SOR deals with a 2-dimensional discrete state space M ×N , a
grid. Each point in the grid has 4 neighbors, or less when the point is on the bor-
der of the grid. Mathematically this amounts to taking a weighted average of the
values of the neighbors and its own value. The parallel implementation of SOR
is based on the Red/Black SOR algorithm [10]. The grid is treated as a checker-
board and each iteration is split into phases, red and black. During the red phase
only the red points of the grid are updated. Red points only have black neighbors,
and no black points are changed during the red phase. During the black phase,
the black points are updated in a similar way. Using the Red/Black SOR algo-
rithm, the grid can be partitioned among the available processors. All processors
can update different points of the same color in parallel. Before a processor starts
the update of a certain color, it exchanges the border points of the opposite color
with its neighbors. Figure 1 illustrates the use of SOR over different processors.

Fig. 1. Successive Over Relaxation

Dynamic Load Balancing for a Grid Application 345

3 Analysis of Fluctuations in Processing Speeds

To characterize the fluctuations in processor speeds in a grid environment, we
collected data about the processor speeds and the communication times by doing
10 runs of Red-Black SOR with a grid size of 5000 × 1000. Interrupted runs were
omitted. One run consists of 1000 iterations, from which there are 3 warming
up, 994 regular, and 3 cooling down iterations. Every iteration has two phases
(see Section 2), which leads to 1988 data lines per run. To increase the running
times such that parallellisation improves performance we repeated each iteration
50 times. This corresponds to a grid size of 25 · 104 × 103. Table 1 lists the
sites and node names we used during the experiments. For every run we used 4
independently chosen sites from that table. We collected data about calculation
times and receive times of each node, and wait times and send times between all
nodes. The calculation time is the time a node uses to compute one calculation
of one iteration, the wait time is the time a node has to wait for data of its
neighbors before it can do a new step, the send time is the time a node uses
to send all the relevant data to its neighbors and receive the acknowledgement,
and the receive time is the time a node uses to load the relevant data of its
neighbors from the received-data table. We do not run other applications on the
same nodes during our runs to create changing load on the processors.

Figures 2 and 3 show the calculation times as a function of the iteration
number for a set of 250 iterations for different sites. Figures 4 and 5 show the
results for the send times. The receive times were found to be negligible (mostly
less than 0.5 ms).

The results presented in Figures 2 to 5 reveal a number of interesting phe-
nomena. First, we observe that fluctuations in the calculation times and the send
times are considerable. We also observe fluctuations on multiple time scales. On
the one hand there are short-term fluctuations in both the calculation times
and the send times, on the order of seconds. On the other hand, we observe
long-term fluctuations, as can be seen from Figure 2. These fluctuations are
presumably caused by a changing load at the processor. The long-term fluc-
tuations in calculation times suggest that reduction of the running times can
be realized by dynamically allocating more tasks to relatively fast processors.
Second, Figures 2–5 show that the burstiness in the send times is larger than
in the calculation times. We observe that the send times do not have a long-
term effect, whereas the calculation times often show huge long-term fluctua-

Table 1. Used nodes in our experiments

Site Abbreviation Nodename
University of Utah utah1 planetlab1.flux.utah.edu
University of Washington wash1 planetlab01.cs.washington.edu
University of Arizona arizona1 planetLab1.arizona-gigapop.net
California Institute of Technology caltech1 planlab1.cs.caltech.edu
University of California, San Diego ucsd1 planetlab1.ucsd.edu
Boston University boston1 planetlab-01.bu.edu

346 M. Dobber, G. Koole, and R. van der Mei

Fig. 2. Calculation times of 250 iterations in Arizona1

Fig. 3. Calculation times of 250 iterations in Utah1

tions. This observation also suggests that there is a great potential reduction
in calculation times, which can be achieved by adapting the load according
to the current speeds of the processors. Note that those findings correspond
with the results about fluctuations of CPU availability in time-shared unix
systems [11]. In this paper we do not investigate the causes of those fluctua-
tions, but we are interested in how to deal with them. That corresponds with
the idea that it will be hard to retrieve causes of fluctuations in the future
grid.

4 Load Balancing Strategies

Load balancing is an effective means to reduce running times in a heteroge-
neous environment with fluctuating processing speeds. In this section we quan-
tify the feasible reduction in running time by using different load balancing
strategies. We consider two types of load balancing strategies: static and
dynamic.

Dynamic Load Balancing for a Grid Application 347

Fig. 4. Send times of 250 iterations from Caltech1 to Arizona1

Fig. 5. Send times of 250 iterations from Boston1 to Ucsd1

4.1 Definitions

Static Load Balancing (SLB) strategies use a number of ”cold iterations” to
estimate the average processor speeds, in order to balance the load. Define

S(n) := total running time with SLB using the average calculation times
of the first n iterations.

Note that the special case S(0) corresponds to the running time of a run
without load balancing, that is, with equal loads.

Berman et al. [12] show that forecasting the performance of the network is
useful for Dynamic Load Balancing (DLB). Several prediction methods have
been developed for network performance and CPU availability [13]. We use
the method of Exponential Smoothing (ES) to predict calculation times (see
also [14]). ES appears to be a very simple and effective method to reduce run-
ning times. ES is a forecasting method that on the one hand filters out outliers
in the data, and on the other hand reacts quickly to long-term changes. Denote
by yn the realization of the n-th iteration step, and let ŷn denote the prediction
of yn. Then ES is based on the following recursive scheme:

348 M. Dobber, G. Koole, and R. van der Mei

Fig. 6. Exponential Smoothing of calculation times of Arizona1

ŷn = αyn−1 + (1− α)ŷn−1 . (1)

Figure 6 shows the calculation times as a function of the iteration sequence
number. The results show that our ES predictor performs very well: even the
high fluctuations are well tracked by the forecasts.

In the context of the dynamic load balancing strategies the ES-based pre-
diction ŷn represents the predicted calculation time in the n-th iteration, n =
1, 2,

If we want to change the load of the processors in the case of Dynamic Load
Balancing we have to move rows in the grid from one processor to the other.
To avoid excessive communication we introduce a parameter T indicating how
often we move rows around. Define for the ES-based Dynamic Load Balancing
strategies:

D(α, T) := running time with DLB using ES with parameter α,

and load balancing every T iterations.

4.2 Calculation of Running Times

As described in Section 3 we collected data about calculation and send times
by doing 10 runs of the Red-Black SOR. In the subsection before we defined
several Static and Dynamic Load Balancing strategies. In this subsection we will
describe the calculation methods we used to generate estimates of the running
times of runs using the optimal static and dynamic strategies from the datasets
of the original runs.

We assume a linear relation between the number of tasks (in SOR: the number
of rows) and the calculation times of those tasks together, and also a linear
relation between the amount of data (in SOR: the number of rows) sent by the
application, and the total send time. We also assume that the overhead involved
in load balancing is negligible in the long time scale (of minutes) considered here,
because calculation times are significantly higher than the overhead.

Dynamic Load Balancing for a Grid Application 349

To start, we explain how we compute an estimation of the lowest possible
running time under a DLB strategy, denoted by D∗. To this end, we use the
measured calculation times in the original run to estimate the lowest possible
calculation time with the optimal DLB strategy. Let nolb rowsj be the number
of rows assigned to processor j = 1, . . . , P in the original run, and let nolb calci,j

be the measured calculation time on processor j for the ith iteration, i = 1, . . . , I.
Then, nolb rowsj/nolb calci,j is an approximation of the number of rows that
can be executed during iteration i on processor j per time unit. The total pro-
cessing rate for iteration i is therefore

∑
j nolb rowsj/nolb calci,j , and the time

it takes under a perfect DLB strategy to do iteration i is therefore

D∗ calci =

∑P
j=1 nolb rowsj∑P

j=1nolb rowsj/nolb calci,j

=
(
∑P

j=1nolb rowsj)(
∏P

j=1nolb calci,j)∑P
j=1(nolb rowsj

∏
k
=j nolb calci,k)

.

(2)

Note that D∗ calci is the estimated calculation time for iteration i with
the optimal dynamic load balancing strategy, assuming all processor speeds are
known in advance, and that D∗ calci is the same for all processors. In this
calculation we assumed that the overhead in realizing the dynamic load balancing
is negligible.

Now we focus on the calculation of an estimation of the lowest possible run-
ning time under SLB, denoted by S∗. With respect to the dynamic situation, we
compute the average processing rate over the whole run, and not the rate per
iteration. This rate is given by

nolb rowsj

1
I

∑I
i=1 nolb calci,j

.

Thus the number of rows S∗ rowsj that have to be assigned to processor k
under the SLB strategy is equal to

S∗ rowsj =
P∑

k=1

nolb rowsk

nolb rowsj

1
I

∑I

i=1
nolb calci,j∑P

k=1
nolb rowsk

1
I

∑I

i=1
nolb calci,k

, (3)

and we estimate that iteration i on processor j takes

S∗ calci,j =
S∗ rowsj

nolb rowsj
nolb calci,j . (4)

time units.
To calculate the running times of the Static and Dynamic Load Balancing

strategies we first derive the number of rows, S(n) rowsj and D(α, T) rowsi,j re-
spectively, each processor j receives from the strategy in each iteration i. For this
step we used the methods described in the previous subsection: for calculating
S(n) rowsj we used the first n iterations and for D(α, T) rowsi,j Exponential
Smoothing. Next, with the following formulas we compute the new calculation
times of the strategies for each processor j in iteration i:

350 M. Dobber, G. Koole, and R. van der Mei

S(n) calci,j =
S(n) rowsj

nolb rowsj
nolb calci,j , (5)

D(α, T) calci,j =
D(α, T) rowsi,j

nolb rowsj
nolb calci,j . (6)

Above, we explained how we calculated the new calculation times for each
strategy in each iteration. Finally, we put those new calculation times and the
send times of the original run in a plain model to derive the new wait times and
the estimated running times of the different strategies.

5 Performance Comparison: Experimental Results

To compare the performance under different load balancing strategies, we have
estimated the running times under a variety of static and dynamic load balancing
schemes. We define the speedups of S(n), D(α, T), S∗ and D∗ as the number of
times those strategies are faster than the run without load balancing:

speedup S(n) :=
S(0)
S(n)

, (7)

speedup D(α, T) :=
S(0)

D(α, T)
, (8)

speedup S∗ :=
S(0)
S∗ , (9)

speedup D∗ :=
S(0)
D∗ . (10)

Table 2 shows the speedups that can be made by load balancing on the basis
of ES predictions, compared to the case with no load balancing, for a variety of
load balancing strategies. Based on extensive experimentation with the value of
α, we found that a suitable value of α is 0.5.

The results shown in Table 2 lead to a number of interesting observations.
First, we observe that there is a high potential speedup by properly reacting
to fluctuations of processing speeds by dynamic load balancing. The potential
speedup is shown by the speedup of D∗ in Table 2; in the optimal dynamic load
balancing case it is possible to obtain a speedup of 2.5 minus the overhead for
the running times, and in 20% of the iterations even more than 3.6. Second, we
observe that despite the inaccuracy in the predictions of the calculation times
the speedup factor by applying dynamic load balancing is still close to the “the-
oretical” optimum. Even load balancing every 200 iterations, which relatively
causes almost no extra overhead compared to the total running time, leads to an
average speedup of 2.0 compared to the case of no load balancing. Third, we also
observe that even if a better static load balancing scheme is used as a bench-
mark, the speedup factor realized by implementing a dynamic load balancing
scheme is still significant.

Dynamic Load Balancing for a Grid Application 351

Table 2. Relative improvements compared of different load balancing strategies (com-
pared to no load balancing)

LB strategy Mean speedup of 10 runs
S(0) 1.0
S(1) 1.2
S(10) 1.2
S(20) 1.3
S∗ 1.9
D(0.5, 1) 2.5
D(0.5, 2) 2.5
D(0.5, 3) 2.4
D(0.5, 4) 2.4
D(0.5, 5) 2.4
D(0.5, 10) 2.3
D(0.5, 20) 2.3
D(0.5, 30) 2.3
D(0.5, 40) 2.3
D(0.5, 50) 2.2
D(0.5, 100) 2.2
D(0.5, 200) 2.0
D(0.5, 300) 2.0
D(0.5, 400) 1.8
D(0.5, 500) 1.7
D∗ 2.5

6 Conclusions and Further Research

The results presented in this paper raise a number of challenges for further re-
search. First, the results demonstrate the importance of effectively reacting to
randomness in a grid environment. The development of robust grid applications
is a challenging topic for further research. Second, in the results presented here
we have focused on the fluctuations in processing speeds. However, in data-
intensive grid applications the fluctuations in the available amount of network
capacity may be even more important than fluctuations in processor speed. To
this end, extensive experiments need to be performed to control changing net-
work capacities. Third, more research has to be done on the aspect of selecting
the best predicting methods for processor speeds. With those methods general
dynamic load balancing algorithms for regularly used parallel applications have
to be developed. Finally, in this paper we focus on the SOR application, which
has a relatively simple linear structure (see Figure 1). One may suspect that
even larger improvements of the running times may be obtained for more com-
plex computation-intensive applications with more complex structures, which is
an interesting topic for further research.

352 M. Dobber, G. Koole, and R. van der Mei

Acknowledgements

We are indebted to Mathijs den Burger, Thilo Kielmann, Henri Bal, Jason
Maassen and Rob van Nieuwpoort for their useful comments.

References

1. (http://www.planet-lab.org)
2. Banicescu, I., Velusamy, V.: Load balancing highly irregular computations with the

adaptive factoring. In: Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS). (2002)

3. Attiya, H.: Two phase algorithm for load balancing in heterogeneous distributed
systems. In: Proceeding of the 12th Euromicro conference on parallel, distributed
and network-based processing. (2004)

4. Shirazi, B.A., Hurson, A.R., Kavi, K.M.: Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE CS Press (1995)

5. Zaki, M.J., Li, W., Parthasarathy, S.: Customized dynamic load balancing for a
network of workstations. Journal of Parallel and Distributed Computing 43 (1997)
156–162

6. Nemeth, Z., Gombas, G., Balaton, Z.: Performance evaluation on grids: Directions,
issues and open problems. In: Proceedings of the 12th Euromicro Conference on
Parallel, Distributed and Network-based Processing. (2004)

7. Banicescu, I., Liu, Z.: Adaptive factoring: A dynamic scheduling method tuned to
the rate of weight changes. In: Proceedings of the High Performance Computing
Symposium (HPC). (2000) 122–129

8. Cariño, R.L., Banicescu, I.: A load balancing tool for distributed parallel loops.
In: International Workshop on Challenges of Large Applications in Distributed
Environments. (2003) 39–46

9. Evans, D.J.: Parallel SOR iterative methods. Parallel Computing 1 (1984) 3–18
10. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press (1981)
11. Wolski, R., Spring, N.T., Hayes, J.: Predicting the CPU availability of time-shared

unix systems on the computational grid. Cluster Computing 3 (2000) 293–301
12. Berman, F.D., Wolski, R., Figueira, S., Schopf, J., Shao, G.: Application-level

scheduling on distributed heterogeneous networks. In: Proceedings of the 1996
ACM/IEEE conference on Supercomputing, ACM Press (1996) 39

13. Wolski, R.: Forecasting network performance to support dynamic scheduling using
the Network Weather Service. In: HPDC. (1997) 316–325

14. Shum, K.H.: Adaptive distributed computing through competition. In: Proceed-
ings of the International Conference on Configurable Distributed Systems, IEEE
Computer Society (May 1996) 200–227

Load Balancing for Hierarchical Grid Computing: A
Case Study

Chunxi Chen and Bertil Schmidt

School of Computer Engineering, Nanyang Technological University, Singapore
{pg03452644, asbschmidt}@ntu.edu.sg

Abstract. Hierarchical grid computing is a way to gain high compute power at
low cost by combining existing computational resources instead of building a
new one. It typically has heterogeneous characteristics, such as: (1) Resources
have different computational power; and (2) Resources are shared among users;
and (3) Resources are usually connected by networks with widely varying per-
formance characteristics. This makes the development or adaptation of parallel
applications on hierarchical grids challenging. In this paper, we study three load
balancing techniques for hierarchical grids: static load balancing, master-slave
and a new technique called “scheduler-worker”. We evaluate the performance of
these techniques for computing the alignment of long DNA sequences on a grid.

1 Introduction

Hierarchical grid computing describes the combination of several PC clusters within
one architecture. Using PC clusters as in the Beowulf approach is currently one of the
most efficient and simple ways to gain high compute power at a reasonable price. The
development or adaptation of parallel applications for the hierarchical grid architecture
is made challenging by the often heterogeneous nature of the resources involved. This
establishes the need for new load balancing techniques for efficient hierarchical grid
computing.

The grid application that we use in this paper is long DNA sequences alignment.
Aligning long DNA sequences is a common and often repeated task in molecular bi-
ology. The need for speeding up this treatment comes from the rapid growth of the
number of organisms whose genomes have been completely sequenced. Dynamic pro-
gramming based algorithms can compute accurately the optimal alignment of a pair of
sequences [12]. However, since their complexities are quadratic with respect to the length
of the two sequences this approach leads to a high computing time. One effective ap-
proach to get high quality results in a short time is to use parallel processing. In this paper
we present an efficient parallel implementation of the dynamic programming algorithm
in linear space. In addition, our solution can compute near-optimal non-intersecting
alignments since not only the optimal alignment but also sub-optimal alignments are
biological significant. We show that this approach leads to significant runtime savings
on a hierarchical grid system.

In order to map the application efficiently onto the hierarchical grid system, we are
investigating static and dynamic load balancing approaches in this paper. On the basis

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 353–362, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

354 C. Chen and B. Schmidt

of this analysis, we propose a new dynamic load balancing approach named scheduler-
worker technique, which can achieve better performance under disturbance and for low
inter-cluster bandwidth.

The rest of this paper is organized as follows. In Section 2, we provide a de-
scription of hierarchical grid computing. Section 3 presents the sequence alignment
algorithm. The mapping of the application onto the hierarchical grid architecture us-
ing three different techniques is explained in Section 4. The performance is evalu-
ated in Section 5. Section 6 concludes the paper with an outlook to further research
topics.

2 Hierarchical Grid Computing

The computational grid [3] is a new parallel and distributed computing paradigm that
provides a resource for large scientific computing applications. It typically consists of
heterogenous resources, e.g., clusters, that may reside in different administrative do-
mains, run different softwares, be subject to different access policies, and be connected
by networks with widely varying performance characteristics. Grid infrastructure, e.g.,
Globus Toolkits [16], is installed in the head nodes of these resources. Inside each re-
source, the resource is managed by the local resource management systems, such as
SGE [18] or PBS [19]. Since Message Passing Interface (MPI) is the dominant pro-
gramming paradigm for clusters, some Grid-enabled MPI implementations, such as
PACX-MPI [4], MPICH-G2 [8], Stampi [7] and MagPIe [9], are widely used for hierar-
chical grid computing.

We have built an experimental testbed consisting of three Linux PC clusters. The three
clusters are located at two different research centers (PDCC: parallel and distributed
computing center and BIRC: bioinformatics research center) at Nanyang Technological
University. Two clusters are in PDCC (8 nodes for every cluster: Intel PIII 733) and one
cluster is in BIRC (8 notes: Intel Itanium-1). Each cluster is internally connected by a
Myrinet switch (the intra-cluster connection) and an Ethernet switch is used as an inter-
cluster connection. The normal application-level bandwidth inside each cluster is about
190 MByte/s. The normal application-level inter-cluster bandwidth is about 8 MByte/s.
In order to evaluate different inter-cluster bandwidths, we run an application, which
only sends or receives data packages between the clusters. We can control the sizes and
frequencies of the data packages to get different levels of inter-cluster bandwidth. The
experimental testbed is similar to a real wide-area grid system.

The software architecture is shown in Figure 1. It can be divided into two layers.
The upper layer is the MPICH-G2 [8] layer that runs on the control node of each cluster.
This allows (slow) inter-cluster communication. The lower one is the MPICH [17] layer
that runs on all nodes within a cluster. This allows (fast) intra-cluster communication.
Each cluster has SGE [18] installed. SGE is a Distributed Resource Management (DRM)
software. It can allocate parallel tasks from the control node to execution nodes inside
a cluster. Each parallel task is firstly distributed to the control nodes of each cluster.
Secondly, SGE allocates the task from the control node to another execution node within
the cluster, complying with its scheduling strategy. Parallel processes can communicate
via MPICH-G2 (between clusters) and MPICH (within the same cluster).

Load Balancing for Hierarchical Grid Computing: A Case Study 355

no
de

 1

no
de

 2

no
de

 n

execution nodes

Scheduler−sge

surya.ntu.edu.sg/
jobmanager−sge

kusu.ntu.edu.sg/
jobmanager−sge

Scheduler−sge

no
de

 n

no
de

 2

no
de

 1

execution nodes

control node control node

jobmanager−sge
birc.ntu.edu.sg/

control node

Scheduler−sge

no
de

 n

no
de

 2

no
de

 1

execution nodes

CLUSTER 3CLUSTER 2CLUSTER 1

MPICH−G2

Fig. 1. The hierarchical parallel programming environment consisting of MPICH-G2, MPICH and
Sun Grid Engine

3 Aligning Long DNA Sequences

3.1 Smith-Waterman Algorithm

The Smith-Waterman algorithm [12] finds the most similar subsequences of two se-
quences (the local alignment) by dynamic programming. The algorithm compares two
sequences by computing a distance that represents the minimal cost of transforming
one segment into another. Two elementary operations are used: substitution and inser-
tion/deletion (also called a gap operation). Consider two strings S1 and S2 of length l1
and l2. To identify common subsequences, the Smith-Waterman algorithm computes the
similarity matrix H(i,j) of the two sequences. The computation of H(i,j) is given by the
following recurrences:

H(i, j) =max

⎧⎪⎪⎨
⎪⎪⎩

0
E(i, j)
F (i, j)
H(i− 1, j − 1) + sbt(S1i, S2j)

E(i, j) =max

{
H(i, j − 1)− α
E(i, j − 1)− β

F (i, j) =max

{
H(i− 1, j)− α
F (i− 1, j)− β

where 1 ≤ i ≤ l1, 1 ≤ j ≤ l2 and Sbt is a character substitution cost table. Initialization
of these values are given by: H(i, 0) = E(i, 0) = 0, 0 ≤ i ≤ l1 and H(0, j) =
F (0, j) = 0, 0 ≤ j ≤ l2.

Multiple gap costs are taken into account as follows: α the cost of the first gap; β
is the cost of the following gaps. Each position of the matrix H is a similarity value.
The two segments of S1 and S2 producing this value can be determined by a traceback
procedure.

356 C. Chen and B. Schmidt

Although able to report all possible alignments between two sequences, the Smith-
Waterman algorithm imposes challenging requirements both on computer memory and
run-time. Considering comparing two sequences with length of l1 and l2, the memory and
time complexity for Smith-Waterman algorithm is O(l1×l2). For aligning two sequences
of a few million base pairs in length this would lead to a memory requirement of several
Terabytes. However, it is possible to reduce the memory space complexity from quadratic
to linear by the algorithm described in the next subsection.

3.2 Optimal Alignments in Linear Space

The values in the similarity matrix can be computed in linear space as follows. The value
of cell (i,j) in the similarity matrix only depends on values of the cells (i − 1,j − 1),
(i − 1,j) and (i,j − 1). Thus, the ith row in the similarity matrix can be computed by
overwriting values for the (i−1)th row in a left-to-right sweep. However, this approach
will only find the maximal score, start and end points; it will not find the actual alignment.
Hirschberg [5, 11] presented a recursive divide-and-conquer algorithm for computing
this alignment in linear space.

3.3 Finding Near-Optimal Alignments in Linear Space

The detection of near-optimal (or high-scoring) non-intersecting local alignments is
particular useful for the comparison of long DNA sequences. The Waterman-Eggert
algorithm [14] finds a series of non-intersecting near-optimal local alignments that is
widely used. Huang [6] has produced a linear-space version of this method using graph
theory. Our approach is based on Huang’s method with some modifications to make it
more suitable for efficient parallelization.

4 Mapping the Application onto the Hierarchical Grid
Architecture

Grid systems typically have a heterogeneous nature.Therefore, the following four aspects
have to be taken into account when running a parallel application in a multi-clustered
grid environment.

(1) Resources have different computational power.
(2) Resources are shared, i.e. there are several users’ tasks running at the same time,

therefore, the effective CPU time of an application depends on the number of jobs
running on the node at that time.

(3) Resources in a grid system usually are connected by networks with widely varying
performance characteristics. Furthermore, the inter-cluster connection is by one or
two orders of magnitude slower than the intra-cluster connection.

In order to parallelize an application efficiently on a hierarchical grid architecture,
the program should comply with the following rules:

(1) Reduction of inter-cluster data transfer, since the inter-cluster link is usually very
slow.

Load Balancing for Hierarchical Grid Computing: A Case Study 357

(2) Amount of work allocated to a processor should depend on the computational power
that processor allocates to the application at that time. This assures that no processor
becomes the bottleneck.

4.1 Parallelization of Sequence Alignment

Parallelization of long DNA sequence alignment consists of two parts:

(1) Parallelization of the similarity matrix computation.
(2) Parallelization of the divide-and-conquer algorithm to calculate the actual align-

ments.

The parallelization of the similarity matrix calculation is based on the wavefront
communication pattern. Each cell (i,j) of the similarity matrix is computed from the
cells (i − 1,j), (i, j − 1), (i − 1, j − 1). Therefore, On coarse-grained architectures
like homogeneous PC clusters, it is more efficient to assign an equal number of adjacent
columns to each processor as shown in Figure 2a. In order to reduce communication time
further, matrix cells can be grouped into blocks. Processor i then computes all the cells
within a block after receiving the required data from processor i− 1. Figure 2 shows an
example of the computation for 4 processors, 8 columns and a block size of 2×2.

(a) (b)

0P P P P1 32 P P P P0 1 2 3

1 2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

Fig. 2. (a) Column-based division of an 8×8 matrix using 4 processors; (b)Wavefront computation
for 4 processors, 8 columns and a 2×2 block size. The complete 8×8 matrix can then be computed
in 7 iteration steps

Calculation of the actual alignment is only parallelized if the distance between these
points is reasonably large. The parallel solution for determining the optimal path on the
hierarchical grid is as follows. Let us define special columns as the last columns of the
parts of the similarity matrix allocated to each processor, except the last processor. If we
can identify the intersection of an optimal path with the special columns, we can split
the problem into sub-problems and solve them sequentially on each processor using
linear space algorithm. The solutions of the sub-problems are then concatenated to get
the optimal alignment.

358 C. Chen and B. Schmidt

4.2 Mapping onto the Hierarchical Grid Using Static Load Balancing

In this approach, the mapping has two levels of partitioning. Firstly, the matrix is divided
into parts of adjacent columns equal to the numbers of clusters. Secondly, the part within
each cluster is further partitioned. The computation is then performed in the same way
as shown in Figure 2b. This reduces the inter-cluster data transfer to a single column per
iteration step. In order to avoid bottlenecks on the heterogeneous hierarchical grid archi-
tecture, the number of columns assigned to each cluster depends on its computational
capabilities. The order of the partitioning depends on the inter-cluster bandwidths.

The static load balancing approach can achieve good performance under the condition
that there is no disturbance from other applications. Figure 5 shows the speedups of
different number of processors and different inter-cluster bandwidths. If the execution
of a job is disturbed by another application in a node, it might become the bottleneck
for the whole system. An experiment is therefore designed to measure the performance
degradation.

In order to scale the extent to which a disturbance affects the application performance,
we define PDRD (performance degradation ratio under disturbance) as [15]:

PDRD = (T
′ −T
T)× 100%

where T
′

denotes the execution time under disturbance and T denotes the execution
time without any disturbance. Smaller PDRD values indicate a better robustness of the
application to disturbance.

Figure 5 shows how is the effect of disturbance by an application running on the
CPU that uses around 50% CPU time.

4.3 Mapping onto the Hierarchical Grid Using Dynamic Load Balancing

A dynamic load balancing mechanism can be implemented using two approaches:
system-level dynamic load balancing and application-level dynamic balancing. The for-
mer uses system state information to make decision at runtime on how to dispatch
workloads. The latter implements dynamic load balancing as part of the application.

The dominant programming paradigm for clusters is message passing using Message
Passing Interface (MPI) [17]. With the goal of coupling several clusters in a computa-
tional grid environment, grid-enabled MPI solutions are developed by some institutions.
By now there are four most widely used MPI implementations for grid environment,
which are PACX-MPI [4], MPICH-G2 [8], Stampi [7] and MagPIe [9]. Unfortunately
all these grid-enabled MPI implementations do not support system-level dynamic load
balancing [10]. Therefore, the dynamic load balancing in our paper is an application-
level dynamic balancing, as means balancing mechanism and balancer are implemented
by users.

Traditional Master-Slave Paradigm
The master-slave paradigm is a widely used technique to implement dynamic load bal-
ancing. It works like a server-client model as illustrated in Figure 3. Some parallel
bioinformatics applications have achieved good performance using this technique, such
as fastDNAml [13] and HMMER [15].

Load Balancing for Hierarchical Grid Computing: A Case Study 359

Slave 2Slave 1

send jobs

request

Slave n

information

Master

Fig. 3. Master-slave paradigm. Once a slave node finishes a job, it sends a request to the master
process. The master responds by sending back a new job

The implementation of long DNA sequence alignment on the hierarchical grid using
this approach works as follows: the similarity matrix is divided into rectangular blocks.
The computation of a rectangular block is assigned by the master to an available slave.
This requires the sending of the left column and upper row of the block to be computed to
the slave. The slave then returns the right column and bottom row of the computed block
to the master. Compared to static load balancing implementation, the advantage of this
approach is its robustness under disturbance (see . Unfortunately, it requires
much more communication. For example, for a similarity matrix size of 100k × 100k
and a block size of 1250× 1250, the overall data to be transferred sequentially through
inter-cluster link is around 240MBytes. This makes the approach very sensitive to the
inter-cluster bandwidth (see .

New Scheduler-Worker Technique
We present a new technique named scheduler-worker in order to achieve good robustness
under disturbance as well as high performance for low inter-cluster bandwidth. The
workers report their computing performances to the scheduler every time they finish a
piece of work. The scheduler then produces a new job allocation form depending on
every node’s performance and broadcasts it to each worker. The new job allocations
are implemented by exchanging data among workers. In the case of DNA sequence
alignment, the data transfer for rearranging jobs only happens between two neighboring
processes (see Figure 4).

Worker 2 Worker nWorker 1
exchange

data

Scheduler

performace
information

information
scheduling

Fig. 4. Scheduler-worker technique

Initially, the similarity matrix is partitioned in the same way as in the static load
balancing approach. During the computation each worker reports its performance to the
scheduler. We define NP (node performance) as:

Figure 6).

Figure 6).

360 C. Chen and B. Schmidt

NPi = SBi

T

where SBi denotes the size of the block assigned to workeri and T denotes the time
for finishing the computation of this block. NP-values describe the currently available
compute power in a node.

The scheduler judges whether a new job allocation is needed depending on all the
NPs. If there exits a disturbance in one node, the sizes of blocks will be rearranged. The
equation is as follows:

SBi = Sizex∑N

j=0

NPi
NPj

where SBi is the size of the block allocated to workeri, NPi is the node performance
of workeri and Sizex is the size of Sequence X.

The workers will receive the job allocation form produced by the master. If no new
allocation is needed, the workers continue to compute without any interruption. If a
new allocation is need, the workers implement the rearrangement by exchanging data
between neighboring workers.

The scheduler-worker technique has several advantages. Its speedup without distur-
bance is only slightly slower than the static load balancing implementation (see Figure 7).
However, it achieves much better PDRD values (see Figure 7). It has only slightly worse
PDRD values compared to the implementation using the master-slave approach. How-
ever, because of the significantly reduced data transfer, it achieves much higher speedups
for low inter-cluster bandwidths.

5 Performance Evaluation

In our experiments, intra-cluster application-level bandwidth is almost 190MByte/s and
the two sequences are length 100,1000. We investigate the speedups and PDRDs of
each implementation on the grid system with 4 different application-level inter-cluster
bandwidths: 8MByte/s, 1MByte/s, 0.5MByte/s and 0.3MByte/s (shown in Figure 5,
Figure 6 and Figure 7). How to construct this kind of test environment is described in
Section 2. The method for computing speedup is:

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

S
pe

ed
up

Number of processors

 Ideal Speedup
 8MByte/s
 1MByte/s
 0.5MByte/s
 0.3MByte/s

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

R
at

io

 U
nd

er
 D

is
tu

rb
an

ce
 %

Number of processors

 8MByte/s
 1MByte/s
 0.5MByte/s
 0.3MByte/s

Fig. 5. The left part shows speedups of the implementation using static balancing and without
disturbance; The right part shows the PDRCs when one application is running in 1 CPU and uses
around 50% CPU time to disturb the execution of our application

Load Balancing for Hierarchical Grid Computing: A Case Study 361

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

S
pe

ed
up

Number of processors

 Ideal Speedup
 8MByte/s
 1MByte/s
 0.5MByte/s
 0.3MByte/s

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

R
at

io

 U
nd

er
 D

is
tu

rb
an

ce
 %

Number of processors

 8MByte/s
 1MByte/s
 0.5MByte/s
 0.3MByte/s

Fig. 6. The left part shows speedups of the implementation using master-slave dynamic balancing
and without disturbance; The right part shows the PDRCs when one application is running in 1
CPU and uses around 50% CPU time to disturb the execution of our application

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

S
pe

ed
up

Number of processors

 Ideal Speedup
 8MByte/s
 1MByte/s
 0.5MByte/s
 0.3MByte/s

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

R
at

io

 U
nd

er
 D

is
tu

rb
an

ce
 %

Number of processors

 8MByte/s
 1MByte/s
 0.5MByte/s
 0.3MByte/s

Fig. 7. The left part shows speedups of the implementation using scheduler-worker dynamic bal-
ancing and without disturbance; The right part shows the PDRCs when one application is running
in 1 CPU and uses around 50% CPU time to disturb the execution of our application

speedup = RTcluster1(1)+RTcluster2(1)+RTcluster3(1)

3

where RTcluster1(1), RTcluster2(1) and RTcluster3(1) are the runtimes for one processor
in cluster1, cluster2 and cluster3.

6 Conclusions and Future Work

In this paper we have demonstrated that the computational grid concept can be efficiently
applied to aligning long DNA sequences. We have presented three techniques to map
the application onto a hierarchical grid system. We have studied the performance of the
these techniques under disturbance and for different levels of application-level inter-
cluster bandwidths. The results show that the scheduler-worker technique performs best
with respect to these two parameters. Our future work in grid computing will include
identifying more biology applications that profit from hierarchical grid systems and

362 C. Chen and B. Schmidt

presenting more efficient parallel models to map these applications onto hierarchical
grid systems.

References

1. Chen C.X., Schmidt B., “Computing Large-scale Alignments on a Multi-cluster”, Cluster
2003, Hongkong, 2003.

2. Chen C.X.,Schmidt B., “Performance Analysis of Computational Biology Applications on
Hierarchical Grid Systems”, CCGrid’04, Chicago, 2004.

3. Foster, I., Kesselman, C., “The Grid 2: Blueprint for a New Computing Infrastructure,” Morgan
Kaufmann, 2004.

4. Gabriel E., Resch M., Beisel T., Keller R., “Distributed computing in a heterogenous com-
puting environment”, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computing Scicence. Springer, 1998.

5. Hirschberg, D.S., “A linear space algorithm for computing longest common subsequences,”
Comm.ACM, 18:341-343. 1975.

6. Huang, X., Miller, W., “A time efficient, linear-space local similarity algorithm,” Advances
in Applied Mathematics, 12:337-357, 1991.

7. Imamura T., Tsujita Y., Koide H., Takemiya H., “An architecture of Stampi: MPI library on
a cluster of parallel computers”, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Dongarra J., Kacsuk P., Podhorszki N., editors, volume 1908 of Lecture
Notes in Computer Science, Pages 200-207, Springer, Sep. 2000.

8. Karonis N.T., Toonen B., MPICH-G2 project: http://www3.niu.edu/mpi
9. Kielmann T., Hofman R.F.H., Bal H.E., Plaat A., Bhoedjang R.A.F., “MagPIe: MPI’s collec-

tive communication operations for clustered wide area systems”, Ppopp’99, pages 131-140,
ACM, May, 1999.

10. Müller M., Hess M. Gaberel E., “Grid enabled MPI solutions for Clusters”, CCGrid’03,
Tokyo, Japan.

11. Myers, E., Miller, W., “Optimal alignments in linear space,” Computer Applications in the
Biosciences, 4:11-17, 1988.

12. Smith T.F., Waterman, M. S., “Identification of common molecular subsequences,” Journal
of Molecular Biology, 147:195–197, 1981.

13. Stewart C. A. , Hart D., Berry D.K. , Olsen G.J., Wernert E.A., Fischer W., “Parallel imple-
mentation and performance of fastDNAml: a program for maximum likelihood phylogenetic
inference”, SC2001. Denver, CO, USA. 2001.

14. Waterman, M. S., Eggert, M., “A new algorithm for best subsequence alignments with appli-
cation to tRNA-rRNA comparisons,” Journal of Molecular Biology, 197:723-728, 1987.

15. Zhu W.R., Niu Y.W., Lu J.Z., Shen C., Gao G.R., “A Cluster-Based Solution for High Perfor-
mance Hmmpfam Using EARTH Execution Model”, Cluster 2003, Hongkong, 2003.

16. GLOBUS project: http://www.globus.org
17. MPICH project: http://www-unix.mcs.anl.gov/mpi/mpich/
18. Sun grid engine project: http://gridengine.sunsource.net/
19. openPBS project: http://www.openpbs.org/

A-FAST: Autonomous Flow Approach to
Scheduling Tasks

Sagnik Nandy, Larry Carter, and Jeanne Ferrante

Department of Computer Science and Engineering,
University of California at San Diego

{snandy, carter, ferrante}@cs.ucsd.edu�

Abstract. This paper investigates the problem of autonomously allo-
cating a large number of independent, equal sized tasks on a distributed
heterogeneous grid-like platform, using only local information. We pro-
pose A-FAST (Autonomous Flow Approach to Scheduling Tasks), an
efficient, scalable, dynamic and generic (imposing no restrictions on the
topology) protocol for this purpose. Motivated by the idea of pressure
guiding the flow in fluid networks, A-FAST only uses parameters avail-
able locally to a node to guide scheduling decisions. Simulations show
that the protocol performs well over a variety of networks, averaging
more than 99.5% of the optimal performance and outperforms related
techniques like RID (Receiver Initiated Diffusion). We also show how
a modified use of local information can improve the performance of an
unreliable system. Preliminary results from implementing A-FAST on a
small but real-life distributed system show the performance of our proto-
col to be near the maximum throughput of the system. Such a protocol
has the potential to aid the efficient deployment of large, data intensive
applications on very large or dynamically changing heterogeneous peer-
to-peer computing platforms.

Keywords: Heterogeneous computing, peer-to-peer computing, network
flows, scheduling.

1 Introduction

The advent of collaborative computing efforts like SETI@home project [25],
GIMP [21] and Entropia [9] has given rise to a range of applications where
a large set of tasks can be distributed across a grid-like platform and solved
concurrently. These applications form the driving motivation of our work, which
aims to schedule a large number of independent, equal-sized tasks online across a
dynamic and heterogeneous computing platform. We seek a scheduling strategy
with the following properties:

– Autonomous - Uses minimal (or no) global information. In particular it
should not require network-wide information.

� This work was supported in part by NSF grant ACI-0234233.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 363–374, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

364 S. Nandy, L. Carter, and J. Ferrante

– Generic - Applies to all kinds of networks, regardless of topology.
– Efficient - Results in high overall throughput.
– Scalable - Applies to networks of very large size.
– Dynamic - Adjusts to systems where, due to contention or other reasons,

the bandwidths and computation speeds change over time.
– Practical - Is easy to implement in real-life scenarios.

The autonomic behavior of fluid networks, using pressure as a guiding force,
forms the key inspiration for our work. One can imagine the nodes in a grid
as fluid reservoirs, and the links as pipes connecting these reservoirs. Tasks are
analogous to the circulating fluid in this scenario. In case of the fluids, pressure
helps in bringing the system to a steady state without the use of any centralized
control. We propose a similar approach where nodes autonomously measures
their own pressure. This pressure is then used to decide when to move a task to
a neighboring node, eliminating the need for centralized control over scheduling.
A-FAST shares similarities with well-known techniques like Cycle Stealing [5]
and RID [22], but differs from these techniques by taking both computation and
communication into account, which makes it better suited for a wider range of
networks. We show how several important scheduling-related issues, including
fairness, throughput and reliability, can be easily incorporated in our approach.
Initial simulations show that the protocol achieves more than 99.5% of the
maximum throughput over a range of networks, while preserving the above-
mentioned properties.

The rest of the paper is organized as follows - Section 2 discusses the related
work in this area and Section 3 describes the protocol in detail. In Section 4 we
present experimental results showing performance of the protocol under various
conditions. We conclude in Section 5 with a summary of our findings and suggest
future research directions.

2 Related Work

Scheduling independent tasks across heterogeneous sets of resources is a well
known problem. We differ from many of these approaches [14, 1, 6, 24, 10, 17, 19,
12, 29] in that we are developing an autonomous scheduling strategy that does
not require centralized control or knowledge for scheduling.

Several research efforts have formulated the problem of scheduling tasks
across heterogeneous systems as a max-flow problem [7, 30]. However, the most
popular max-flow algorithms, including Ford-Fulkerson [15] and Edmonds-Karp
[8] use global information to make network-wide decisions. Golberg’s algorithm
[11] is closer to being autonomous but still requires a notion of height that de-
pends on the total number of nodes in the network. In [26], the authors provide
a parallel solution to the max-flow problem. However, their approach uses a no-
tion of timesteps across the network. This involves network-wide synchronization
and is difficult to achieve in large networks. Moreover, all these techniques were
designed specifically for static systems. In practice, system properties, such as

A-FAST: Autonomous Flow Approach to Scheduling Tasks 365

node speed and bandwidth, network topology, change over time, making these
techniques unsuitable.

A-FAST shares similarities with the RID (Receiver Initiated Diffusion) [22,
13] and other similar gradient-based approaches [18, 27]. In these approaches
nodes use some notion of gradient to balance their workload among their neigh-
bors. However, they make their scheduling decisions completely based on the
load at a node without taking its communication into account. A-FAST adopts
a diffusion-like approach similar to these techniques, but requests tasks based on
the supply rate of a node. This ensures that more tasks are received from nodes
connected by faster link-speeds. It also makes the protocol applicable to both
computation and communication dominated systems. Moreover, in A-FAST all
communication decisions for a pair of nodes are done independently of their
remaining neighbors, reducing the synchronization requirements among nodes.
We also show later in the paper how A-FAST manages to capture other system
properties like reliability in its notion of pressure.

In [5, 2, 28] variants of the Cycle Stealing technique addresses a similar prob-
lem as ours. In Cycle Stealing, a node that has exhausted all its work randomly
asks its neighbors for additional work. While this approach is autonomous and
works well for computation intensive applications, it requires the nodes to be
arranged in a hierarchical fashion to avoid unnecessary transfer of tasks. More-
over, Cycle Stealing does not take communication time into account and does
not differentiate between nodes connected by different connection speeds.

We only consider applications where there are far more tasks to be executed
than nodes in the system, so throughput is more important than makespan,
latency or response time. In our previous work [4], [16], we presented an au-
tonomous algorithm that, when the network is a tree, achieves the optimum
throughput for a static network. Our experiments showed that the protocol re-
acts quickly to changes in the network as well. However, it may not be desirable
to impose a tree-structure on large networks. In [3], it is proven that the problem
of finding the best tree from a given network is NP-complete, and even if one
could find the best tree, there are networks for which the performance of the
optimal tree is unboundedly worse than the whole network’s performance. Thus,
finding an autonomous solution for a generic network is still open.

3 The A-FAST Task Scheduling Protocol

We begin with a formal description of the problem. We are given a labeled, di-
rected graph G = (N, E, P, C) representing the network. N = {0, 1, ..., n − 1}
is the set of computing resources. Each node iεN has a computing speed P (i)
(P : N → R+), denoting the number of tasks the node can complete in a unit
time. E = {(i, j) : i, jεN} is the set of links connecting the various nodes in
this graph, and C(i, j) (C : N × N → R+) denotes the number of tasks that
can be sent from node i to node j in a unit time. All tasks are of equal size (both

366 S. Nandy, L. Carter, and J. Ferrante

computationally and communication-wise)1 and initially reside in the source
node 0. We assume that node 0 has a large number of tasks, so we can ignore
the start-up and wind-down times of the protocol. The graph G is dynamic in
nature, i.e. (N, E, P, C) can evolve during execution. Nodes and edges can be
added and deleted from N and E (except for node 0, which is always present)
and P (i) and C(i, j) can also change. Our objective is to maximize the number
of tasks completed per unit time.

The A-FAST protocol assumes that some number of incoming tasks can be
buffered in a node. Nodes begin by advertising a quantity we will call their
pressure (p) to their neighbors, requesting tasks. On receiving a request, a node
compares the requester’s p to its own to decide whether the request should be
serviced. Such an approach allows us to do away with the need for a centralized
scheduler, and instead make all scheduling decisions locally based on differences
in pressure. If a node does not service a request, it informs the requestor of its
decision. On being serviced by a neighbor, a node requests another task from the
same neighbor. However, if its request is denied, it waits for a set length of time
before making another request. Nodes thus periodically query their neighbors,
requesting further tasks. To process a task, a node takes a task from its buffer.
If the buffer is empty the node waits till it receives a task.

We now give two case studies that show how A-FAST can autonomously
achieve two different system requirements — high throughput and improved
reliability — by making suitable definition of pressure.

3.1 Task Scheduling in Dynamic Heterogeneous Systems

For each edge (j, i)εE, we assume there is an incoming buffer IBj,i on node i
that holds the most recent response (either a denial or a task) sent by j to i.
Additionally, each node i has a task buffer TBi that has a capacity of mi “slots”,
where each slot can hold one task. These slots can be in one of the following
states:

– S1: the slot is “empty”.
– S2: a task is being transferred into the slot from one of the IBji’s.
– S3: the task in the slot is getting executed by Ni.
– S4: the task in the slot is being sent to another node Nk i.e. it is being

transferred from TBi into IBik.
– S5: the slot holds a task and is currently not in any of the above states.

Task buffers can have multiple slots in states S1, S2, S4 and S5, but for
simplicity we will allow only one task at a time to be in state S3. We say “TBi

is full” when the number of slots ei in state S1 is zero. We define the buffer
occupancy, bi of a node to be the number of slots in state S5 at the current time.

1 We conjecture that if tasks are of different sizes, but have a constant computation-to-
communication ratio, that the behavior of algorithms will be similar to the equal-size
task problem. An interesting open question is how to make scheduling decisions when
the ratio is non-constant but known.

A-FAST: Autonomous Flow Approach to Scheduling Tasks 367

For scheduling tasks in a heterogeneous system we set the pressure, pi, of each
node to its buffer occupancy.

The sub-protocols for responding to a request, processing a response and
performing a task are shown in Figures 1 and 2. The highlighted sections of the
protocols use the shared variables bi and/or ei, and must be synchronized to run
correctly. This can be done by acquiring locks (if each protocol is a separate pro-
cess), or by executing the shaded sections atomically (if a single buffer manager
procedure handles all three protocols). The Wait primitive in Figure 2 should
be implemented using a periodic polling mechanism that prevents livelock.

OnRecvReqest(j, bj) { // request from node j

i = CurrentNode;
pi = bi ; // pressure of node is equal to its buffer occupancy
pj = bj ;

if (pi-1 > pj) { // node has more tasks than requesting node
bi = bi - 1;
send(task, Nj); // send single task to Nj
ei = ei + 1;

} else {
send(refuseMsg, Nj); // refuse Nj

}
}

OnRecvData(j, rj) { // response from node j

i = CurrentNode;

if (rj is a task) {
flag = true;
while(flag) {

if(ei > 0) { // there is an empty slot
ei = ei - 1 ;
transfer task from IBji to TBi ;
bi = bi + 1 ;
requestData(j, bi) ; // request more tasks from node j
flag = false;

} else {
wait for a while;

}
} else {

wait for a while
requestData(j, bi); // request tasks again

}
}

Fig. 1. Protocol nodes follow on (a) receiving a task request (b) on receiving a response
from a neighbor

ProcessTask() {
i = CurrentNode;

if (bi > 0) { // There exists some task
dispatch task for processing;
bi = bi - 1;
perform task;
ei = ei + 1;

} else {
Wait(till pi > 0);

}
}

Fig. 2. Protocol nodes follow to perform a task

Intuitively, A-FAST should adapt to both a computation-dominated system
as well as a communication-dominated one: faster nodes empty their buffers
faster and their pressure decreases, making them likely to receive more tasks.
Similarly if a link is fast, tasks will be delivered more quickly across it, making
the receiver request more tasks along that link as compared to a slower link. We
will verify these claims experimentally in Section 4.

368 S. Nandy, L. Carter, and J. Ferrante

3.2 Adding Reliability to the System

We now show how the idea of pressure can be modified to incorporate a measure
of node reliability into the scheduling strategy.

We define an unreliability parameter, τi, for each node in the system, which
reflects the average time a node remains online. A fair estimate of the value
of τi can be computed completely independently by each node. This can be
done by maintaining a three tuple of <num of readings,τi,last val> in the per-
sistent storage of each node. On coming online, node i increments the value of
num of readings, sets τi to (τi+last val)

num of readings , saves these values, assigns last val
to 0 and then continues. last val is periodically updated to the elapsed time and
saved. The last recorded value of this variable can then be used as an estimate
of how long the node remained online (the accuracy depends on the frequency
of updates). τi thus gives an estimate of the expected duration node i is likely
to remain online.

To incorporate reliability into A-FAST we modify our existing definition of
pressure to pi = bi

τK
i

, where K is some real positive constant (we shall term it
Assurance Constant) denoting the importance of reliability to the system. A
node now sends the buffer occupancy and unreliability constant to its neighbors
when requesting a task and the neighbor can calculate its value of p.

By doing this we make the pressure of a node inversely proportional to its
chances of breaking down. Thus for two nodes with similar buffer occupancies,
the node with a smaller value of τ (less reliable) will have a higher pressure,
making tasks flow out of it towards a more “reliable” node. It must however be
mentioned that giving too much importance to reliability might have adverse
effects since slower but more reliable nodes will start getting more jobs assigned
to them. This can be controlled by choosing an appropriate value of K and will
be studied further in the experimental evaluations.

4 Experimental Results

We now present experimental results from simulations as well as real life systems
to show how A-FAST works under different situations.

4.1 Experimental Setup

We tested A-FAST on two different networks topologies - internet-like graphs
(G1), generated using the Network-Emulator package (NEM) [23] and cluster-
like graphs (G2)2. For both topologies, we generated graphs of four different
sizes (n = 200, 400, 600 and 800). Each node i in these graphs were assigned a
random processing speed, P (i) (ranging between 1 and MAX P), representing
the number of tasks node i can process in a minute of simulated time. The values

2 For G2, we built k clusters of equal size. Nodes in these clusters were heavily con-
nected (average connectivity of k/2). The clusters were then connected to each other
in a random tree topology.

A-FAST: Autonomous Flow Approach to Scheduling Tasks 369

0 10 20 30 40
Simulation Time

0.9

0.92

0.94

0.96

0.98

1

F
ra

ct
io

n
 o

f
M

ax
im

u
m

 T
h

ro
u

g
h

p
u

t

n = 200
n = 400
n = 600
n = 800

0 10 20 30 40
Simulation Time

0.9

0.92

0.94

0.96

0.98

1

F
ra

ct
io

n
 o

f
M

ax
im

u
m

 T
h

ro
u

g
h

p
u

t

n = 200
n = 400
n = 600
n = 800

Fig. 3. (a)Performance of A-FAST on Internet-like graphs (G1) (b) Performance of
A-FAST on Cluster-like graphs (G2)

of C(i, j) were similarly assigned (ranging between 1 and MAX C), denoting
the number of tasks that can be sent along the link in one minute. We set
both MAX P and MAX C to the same value (40) to allow the throughput of
the system to be equally dependent on computation and communication. We
assumed zero latency networks for our simulations. This might be unreasonable
in certain scenarios where the frequent exchange of request messages and the
single task transfer approach of the protocol might affect the performance of the
system. We discuss in the concluding section how our ongoing work is addressing
this issue for real systems (Note that by assuming zero latency the request/denial
message transfer times were reduced to zero but the task transfer times were non-
zero, depending on the bandwidth of the connecting links). Experiments were
repeated multiple times and the average value over all the runs were reported.

4.2 Throughput in a Heterogeneous System

We compared the performance of the first variant of the protocol as a percentage
of the maximum throughput of the system (calculated using the maxflownet
package [20]). The results for the two types of topologies, are shown in Figures
3(a) and (b).

A-FAST performed very well, averaging over 99.5% of the maximum through-
put for both the topologies and the different sizes. Though our graphs were small,
this showed A-FAST to be both generic and scalable. It can also be observed that
the startup time of A-FAST is also small with almost all the simulations reaching
98% efficiency within 5 minutes of simulated time (5 minutes corresponded to
approximately 750 completed tasks in our simulation setup).

We also implemented a version of the RID algorithm to compare its perfor-
mance against A-FAST for communication-dominated systems. We generated
these systems by generating the G1 type graphs where link speeds were less
than the processing speed of the nodes joining them. The version of RID bal-
anced the load every time the number of tasks in the Task Buffer fell below 5. The
experiments were run for 60 minutes to allow the RID algorithm to reach steady
state throughput. The results are shown in Figure 4. While A-FAST achieves

370 S. Nandy, L. Carter, and J. Ferrante

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time

F
ra

ct
io

n
of

 M
ax

im
um

 T
hr

ou
gh

pu
t

rid n=400

rid n=200

a−fast n=200
rid n=200
a−fast n=400
rid n=400

Fig. 4. Relative Performance of A-FAST vs RID on Communication-dominated Graphs

nearly 99.5% of the optimal throughput, RID only achieves around 95% of the
optimal value. RID also takes a larger amount of time to reach the steady state
throughput.

4.3 Adding Reliability to A-FAST

To test the reliability-aware A-FAST variant described in Section 3.2, each node
was randomly assigned a value τ between the range (5, 75). We conducted our
experiments for 40 minutes of simulation time, giving nodes an equal chance
of failing or surviving in the lifetime of the experiments. We then tested A-
FAST with four different values of the unreliability constant K, denoting the
importance of reliability for the experiments (note that for K = 0 the protocol
reduces to the standard buffer-based pressure approach described in Section 3.1
and is provided as a base case)3. We measured the change in throughput and

number of lost tasks (tasks that were assigned to nodes when they broke
down). The results are shown in Figure 5 (a) and (b).

In all our experiments, the throughput of the reliability-aware version of
A-FAST achieves better throughput when compared to the standard version.
However, one cannot conclude anything definitive about the impact of K on
throughput. This is because a smaller value of K reduces the importance of
reliability and increases the chance of a potentially faulty node getting more
tasks while a larger value of K might make slower and more reliable nodes
get more tasks, thereby affecting performance. However, it is evident that the
introduction of reliability as a parameter to pressure does pay off.

We also see a marked improvement in the reduction of task losses with A-
FAST. A task loss might eventually require re-transmitting the task and by
reducing the task loss one might eventually improve the system-throughput even
further.

3 We also tried the experiments with larger and smaller values of but for K>1.25 the
results were similar to that of K=1.25 and therefore have not been shown in the
graphs.

A-FAST: Autonomous Flow Approach to Scheduling Tasks 371

Fig. 5. Effect of adding reliability on (a) system throughput and (b) task loss

4.4 Practical Implementation

As a proof of concept we implemented a prototype version of A-FAST. This
section presents some initial results from these experiments. The version of A-
FAST described in Section 3.1 was implemented using Java RMI. The system
was tested on a 9-node cluster of Pentium III (800 MHz) processors. One of these
nodes was designated as a source with a large number of matrix multiplication
tasks. We arranged the remaining 8 nodes in three virtual topologies - star,
ring and a complete binary tree. As a yardstick for A-FAST’s performance we
also provide an approximate upper bound of the throughput of the system. The
maximum throughput of the system is bounded by the sum of the maximum
throughput of each participating node. To get an estimate of a node’s maximum
throughput, we ran the tasks on each target node separately (multiple times).
The total of these values is provided in Figure 6 (a). The individual throughput
of the nodes are shown in Figure 6 (b)4.

Though preliminary in nature, these results show A-FAST performs efficiently
on all three topologies. The three topologies produced comparable results with an
additive difference (contributed mostly by their start-up times). Figure 6 (b) shows
that for the star and ring topologies A-FAST does a very good job of autonomous
load balancing. However, for the tree topology certain nodes outperform the oth-
ers. This happens mainly because nodes in the tree do not have equal connectivity
and the throughput of the communication-intensive nodes was affected negatively.

5 Conclusion and Future Work

This paper presents a new autonomous scheduling protocol based on the idea
of pressure in fluid networks. Preliminary experiments show that the protocol
is efficient and can scale and autonomously adjust in dynamic heterogeneous

4 We ignored the first 100 tasks transferred by n0 (to avoid the effect of startup time)
and tracked the number of results contributed by each node for the subsequent 250
tasks.

372 S. Nandy, L. Carter, and J. Ferrante

50 100 150 200
Number of tasks completed

0

10000

20000

30000

40000

50000

T
im

e
in

 m
il

li
se

co
n
d
s star topology

ring topology
tree topology
appx optimal

Fig. 6. (a) Execution time of A-FAST on a small cluster. (b) Individual throughput of
nodes for the different topologies

networks. We showed how different parameters like throughput and reliability
can also be captured. Simulations showed the protocol to be efficient, achieving
more than 99.5% of the maximum throughput on average. The need for such
protocols is likely to grow as we start using the world wide web not only as an
information medium but also as a computing resource.

We are currently pursuing a number of different aspects of this problem.
Some of these include: a theoretical bound on the performance of the protocol;
the effect of unequal-sized tasks; the effect of dependency between tasks; and
capturing other aspects of scheduling with pressure. We are also working on a
version of A-FAST supporting lazy updates of pressure to reduce the effect of
latency and periodic message transfers.

References

1. D. Andresen and T. McCune. Towards a Hierarchical Scheduling System for Dis-
tributed WWW Server Clusters. In Proceedings of the Seventh International Sym-
posium on High Performance Distributed Computing (HPDC-7), July 1998.

2. J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An Infrastructure for
Global Computing. In Proceedings of the Seventh ACM SIGOPS European Work-
shop on System Support for Worldwide Applications, 1996.

3. C. Baninio, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert.
Scheduling Strategies for Master-Slave Tasking on Heterogeneous Processor Plat-
forms. In IEEE Transactions on Parallel and Distributed Systems, April 2004.

4. O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-
centric Allocation of Independent Task on Heterogeneous Platforms. In Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS’02),
Fort Lauderdale, Florida, April 2002.

5. R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk:
An Efficient Multithreaded Runtime System. In Proceedings of the 5th Symposium
on Principles and Practice of Parallel Programming, 1995.

A-FAST: Autonomous Flow Approach to Scheduling Tasks 373

6. H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In Proceedings of the 9th
Heterogeneous Computing Workshop (HCW’00), May 2000.

7. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, MIT Press.
1990.

8. Jack Edmonds and Richard M. Karp. Theoretical improvements in the algorithmic
efficiency for network flow problems. Journal of the ACM (JACM), 19, 1972.

9. Entropia Inc. http://www.entropia.com, 2001.
10. S. Flynn Hummel, J. Schmidt, R. Uma, and J. Wein. Load-Sharing in Heteroge-

neous Systems via Weighted Factoring. In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’96), Jun 1996.

11. Andrew V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Com-
puters. PhD thesis, Department of Electrical Engineering and Computer Science,
MIT, 1987.

12. T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Experimental
Study. Journal of Parallel and Distributed Computing, 47, 1997.

13. H.-U. Heil and M. Schmitz. Decentralized Dynamic Load Balancing: The Particles
Approach. Proc. 8th Int. Symp. on Computer and Information Sciences, 1993.

14. O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks
on non-identical processors. Journal of the ACM (JACM), 24(2), 1997.

15. L. R. Ford Jr. and D. R. Fulkerson. Flow in Networks, Princeton University Press.
1962.

16. B. Kreaseck, H. Casanova L. Carter, and J. Ferrante. Autonomous Protocols for
Bandwidth-Centric Scheduling of Independent-task Applications. In Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS’03),
Nice, France, April 2003.

17. C.P. Kruskal and A. Weiss. Allocating Independent Subtasks on Parallel Proces-
sors. IEEE Transactions on Software Engineering, 11, 1984.

18. Frank C. H. Lin and Robert M. Keller. The gradient model load balancing method.
IEEE Trans. Softw. Eng., 13(1):32–38, 1987.

19. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic Match-
ing and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing
Systems. In 8th Heterogeneous Computing Workshop (HCW’99), pages 30–44, Apr.
1999.

20. Max-Flow-Solution. http://elib.zib.de/pub/Packages/mathprog/maxflow/index.html.
21. Mercenne Prime Search. http://www.mercenne.com
22. Willebeek-LeMair M.H. and A.P Reeves. Strategies for Dynamic Load Balancing

on Highly Parallel Computers. In Parallel and Distributed Systems, IEEE Trans-
actions, 1993.

23. Network Emulator. http://clarinet.u-strasbg.fr/nem/.
24. A. Rosenberg. Sharing Partitionable Workloads in Heterogeneous NOWs: Greedier

Is Not Better. In Proceedings of the IEEE International Conference on Cluster
Computing (Cluster’01), Newport Beach, California, October 2001.

25. SETI@home. http://setiathome.ssl.berkeley.edu, 2001.
26. Y. Shiloach and U. Vishkin. An O(n2log n) parallel max-flow algorithm. Journal

of Algorithms, (3), 1982.
27. W. Shu and L. V. Kale. A dynamic scheduling strategy for the chare-kernel system.

In Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages 389–
398. ACM Press, 1989.

374 S. Nandy, L. Carter, and J. Ferrante

28. Rob van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Satin: Efficient parallel
divide-and-conquer in java. In Proceedings from the 6th International Euro-Par
Conference on Parallel Processing, pages 690–699. Springer-Verlag, 2000.

29. B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible load theory: A new
paradigm for load scheduling in distributed systems. Cluster Computing, 6(1),
January 2003.

30. Kevin Daniel Wayne. Generalized Maximum Flow Algorithms. PhD thesis, Cornell
University, 1999.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 375–385, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Integration of Scheduling and Replication in Data Grids

Anirban Chakrabarti, R.A. Dheepak, and Shubhashis Sengupta

Software Engineering and Technology Laboratory,
Infosys Technologies Ltd, Bangalore (India)

Tel: 91 80 852 0261
{anirban_chakrabarti, dheepak_ra,
shubhashis_sengupta}@infosys.com

Abstract. Data Grids seek to harness geographically distributed resources for
large-scale data-intensive problems. Such problems involve loosely coupled
jobs and large data sets distributed remotely. Data Grids have found applica-
tions in scientific research fields of high-energy physics, life sciences etc. as
well as in the enterprises. The issues that need to be considered in the Data Grid
research area include resource management for computation and data. Compu-
tation management comprises scheduling of jobs, scalability, and response
time; while data management includes replication and movement of data at se-
lected sites. As jobs are data intensive, data management issues often become
integral to the problems of scheduling and effective resource management in
the Data Grids. The paper deals with the problem of integrating the scheduling
and replication strategies. As part of the solution, we have proposed an Inte-
grated Replication and Scheduling Strategy (IRS) which aims at an iterative
improvement of the performance based on the coupling between the scheduling
and replication strategies. Results suggest that, in the context of our experi-
ments, IRS performs better than several well-known replication strategies.

1 Introduction

In an increasing number of scientific and enterprise applications, large data collec-
tions are emerging as important resources that need to be shared and accessed by
research teams dispersed geographically. In domains as diverse as global climate
change, high energy physics, and computational genomics, the volume of interesting
data will soon total petabytes[1]. The combination of large data size, geographic
distribution of users and resources, diverse data sources, and computationally inten-
sive analysis results in complex and stringent performance demands that are not satis-
fied by any existing data management infrastructure. The literature offers numerous
point solutions that address the issues of data management, data distribution and job
scheduling (e.g., see [2,3]). However, no integrating architecture exists that allows
one to identify requirements and components common to different systems and hence
apply different technologies in a coordinated fashion to a range of data-intensive
application domains. Motivated by these considerations, researchers have launched a
collaborative effort called Data Grids to design and produce such an integrating ar-
chitecture.

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 376

1.1 Motivation and Objectives

Most previous scheduling work has considered data locality/storage issues as secon-
dary to job placement. Casanova et al. [4] describe an adaptive scheduling algorithm
for parameter sweep applications that uses a centralized scheduler to compute an
optimal placement of data prior to job execution. Banino et. al [5] talks about sched-
uling in a heterogeneous scenario. Work on data replication strategies for Grids in-
cludes [6], where the authors examined dynamic replica placement strategies in a
hierarchical Grid environment. Recently, some work has been carried out which
combines the scheduling and replication strategies to provide better overall perform-
ance in Data Grids [7]. Paper [8] talks about combining the replication and schedul-
ing strategies in a more organized manner. The authors assumed three components:
an External Scheduler (ES), which determines where (i.e. to which site) to send jobs
that originate at that site; a Local Scheduler (LS), which determines the order in
which jobs that are allocated to that site are executed; and a Data Scheduler (DS),
responsible for determining if and when to replicate data and/or delete local files. The
Grid architecture considered in this paper is similar to one proposed in [8].

In Data Grid, both scheduling and replication aim at reducing the latency for job
execution. While scheduling does that by directing the jobs to certain sites so that the
latency involved in data movement and job processing is reduced, replication moves
the data around so that the data access time during scheduling is reduced. The key
contribution of the paper lies in the idea of the possible integration between schedul-
ing and replication called Integrated Replication and Scheduling (IRS) Approach.
Most of the works in this field have concentrated either on replication or scheduling
aspects of the problem. Though, some hybrid strategies have been proposed in [7],
the first real effort to study the combination of these two strategies was first done in
[8]. In [8], the authors have assumed that at a time each job will access only a single
data resource like a file. However, in practical situations one job may require multiple
files. In this paper, we propose a replication-scheduling algorithm which iteratively
improves the performance of the Data Grids. The main objectives of the paper are to
develop and evaluate an iterative replication and scheduling strategy.

The assumptions made are: (i) Data Grid is considered to be an undirected graph.
Hence, the transfer cost is same both ways, (ii) a two-stage scheduling as mentioned
in [8] is assumed, (iii) the Grid is more or less stable i.e., the chances of link and node
failures and rare, (iv) the data is mostly handled in a read-only mode, (vi) the jobs are
non-preemptable. The rest of the paper is organized as followed. In Section 2 we
outline our IRS algorithms in detail with suitable examples. In Section 3, we present
and discuss the performance test results vis-à-vis some other approaches. We con-
clude in Section 4 by pointing out the salient contributions and future work.

1.2 Data Replication (DR) and Job Scheduling (JS) Problem

We model a job request as a 3-tuple J = < S , F
~ , C

~ >, where Sj is the site at which

the job is fired, F
~

is the list of files needed by the job and C
~

is the computation time
required by the job J at site Sj . A site is modeled as a 3-tuple S = <

sPVF ,,ˆ >, where

Integration of Scheduling and Replication in Data Grids 377

F̂ is the set of files stored in the site S, V is the storage capacity at that site and
sP is

the computation capacity at that site. It is to be noted that
sP is expressed in sec/GB.

In [8], the authors have stated that
sP varies between 10 sec/GB to 50 sec/GB. The

Job Scheduling (JS) problem states that: Let iJ be a job, and Ŝ = { nSSS2,1 } be the set

of sites, then the problem is to schedule the job iJ to a site jS , where SS j
ˆ∈ , such that

the latency between submitting the job and job execution is minimized. A Demand
Matrix T

SF ji
D mjni ...1,...1 ==∀ , is created based on a set of jobs J within a time interval T.

The replication involves creation of identical copies of data files and their distribution
over the nodes in a Grid. The Data Replication (DR) problem states that: Let T

SF ji
D be a

demand matrix and Ŝ be a set of sites; the aim is to distribute a set of files to the
sites, so that the latency is minimized based on the demand matrix and the volume
constraint at each site is maintained. In this paper, an Integrated Replication and
Scheduling (IRS) approach is proposed which combines the replication and schedul-
ing schemes. Data Replication (DR) algorithm is a centralized algorithm running at
certain interval of time. After the arrival of jobs, each External Schedulers take the
help of replication information and schedule so that the job scheduled has the least
latency in terms of execution.

2 Integrated Replication and Scheduling (IRS) Approach

We start by defining some operational terms.

Normalized Demand (
iFη): Ratio of the demand for file iF to the demand of all files.

= =

==
n

j

m

i
SF

n

j
SF

F

ji

ji

i

D

D

1 1

1η

(1)

File Latency (ij
kΔ): Latency for a file kF to be moved from site

iS to
jS .

Computational Latency (ijω): Latency for a job i to be executed at site jS

j

i

m

i
ij P

τ
ω == 1

(2)

Queuing Latency (ijQ): Latency for a job i due to the queuing at the site jS (queue size

(iq). In case of assumption that all the jobs take the same time for execution, then

j

i

m

i
j

ij
P

q
Q

τ
== 1

. (3)

Slots Available (jγ): Average number of files that can be stored in site jS . Thus,

τ
γ j

j

V
= , τ = average file size

(4)

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 378

2.1 Job Scheduling (JS) Algorithm

The JS algorithm has two parts – (a) Job Scheduling and (b) Matrix Updating.

Job Scheduling Strategies: Two different Job Scheduling Strategies have been pro-
posed: Matching based Job Scheduling (MJS) and Cost Based Job Scheduling (CJS).
Matching based Job Scheduling (MJS): In MJS, the jobs are scheduled to those sites
which have the highest match in terms of data (maximum number of files for the job
available at the site). Any tie is broken by reducing the latency involved in moving
the data which is not present in the scheduled site from the site(s) containing the data.
It is possible that MJS may distribute the jobs to the same site resulting in the queue
size increase in that site. To distribute the jobs to different sites the scheduling is done

based on
iq

q
mv .= factor, where m is the maximum match and q is the average queue

size and iq is the queue size at the site. MJS schedules based on the maximum v
value. Figure 1 shows the topology of a Data Grid. S1, S2, S3 and S4 are the different
sites in the Data Grid. The numbers and the arrows show the latency to move a file
from one data site to the other. The elements in each site indicate the files that are
present in each of those sites. Let a job come which requires files D1, D3 and D6.
According to the MJS algorithm, both S2 and S4 are candidate sites where the job can
be scheduled. If the job is scheduled in S2, then it takes 7 seconds to move the file D6
from S3 (File Originating Site) to S2. On the other hand, if the job is scheduled onto
S4, then it takes 4 seconds. Therefore, the job is scheduled onto site S4.

D1

D3

D8

D1

D4

D7

D1

D3

D5

D2

D4

D6

2
se

cs

3 secs

4
se

cs

7 secs

5 secs

6 secs

S1

S2

S3

S4

Fig. 1. Topology of an example Data Grid

Cost Based Job Scheduling (CJS): Another alternative to matching based job schedul-
ing, a cost based job scheduling strategy is proposed. Cost (s

ijC) of scheduling a job iJ

onto a site jS is defined as the combined cost of moving the data into the site jS , latency

to compute the job iJ in the site jS and the wait time in the queue in the site jS . The

job is scheduled onto the site which has the minimum s
ijC . Referring back to the example

shown in Figure 1, we assume that in this case the computational time is 0 and queues at
each site is also 0. Therefore s

ijC is composed of only the data latency. The values of

Integration of Scheduling and Replication in Data Grids 379

s
ijC for j=1,2,3,4 are: s

iC 1 = 7 secs, s
iC 2 = 7 secs, s

iC 3 = 8 secs, s
iC 4 = 4 secs. Therefore, the

job is scheduled onto site S4, same as MJS. Though both the algorithms provide similar
performance in this example, generally CJS will be better if instantaneous queue infor-
mation is available. However, in case of partial information the comparison between
these algorithms can be an interesting future study.

Updating the Demand Matrix: In this step, the Demand Matrix is updated as illus-
trated below. The example is based on the topology shown in Fige 1. Let
the files required by job iJ be iF

~
. The data files required are:),4,3,1(

~
1 DDDF =

),5,2,1(
~

2 DDDF =),8,3,2(
~

3 DDDF =),7,3,1(
~

4 DDDF =),8,5,4(
~

5 DDDF =),7,5,1(
~

6 DDDF =

),5,4,3(
~

7 DDDF =).8,7,1(
~

8 DDDF = Based on the job requests, the given topology and
the MJS; the following Demand Matrix can be constructed:

Table 1. Demand Matrix for the topology in Figure 1 based on a job pattern

Files\Sites S1 S2 S3 S4 Total

D1 0 0 0 1 1

D2 0 0 4 0 4

D3 0 2 1 1 4

D4 0 1 1 0 2

D5 0 0 0 1 1

D6 0 1 3 2 6

D7 0 0 1 1 2

D8 0 2 2 0 4

Total 0 6 12 6 24

Scheduling of Jobs with Data Ordering: Till now we have assumed that each job
requires data all at the same time i.e., at the time of starting the job. However, the cost
of scheduling can be modified in case of order of data files. By order of data files we
mean that say the job requires files (3,21 , fff) at the start of the job and requires

(54 , ff) later. Then files 54 , ff can be obtained later than files 3,21 , fff . Therefore,

====

+Δ+Δ=
5

4

5

4

3

1

3

1

,),max(
i

ij
j

ij
s

i
ij

j
ij

sLatency ωω
(5)

Let
1112,11 ... kfff be the set of files required initially (Step 1), 2222,21 ... kfff be the

number of files required in Step 2,
jjkjj fff ...2,1 be the files required in Step j, and

ppkpp fff ...2,1 be the files required in Step p (last step), then

==
+Δ−=

ii K

j
ij

K

j
ijiLiL

11

)),1(max()(ω

==

+Δ=
11

11

)1(
K

j
ij

K

j

ij
sL ϖ

 (6)

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 380

Where L(i) is the latency at the ith step, K files are required at step i and L(p) is the
total latency.

2.2 Data Replication Strategy

Data Replication Strategy has two steps: (i) Allocation of Replication Limits to each
file and (ii) Replication.

Allocation of Replication Limits: We define Replication Limit (iχ) of file iF as the

number of sites where the file iF should be replicated. It is to be noted that each file

should be replicated at least once, therefore the iχ is defined as:

))).(((1,min(#
1=

Φ−+=
n

j
jFi i

ceilingsites γηχ
(7)

In the Equation 7, the minimum of the ceiling value and the #of sites is taken
as a file could not be replicated more than the number of available sites.
During the allocation of iχ , priority is given to the files having the highest
Normalized Demand (

iFη). Based on the Demand Matrix shown in table 1,

the following
iFη values are calculated for each of the different files:

.6/1,12/1,4/1,24/1,12/1,6/1,6/1,24/1 87654321 ======== DDDDDDDD ηηηηηηηη

Based on the
iFη values calculated above, the Replication Limit allocations are:

.2,1,2,1,1,2,2,1 87654321 ======== DDDDDDDD χχχχχχχχ

Data Replication: Data Replication Strategy is based on the principle of choosing
sites based on the expected latency that the site is going to provide. We assume that
the data is placed at various storage elements as a result of replication strategy and no
further caching takes place. Let the probability of a job scheduled in site kS requiring

the file iF be ikp . Then the expected file latency (ijδ) of the file iF scheduled in site

jS is defined as:

kj

n

k
ikij lp .

1=
=δ

(8)

3 secs

5 secs

Prob = 0.2
Prob = 0.5

Prob = 0.3

S1 S2 S3

D1

D3

D8

D3

D4

D5

D2

D6

D7

D2

D6

D8

2
se

cs

3 secs

4
se

cs

7 secs

5 se cs

6 secs

S1

S2

S3

S4

(a) (b)

Fig. 2. Illustration of the (a) Expected Latency, (b) Final Config

Integration of Scheduling and Replication in Data Grids 381

Figure 2(a) illustrates the concept of expected latency. Let a file be replicated in
Site 1. Probabilities of using the file by a job scheduled in site S1, S2 and S3 are 0.2,
0.5 and 0.3 respectively. Therefore the expected latency of the file in site S1 becomes
(0*0.2 + 3*0.5 + 5*0.3) = 3 seconds. It is to be noted that the latency of the job re-
quiring the file in site S1 is 0, as the site contains the file. Similarly, Expected Com-

putation (ijθ) and Queuing Latencies (ijα) are given by:

ijjjj

n

k
ijij qPp θατθ .),/.(ij

1

==
=

(9)

Cost function for data replication strategy is += ijij
RC δ ijθ +

ijα , the algorithm aims

at minimizing ij
RC . It is to be noted that this is an NP-Complete problem as it can be

reduced to a K-Median problem [9]. The Data Replication Strategy is based on a
simple greedy approach. Based on the Demand Matrix, a Normalized Demand is
calculated (

iFη) (See Equation 1). Replication algorithm starts with the node having

the maximum
iFη value. Then Replication Limit (iχ) is calculated, where iχ indicates

how many times the file iF is replicated in the Data Grid. More the value of
iFη ,

higher is iχ . The best iχ sites are selected among n sites which has the lowest ij
RC .

Then replication is carried out by the file having the second highest
iFη value. This

process is repeated until all the files are exhausted.

An Example: The data replication strategy is shown in Table1 and Figure 1. The cost
of the strategy is provided in Table 2.

Table 2. Cost table based on the data replication strategy

Files\ Sites S1 S2 S3 S4

D6 3.83 5.50 2.50 3.00

D8 3.50 3.50 3.50 5.00

D3 3.00 3.25 4.50 4.00

D2 5.00 7.00 0.00 4.00

D4 3.50 3.50 3.50 5.00

D7 4.00 6.50 2.00 2.00

D5 3.00 6.00 4.00 0.00

D1 3.00 6.00 4.00 0.00

The final replication is shown in Figure 2(b). Based on the replication the latency
is improved from 5.38 seconds to 2.25 seconds, an improvement of 58%.

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 382

3 Performance Studies

To evaluate the performance of the proposed strategies, the OptorSim [10] simula-
tor was used, which is a commonly used simulator for the simulation of Data Grid
environment. The simulation runs are taken with jobs arriving average exponential
inter-arrival time of 0.25 seconds, the processing speed at the nodes are considered
constant at 10 second/Gb of data. Number of jobs requesting a particular file
is distributed exponentially. This gives an elliptical file distribution per job
with an average of 7 and total files in the system (φ) as 20. The initial file

Fig. 3. Performance of schemes with (a) Bandwidth variation, (b) No. of Sites

Fig. 4. Performance of schemes with (a) no. of slots, (b) Job Arrival

distribution in the Grid is random. The data replication was carried out at
pre-determined intervals during the runs. The parameters that were varied in simu-
lation runs are network bandwidth (467 to 1067 Mbps); number of computing and
storage nodes (10 to 40); and storage capacity Vj (5 to 20 Gb). A separate set of
runs were taken by varying the average job inter-arrival times (1 seconds to 8 sec-
onds). We have compared performance of our data replication strategy against no
replication, and commonly used Least Recently Used (LRU), Least Frequently
Used (LFU) replication strategies. For job scheduling, the MJS version of our

Variation with
Bandwidth

260

182

146

119

200

154

120

97

168
152

114
104

277

203

153

126

192

127

99
87

145

95
82 83

0

50

100

150

200

250

300

467 667 867 1067

Bandwidth (Mbps)

A
vg

 J
o

b
 L

at
en

cy
 (

S
ec

s)

Ran-LRU

Ran-LFU
Ran-DRS

MJS-LRU

MJS-LFU

MJS - DRS

Variation with
No of Sites

126
117

108

118

104

93 95 9694

68
64

60

137

125
119

129

98

65
73

98

88

26
19 16

0

20

40

60

80

100

120

140

160

10 20 30 40

No of Sites

A
vg

 J
o

b
 L

at
en

cy
 (

S
ec

s)

Ran-LRU

Ran-LFU

Ran-DRS
MJS-LRU

MJS-LFU

MJS - DRS

Variation with Slots

488

137

64 59

508

122

61 66

574

117

57 40

489

150

63 68

465

118

63 62

683

94

43 36

0

100

200

300

400

500

600

700

800

5 10 15 20

No of Gb sized storage slots

A
vg

 J
o

b
 L

at
en

cy
 (

S
ec

s)

Ran-LRU

Ran-LFU

Ran-DRS

MJS-LRU

MJS-LFU

MJS - DRS

Variation with job arrivals

3 4

113

2 4

79

6 7

85

11 12

106

3 6

58

19 19

48

0

20

40

60

80

100

120

8 5 1

Avg. inter-arrival time (secs)

A
vg

 J
o

b
 L

at
en

cy
 (

se
cs

)

Ran-LRU

Ran-LFU

Ran-DRS

MJS-LRU

MJS-LFU

MJS - DRS

Integration of Scheduling and Replication in Data Grids 383

scheduling algorithm is used (with value in the average queue size factor taken as
1). Essentially, during evaluation, the following combinations are considered :
Ran-NoRep – random scheduling with no replication, Ran-LRU – random schedul-
ing with LRU replication strategy, RAN- LFU – random with LFU, Ran-DRS –
random with our replication strategy, MJS-NoRep – our scheduling with no repli-
cation, MJS-LRU,MJS-LFU and MJS-DRS respectively.

3.1 Discussions

Figures 3 and 4 highlight the performance of the schemes in terms of variations in
average job latency with respect to the variations in bandwidth, number of sites, SE
size, and job arrival distributions. It is clear that the MJS scheduling scheme with
DRS performs best in most of the cases. The cases with no data replication strategies
perform far worse than other cases, and therefore, the results are omitted. For exam-
ple, average job latency with Ran-NoRep strategy with 10 sites is 1512 seconds – 10
to 12 times the average job latencies observed in other schemes.

The idle times for the processors were evenly distributed at high loads following
MJS-DRS scheme with a standard deviation of 3. The average job queue sizes at high
loads were also evenly distributed. The results show that with variation of bandwidth
(figure 3(a)), the Ran-DRS scheme achieves a performance improvement of up-to
19% over Ran-LFU and up-to 54% over Ran-LRU schemes. The MJS-DRS scheme
results in a job latency improvement of an average of 56% over Random scheduling
schemes and of 23% over other data replication schemes with our scheduling. With
increasing numbers of computing elements n, the MJS-DRS scheme performs signifi-
cantly better than other schemes (figure 3(b)). At 40 nodes the MJS-DRS scheme is
almost two times better than Ran-DRS scheme and even better than other replication
schemes. The results of the job latency with variations of storage capacity, and hence,
the number of gigabyte slots are interesting (figure 4(a)). While at lower storage
capacity (5 GB), other schemes perform marginally better than MJS-DRS; with in-
crease in capacity and jγ , MJS-DRS fares better than other schemes by an average
of 17%. As evident from figure 4(b), the MJS-DRS scheme scales up better than other
schemes with increase in load. With a decrease of average job inter-arrival time from
5 seconds to 1 seconds, the average job latency increases by 2.3 times while in case of
the other schemes the performance deteriorates by 10-12 times.

We have also compared our scheduling – replication scheme against economy
based replication strategy proposed in [11]. The preliminary results, as given in Table
3, suggest that the MJS-DRS scheme improves job latency over EcoModel optimizer
(EO) with ZipF file distribution.

Table 3. Performance comparison of MJS-DRS with EcoModel optimizer

Scheduler + Replication RS+EO RS+DRS MJS+EO MJS +DRS

Job Latency (secs) 106 104 69 48

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 384

4 Conclusions

In this paper an interaction between replication and scheduling strategy called the
Integrated Replication and Scheduling (IRS) strategy, has been proposed. The data
replication is carried out in an asynchronous timer-controlled process that takes into
account history of jobs and data access patterns and is primarily based on the notion
of expected data file latency and a greedy optimization approach. The scheduling is
carried out in a matching-based or a cost-based manner with view of transient system-
state data like queue length. The approach MJS-DRS has shown promising results
with respect to the popular and commonly used data replication strategy, while the
cost-based scheduling approach is yet to be tested. Contrary to [8], our experience
shows that it is better to consider the interactions of replication and scheduling while
scheduling in a Data Grid and replication strategy works well even if the jobs are not
scheduled locally. In this paper, we have considered a centralized external scheduler
which may prove costly with increase in Data Grid size. In subsequent works, we
propose to extend this scheduling and replication scheme to a decentralized and hier-
archical environment. Further, we propose to analyze the sensitivity of the schemes
with respect to variations viz in file sizes, processor speeds, effect of data arrival pat-
tern in job execution etc.

References

1. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scientific Datasets,”
Journal of Network and Computer Applications, vol. 23, pp. 187-200, 2001.

2. M. Beck and T. Moore, “The Internet2 distributed storage infrastructure project: An archi-
tecture for internet content channels,” Computer Networking and ISDN Systems,1998.

3. Foster and C. Kasselman, “The Grid 2: Blueprint for a new Computing Infrastructure,”
Morgan Kaufman, 2004.

4. H. Casanova, G. Obertelli, F. Berman and R. Wolski, “The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid,” in Proc. SuperComputing’00, 2000.

5. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, “Scheduling
Strategies for Master-Slave tasking for Heterogeneous Processor Platforms,” in IEEE
Trans. On Parallel and Distributed Systems, vol. 15, no. 4, Apr. 2004.

6. K. Ranganathan and I. Foster, “Identifying Dynamic Replication Strategies for a High
Performance Data Grid,” in Proc. Second IWGC, 2001.

7. D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau and M. Livny, “Gathering at the
Well: Creating Communities for Grid I/O,” in Proc. SuperComputing 2001, 2001.

8. K. Ranganathan and I. Foster, “Simulation Studies of Computation and Data Scheduling
Algorithms for Data Grids,” in Journal of Grid Computing, vol. 1, no. 2, Apr. 2003.

9. R.R. Mettu and K.G. Plaxton, “The Online Median Problem”, in SIAM Journal on Com-
puting, Vol. 32, No. 3, pp 816- 832, 2003

Integration of Scheduling and Replication in Data Grids 385

10. W.H. Bell, D.G. Cameron et al., “Simulation of Dynamic Grid Replication Strategies in
OptorSim,” in Proc. Third Int’l Workshop on Grid Computing, 2002.

11. W.H. Bell, D.G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger and F. Zini,
“Evaluation of an Economy-Based File Replication Strategy for a Data Grid”, in Proc.
CCGrid, May 2003.

Efficient Layout Transformation for
Disk-Based Multidimensional Arrays

Sriram Krishnamoorthy1, Gerald Baumgartner2, Chi-Chung Lam1,
Jarek Nieplocha3, and P. Sadayappan1

1 Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210, USA

{krishnsr, clam, saday}@cse.ohio-state.edu
2 Department of Computer Science,

Louisiana State University, Baton Rouge, LA 70803, USA
gb@csc.lsu.edu

3 Computational Sciences and Mathematics,
Pacific Northwest National Laboratory, Richland, WA 99352, USA

jarek.nieplocha@pnl.gov

Abstract. I/O libraries such as PANDA and DRA use blocked layouts for efficient
access to disk-resident multi-dimensional arrays, with the shape of the blocks being
chosen to match the expected access pattern of the array. Sometimes, different
applications, or different phases of the same application, have very different access
patterns for an array. In such situations, an array’s blocked layout representation
must be transformed for efficient access. In this paper, we describe a new approach
to solve the layout transformation problem and demonstrate its effectiveness in
the context of the Disk Resident Arrays (DRA) library. The approach handles re-
blocking and permutation of dimensions. Results are provided that demonstrate
the performance benefit as compared to currently available mechanisms.

1 Introduction
Many scientific and engineering applications need to operate on data sets that are too
large to fit in the physical memory of the machine. Due to the extremely large seek time
relative to the per-word transfer time for disk access, it is imperative that I/O be done
using contiguous blocks of disk resident data. To optimize performance in collective I/O
operations between arrays located on disk and in distributed main memory of parallel
computers [1], I/O libraries like PANDA [2, 3] and DRA [4] use a blocked layout repre-
sentation for the disk-based multidimensional arrays instead of the dimension-ordered
representation used typically for the representation of multidimensional arrays in main
memory. Thus, the disk-based multidimensional array is partitioned into a number of
multidimensional blocks or “bricks”, and the elements within a brick are linearized using
some dimension order. Such a bricked representation of disk-based multidimensional
arrays permits efficient access as long as the accessed regions mostly contain full bricks.

However, the access patterns to some disk-based multidimensional arrays in two
successive phases (or the access pattern of the producer and the consumer) are so different
that no choice of brick shape will allow for efficient access. An example is the out-of-core

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 386–398, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Layout Transformation for Disk-Based Multidimensional Arrays 387

2D Fast Fourier Transform (FFT), where the array is accessed by columns in one phase
and by rows in the other. The multi-dimensional FFT [5, 6] can be implemented as a series
of one-dimensional FFTs, one along each dimension. Another example illustrating very
different access patterns is with image data in three and four (including time) dimensions.
The production of data from scanning occurs plane by plane. However, examination of the
time evolution of a 3D block of data requires a very different access pattern than that by
which the data was generated. In isosurface construction in three and four dimensions,
the data is typically produced in a row-major format by scanning or simulation. The
amount of memory available determines the amount of data generated between writes
to disk, and hence limits the blocking possible. To efficiently perform computations on
the stored data in a parallel system, the data might have to transformed into a different
blocked form [7]. Thus there are situations where performance can be greatly improved
by transforming the layout of a multidimensional array on disk to match the application’s
access pattern.

Our primary motivation for addressing the layout transformation problem arises from
the domain of electronic structure calculations using ab initio quantum chemistry models
such as Coupled Cluster models. We are developing an automatic synthesis system called
the Tensor Contraction Engine (TCE)[8], to generate efficient parallel programs from
high level expressions, for a class of computations expressible as tensor contractions
[9, 10, 11, 12, 13, 14]. Often the tensors (essentially multi-dimensional arrays) are too
large to fit in memory and must be disk-based. The input tensors are often generated by
other quantum chemistry packages such as NWChem [15], with a layout quite different
from that needed for efficient processing by the TCE-generated code.

This paper describes an approach to efficient transformation of data between disk-
based multidimensional arrays. Experimental results indicate that this approach delivers
comparable or better performance than other techniques currently used in practice, that
are based on reading data from one disk-based array to distributed main memory, in-
memory data transformation, and then writing data to the destination disk array. For
example, improvements exceeding 80 percent were observed on a Linux cluster.

The paper is organized as follows. Section 2 describes the DRA framework, within
which we implement our solution to the layout transformation problem. The array re-
blocking problem is explained is detail in Section 3. Section 4 presents the proposed
approach for efficient layout transformation. In Section 5, experimental results are pre-
sented. Section 6 concludes the paper.

2 Disk Resident Arrays
The Global Arrays (GA) library [16] [17] provides a shared-memory programming
model in which data locality is explicitly managed by the programmer. Explicit function
calls are used to transfer data between global address space and local storage. It is
similar to distributed shared-memory models in providing an explicit acquire-release
protocol, but differs with respect to the level of explicit control in moving blocks of
data in multidimensional arrays between remote global storage and local storage. The
functionality provided by GA has proved useful in the development of large scale parallel
quantum chemistry suites such as NWChem [15] (which contains over a million lines
of code).

388 S. Krishnamoorthy et al.

The Disk Resident Arrays (DRA) model [18] extends the GA NUMA program-
ming model to secondary storage. It provides a disk-based representation for multi-
dimensional arrays and functions to transfer blocks of data between global arrays and
disk resident arrays. DRA, along with GA, provides a unified programming model for
handling different levels of the memory hierarchy in which the user controls the location
of data in the memory hierarchy. This has been shown to provide high performance while
providing a programming model that is simpler than message passing.

Henceforth, we shall use GA and DRA to refer both to the library and the arrays
handled by them. The reference will be clear from the context.

3 The Layout Transformation Problem
Internally, the data in a DRA is stored in a blocked fashion. When a DRA is created, a
typical request shape/size can be specified. This is used to determine the shape of the
basic layout block or “brick”. The shape of the brick is chosen to match the specified
access shape. The size of the brick is chosen as a compromise between two competing
objectives: 1) optimize disk I/O bandwidth - this requires that the brick size be large
enough to amortize the disk seek time and 2) minimize wastage of disk I/O - since I/O is
done in units of the basic block (brick), small bricks imply less wastage at the boundaries
of the DRA regions being read/written.

An application might have an access pattern that is very different from the organiza-
tion of the DRA on disk. This can happen when an application uses the output of another
program, or because different phases of the same program use different access patterns.
This can be handled by creating another copy of the disk resident array to match the new
request size and transformed dimensions.

We have implemented the copy routine, referred to as NDRA Copy, together with
dimension permutation. The routine takes as input the source and target DRA handles
and the dimension permutation to be performed. Henceforth, the data in the DRA cor-
responding to the dimensions of blocking in the source and target arrays are referred to
as the source and target blocks respectively.

The disk array layout transformation problem we consider here is a generalization of
the out-of-core matrix transposition problem. Out-of-core matrix transposition has been
widely studied in the literature. The algorithms perform out-of-core transposition by
making passes through the entire array a number of times. During each pass through the
array, each element of the source array is read once and each element of the target array
is written once. Each pass consists of a series of steps in which a portion of data from
the source array is brought into memory, permuted and written to the target out-of-core
array. Different steps in a pass operate on disjoint sets of data. The block transposition
algorithm is a single-pass algorithm in which a 2-D tile of data is brought into memory,
transposed and written to disk. Since the different row segments of a 2D tile are not
contiguous on disk, this could be extremely inefficient unless the tile size is very large.
Eklundh [19] proposed a multi-pass algorithm, in which the minimum unit of I/O is
a row. The number of passes in the algorithm is proportional to the array dimensions.
Kaushik et al. [20] reduced the number of read operations and increased the read block
size compared to Eklundh’s algorithm. Sun and Prasanna [21] proposed an algorithm
that minimized the total number of I/O operations, while potentially increasing the total

Efficient Layout Transformation for Disk-Based Multidimensional Arrays 389

volume of I/O. Krishnamoorthy et al. [22] formulated these algorithms in a tensor product
notation and derived a generic algorithm that attempts to minimizes the total execution
time by taking into consideration the I/O characteristics of the system, and subsequently
extended it to a multi-processor system, in which each processor has a local disk [23] .

Most of the above approaches assume the array dimensions and the memory size to be
powers-of-2. This assumption, coupled with the fact that the required transformation is a
transposition, allows different steps in the re-blocking process to operate on disjoint sets
of data. In each step, the set of data read into memory form an integral number of write
blocks, which are written out. So no data is retained across steps during the transposition.
When arbitrary blocking, array dimensions and memory sizes are to be handled, it may
not be possible to process and write out all the data read into memory in a given step.
Some data either needs to be discarded and re-read, increasing the I/O cost, or needs to
be retained, increasing the memory requirement. The memory cost for retaining the data
unused from a step depends on the order of traversal of dimensions, and hence is not
straight forward. The out-of-core transposition algorithms involve I/O of blocks of data
at specific strides, which is fixed for a pass. This regularity allows accurate prediction of
the I/O cost. The in-memory permutation of data can be modeled as a bit-permutation
on the linear address space of the data stored in disk. This provides a regular structure to
the in-memory computation. In the general case, in-memory permutation corresponds to
a series of collect operations for combining portions of different read blocks to create a
write block. The simplicity in the cost models for the power-of-2 transposition problem
makes it amenable to mathematical treatment as done in [22].

In the next section, we detail our approach to solving the generalized re-blocking
problem.

4 Algorithm Design
The disk array layout transformation problem is modeled as an I/O optimization prob-
lem. The total I/O cost is to be minimized, subject to the amount of physical memory
available. The cost model and the algorithm to obtain the multi-pass solution are ex-
plained in this section. In the ensuing discussion, we shall consider an n-dimensional
matrix of dimensions < d1, . . . ,dn >. The matrix is blocked in brick shape < s1, . . . ,
sn >. The target matrix has the same ordering of dimensions as the source but is blocked
using bricks of shape < t1, . . . , tn >. The source and target bricks are assumed to be of
size that is large enough for efficient access from/to disk. DRA typically uses a brick
size of around 1 Mbyte. Reads from the source disk array are assumed to be in units of
the source brick, and writes to the target disk array are done in units of the target brick.

4.1 Solution Approach

If feasible, a single-pass solution (in which each element is read and written exactly
once) would provide the minimum I/O cost. But the memory requirement for a single-
pass solution might exceed the physical memory available. In this case, we either need
to choose a multi-pass solution or perform redundant I/O in one pass. In this sub-section,
we present the intuition behind the design of our algorithm. We begin with a basic single-
pass algorithm and determine its I/O and memory cost. We then incrementally improve

390 S. Krishnamoorthy et al.

Input: (1) Source and target block sizes [s] and [t],
(2) Template size [templ]

Output: (1) Total memory cost (2) Dimension traversal order [T]
1) foreach dimension i
2) L[i] = LCM(s[i], t[i])
3) U[i] = min(s[i], t[i]) - gcd(s[i], t[i])
4) M[i] = ceil(max(s[i], t[i])/s[i])*s[i]
5) Sort dimensions into array T such that

forall i<j => U[T[i]]*M[T[j]] + L[T[i]]*U[T[j]] <
U[T[j]]*M[T[i]] + L[T[j]]*U[T[i]]

6) memCost=0
7) foreach dimension i
8) pdt=U[T[i]]
9) foreach j<i
10) pdt *= L[T[j]]
11) foreach j>i
12) pdt *= M[T[j]]
13) memCost += pdt

Fig. 1. Pseudo-code to determine the memory cost for a given template size

the single-pass algorithm to lower the memory requirement and/or the I/O cost. The
multi-pass solution is discussed in a subsequent sub-section.

Consider the region < 0−LCM(s1, t1), . . . ,0−LCM(sn, tn) >. This region con-
tains an integral number of source and target blocks along all the dimensions. Thus the
data in the source matrix from this region maps onto complete blocks in the target matrix.
This region can be processed independent of other such blocks, without any redundant
I/O. We shall refer to such regions as LCM blocks. If the amount of physical memory
were large enough to hold an LCM block, then a single-pass solution is clearly possible
- read in source blocks contained in an LCM block into memory, construct the target
blocks corresponding to the data in memory, and write them into the target array. The I/O
cost is defined as the I/O required per element of the source array. This algorithm has the
minimum I/O cost of one read and one write per element of the source array. Assuming
the read and write operations are equivalent the I/O cost is two units per element.

The memory cost is the size of the LCM block. Since arbitrary re-blocking needs to
be supported, the source and target block sizes could have arbitrary dimensions (provided
their total size corresponds to a reasonable block size for I/O on the target file system).
Hence the LCM block can be arbitrarily large and might not fit in physical memory.
We can improve the single-pass algorithm to handle this scenario without increasing the
I/O cost. Instead of reading entire LCM blocks into memory, the algorithm reads in a
set of blocks of data from the source matrix and writes out those target blocks that can
be completely constructed from the data available in memory. Any data in memory that
cannot be used to construct a complete target block is retained in memory. Any source
block in an LCM block contributes to target blocks within the same LCM block. Hence
no data needs to be retained across LCM blocks. The algorithm processes all the data in
one LCM block before processing any other LCM block. The algorithm requires enough
memory to retain unused data and read in additional data for processing. The additional

Efficient Layout Transformation for Disk-Based Multidimensional Arrays 391

data read into memory for processing must be enough to write at least one target block
to disk. This is referred to as the Max block and corresponds to < M1, . . . ,Mn > where
Maxi = (max(si, ti)/si)� ∗ si. The algorithm traverses each LCM block along each
of the dimensions and processes data in units of the Max block. The buffer to store the
unused data is partitioned into one buffer per dimension. Unused data from a Max block
along a dimension needs to be retained until the adjacent Max block along that dimension
is processed. Thus the amount of unused data to be retained depends on the order of
traversal of dimensions. Along the dimension traversed first, only data unused from the
last processed Max block needs to be stored. Other dimensions require more data to be
retained. A static memory cost model is used, in which the sizes of buffers used to store
data is determined before the transformation begins. The maximum memory required to
perform the transformation is the sum of the size of the Max block and the sizes of the
buffers.

MemCost =
∑n

i=1 bsizei +
∏n

i=1 Maxi

where bsizei represents the size of buffer to store unused data along the i-th dimension.
Let < T1, . . . ,Tn > be the order of traversal of dimensions. The unused data along a

dimension (say Ti) is an n-dimensional region. For a given dimension i, the size of this
region along dimension j can be as much as LCM(sTj

, tTj
) for j < i, but is bounded

above by MaxTj
for j > i. Hence, the size of the buffer to store the unused data along

a dimension Ti is bounded by

bsizeTi
=

∏n
j=1 Sj

Sj =

⎧⎨
⎩

LCM(sTj
, tTj

) if j < i

UTj
if j = i

MaxTj
if j > i

where Ui be the maximum unused data that needs to be stored along dimension i. Since
Ui must be smaller than both si and ti, and for every si elements along dimension i
brought into memory, at least gcd(si, ti) elements must be written out, we have

Ui = min(si, ti)−gcd(si, ti)

As can be seen from the above formulae, the sizes of the unused buffers is propor-
tional to the LCM block dimensions. This could lead to situations in which the memory
requirement still exceeds the available memory. In this case, there are two options to be
considered. A multi-pass solution could be determined, which is discussed later, or a
single-pass solution that performs redundant read of data can be designed.

We propose a single-pass algorithm that differs from the discussion above in one
respect. Instead of traversing an entire LCM block, a smaller template is chosen. No
unused data is stored across templates. A template is an integral number of write blocks
along all dimensions. There is no redundant read within a template. But unlike LCM
blocks, templates might have source blocks on their boundaries that straddle across two
templates. This results in redundant reads across templates, increasing the I/O cost. The
memory cost is reduced and is given by:

392 S. Krishnamoorthy et al.

MemCost =
∑n

i=1 bsizei +
∏n

i=1 Maxi

bsizeTi
=

∏n
j=1 Sj

Sj =

⎧⎨
⎩

templTj
if j < i

UTj
if j = i

MaxTj
if j > i

where templi represents the size of the template along the i-th dimension.
For a two-dimensional array, the memory cost due to the unused buffers is U1 ∗

Max2 +LCM(s1, t1)∗U2 if dimension 1 is traversed first; otherwise, it is U2 ∗Max1 +
LCM(s2, t2)∗U1. In an n-dimensional array, the traversal order is determined by sorting
the dimensions by comparing these expressions.

The minimum template size corresponds to a target block. In this case, the memory
requirement is reduced to a Max block. Thus the necessary condition for the existence
of a single-pass solution is that the Max block fit in memory.

The I/O cost is multiplicative along the dimensions. Within an LCM block, the num-
ber of source blocks that need to be reread is the number of templates minus one, which
is (LCM(si, ti)− templi)−1. Therefore, the I/O cost of re-blocking is given by templi is

IOCost =
∏n

i=1 IOCosti

IOCosti =
(si∗(

LCM(si,ti)−templi
templi

)+LCM(si,ti))

LCM(si,ti)

In reality, the LCM along a dimension might be larger than the length of the array
along the dimension, in which case we replace the LCM by the array dimension. Note
that the array dimensions are not considered while determining Ui. Hence, Ui does not
provide an exact estimate, but only an upper bound on the memory requirement. Note
that though the I/O cost for the single-pass solution is increased, the total I/O cost could
be reduced due to a decrease in the number of passes.

4.2 Template Determination for Single-Pass Solution

Both the I/O cost and the memory cost are affected by the choice of the template. In this
section, we discuss the algorithm used to determine the template sizes. The template
is a set of write blocks along all the dimensions. It can range in size from one write
block, to an LCM block. For re-blocking an n-dimensional array, the template needs to
be determined from an n-dimensional solution space. A template is a feasible solution
if its processing does not require more memory than available. The algorithm exploits
the characteristics of the solution space and the optimization function.

Consider a template A. An enclosing template is defined as a template that is at least
as large as the given template in all the dimensions. Let B be an enclosing template of A.
From the memory cost equations, it can be seen that the memory required to process A
cannot exceed that required to process B. Conversely, processing B requires at least as
much memory as processing A. This implies that once a template has been determined
to require more memory than available (an infeasible solution), no enclosing templates
needs to be considered. This relation separates the solution space into a feasible and an
infeasible solution space (where the surface of separation approximates to a hyperbola
when n = 2).

Efficient Layout Transformation for Disk-Based Multidimensional Arrays 393

Input: Source and target block sizes [s] and [t],
Output: Template size for single-pass solution, if it exists.
Support Routines: MemCost(templ) - Memory cost for processing

the given template
DiskCost(templ) - I/O cost for processing

the given template
MemoryExceeded(templ) - returns true if the

template is infeasible
1) Initialize template to LCM block
2) Reduce template size along along all dimensions equally

(in units of write block size) until the template is a
feasible solution.

3) If no feasible solution is found return "No solution exists"
4) Adjust the template size so that increasing the template size

along any dimension makes it infeasible.
5) Repeat the following steps
6) Among adjacent template sizes choose the one that has the

maximum rate of decrease in I/O cost to increase
in memory cost.

7) Determine a feasible solution that leads to the least
increase in disk I/O cost from the chosen template.

8) If the feasible solution found has lesser I/O cost than the
current template, choose that as the current template.
Otherwise return the current template as the solution.

Fig. 2. Algorithm to determine template size for a single-pass solution

The I/O cost has a similar characterization. The I/O cost equation shows that de-
creasing the template size along any dimension increases the I/O cost. Thus the I/O cost
of template A is at least as much as that of template B. This implies that when searching
through the solution space, no template that is enclosed by a feasible template needs to
be considered. Thus the optimal solution resides on the surface separating the feasible
and infeasible solution spaces.

Our algorithm to determine the template for a single-pass solution involves three
phases. The algorithm begins with the LCM block as the template and tests for feasibility.
If an LCM block is the feasible solution, it is chosen as the template. Otherwise, a solution
is chosen that is just feasible, i.e. , increasing the template size along any dimension
violates the memory constraint. This is a solution on the boundary between the feasible
and infeasible solution spaces and hence is a candidate solution. From this solution, we
perform a steepest descent to arrive at a local minimum in the search space. Note that
other optimization algorithms that can optimize on a surface can be used. The algorithm
used is shown in Fig.2.

4.3 Multi-pass Solution Determination

When a single-pass solution does not exist or is too expensive, a multi-pass solution
is chosen by determining intermediate block sizes. An intermediate disk-based array is
used to store the intermediate results. Hence, additional disk space equal to the size of

394 S. Krishnamoorthy et al.

the arrays is required. The multi-pass solution proceeds as repeated execution of the
single-pass algorithm, for the source and target block sizes determined for that pass. The
source block size of the first pass is the block size of the source array. The target block
size of the last pass if the block size of the target array. The skew between the source
and target block sizes decreases as the multi-pass solution proceeds from one pass to the
next. The intermediate block size are chosen to effect the maximum re-blocking possible
with the available memory.

A simple heuristic is used to determine the intermediate tile sizes for the multi-pass
solution. Two candidate intermediate block sizes are considered. The first candidate
intermediate block size is the geometric mean of the source and target block sizes.
This block size is “equidistant” from the source and target block sizes. This can be an
effective intermediate block size of for solutions with an even number of passes. The
second intermediate block size is, in fact, a pair of block sizes. Let si and ti be the
source and target block sizes along dimension i. The intermediate block sizes chosen
are s

2/3
i ∗ t

1/3
i and s

1/3
i ∗ t

2/3
i . This pair of intermediate block sizes can be effective for

solutions with an odd number of passes. These two options allow a more refined search
for intermediate block sizes. Without the second choice, any solution that requires an
odd number of passes, each transforming to an intermediate block “equidistant” from the
previous one, might be harder to achieve. Higher order intermediates were not considered
as solutions with a larger number of passes seldom occur in practice and can be handled
by a combination of these choices.

Input: Source and target block sizes [s] and [t],
Output: Sequence of intermediate block sizes [seqB], order of

traversal of dimensions for each pass I/O cost
1) Determine the cost (a) of single-pass solution
2) foreach dimension i
3) B1[i] = floor(sqrt(s[i]*t[i]))
4) B2[i] = (s[i]ˆ(2/3)*t[i]ˆ(1/3))
5) B3[i] = (s[i]ˆ(1/3)*t[i]ˆ(2/3))
6) Determine the cumulative cost (b) of multi-pass solutions

for re-blocking from s to B1 and B1 to t by recursively
calling this routine.

7) Determine the cumulative cost (c) multi-pass solutions
for re-blocking from s to B1, B1 to B2 and B2 to t
by recursively calling this routine.

8) If no multi-pass solution exists
return "no solution exists"

9) Choose solution with least I/O cost from (a), (b) and (c)
10) If the single-pass solution has the minimum cost
11) Return the solution with the order of traversal

determined by invoking memCost
12) else
13) Concatenate the sequence of solutions returned by the

two parts of the solution with the minimum I/O cost.

Fig. 3. Pseudo-code to determine a multi-pass solution

Efficient Layout Transformation for Disk-Based Multidimensional Arrays 395

Once the intermediate block(s) are determined, the multi-pass solution is determined
recursively for transforming from source to intermediate, and intermediate to target block
sizes. In the case of two intermediate blocks, the transformation between the intermediate
blocks is determined as well. The algorithm for determining the multi-pass solution is
shown in Fig. 3.

Consider an instance of the matrix re-blocking problem in which the source and target
arrays are blocked as < 32,9 > and < 5,16 >, respectively. The array dimensions are
much larger than the blocking and hence are not considered. The Max block is < 32,16 >
and the unused data along each dimension is bounded by < 4,8 >. The solution to
the re-blocking problem depends on the memory available. An LCM block contains
LCM(s1, t1) ∗LCM(s2, t2)=23040 elements. When enough memory is available to
hold an LCM block, the re-blocking can be performed by reading in an entire LCM
block and writing out the target blocks. But if the memory can hold U2 ∗Max1 +
LCM(s2, t2) ∗U1 + Max1 ∗Max2=1344 elements, it is sufficient to hold all unused
data when an LCM block is processed. The second dimension is traversed first in the
re-blocking procedure. If the memory available is lesser, say enough to hold just 900
elements, a single-pass solution with a template size of < 120,6 > elements is used for
the re-blocking. When the memory size is 800, a two-pass solution with an intermediate
tile size of < 12,12 > is determined. The template for the first pass is < 96,12 >, and
that for the second pass is < 60,48 >.

5 Experimental Results
In order to evaluate the effectiveness of the proposed approach, we compared the time for
layout transformation using our implementation with the time for transformation using
currently available mechanisms. The present interface to DRA is through Global Arrays.
When a DRA is to be copied to another DRA with different blocking, the source array is
read into a GA one section at a time, and written into the same section of the target array.
This is a single-pass solution. The basic unit of access, i.e. the shape and size of the

Fig. 4. Execution time to transform set-of-rows blocking to set-of-columns blocking

396 S. Krishnamoorthy et al.

GA needs to be determined. The size is determined independent of the blocking of the
source and target arrays to equal the amount of available physical memory. We evaluated
three options for the shape of the GA used. One option was to use the largest square tile
that fits within the available memory. If the blocking of the DRAs is known, the GA can
be chosen to be a multiple of the source block size or the target block size. These three
options are labeled Basic(square), Source Directed and Target Directed, respectively.
The implementation of the new approach is labeled NDRA Copy.

We evaluated the mechanisms on the OSCBW machine at the Ohio Supercomputer
Center [24]. Each node in the cluster has Dual AMD Athlon MP processors (1.533 GHz)
and 2GB of memory. The PGI pgcc 4.0-2 compiler was used to generate the executables.
Two sets of experiments were conducted. In one, a set of rows form the blocks in the
source array. The target array is blocked as a set of columns. The corresponding results
are shown in Fig. 4. The second experiment involved the reverse - transforming from a
set-of-columns blocking into a set-of-rows blocking, and its results are shown in Fig. 5.
The number of rows (or columns) in a block was chosen such that the block size was
greater than 1MByte, the typical brick size chosen by DRA for this system. For example,
for a < 4096,4096 > array, where each element is of size four bytes, set-of-rows blocking
corresponds to a block size of 1 Mb, with each brick holding a < 64,4096 > block of
data; and a set-of-columns layout corresponds to a 1 Mb brick holding a < 4096,64 >
block of DRA data.

In both the experiments, the array size was increased from 16000 to 60000 in steps
of 2000 and all four mechanisms were evaluated. For our approach, the template size
is determined automatically using the algorithms described in Section 4. The x-axis in
the graphs shows the array dimension in number of elements. The y-axis shows the
transformation time in seconds. We were unable to run larger experiments due to the
limited amount of disk space available on the local disks (around 60GB).

In transforming the set-of-rows bricks into a set-of-columns bricks, the target directed
method performs significantly worse than other approaches. This is because the data to
be read in is not contiguous on disk. The DRA reads in entire blocks of data to ‘collect’

Fig. 5. Execution time to transform set-of-columns blocking to set-of-rows blocking

Efficient Layout Transformation for Disk-Based Multidimensional Arrays 397

the data into the global array. This leads to exponential increase in cost. Due to this
obvious trend, this approach was evaluated with only certain sample array dimensions.
The source directed approach performs better, as DRA implementation allows writes
of partial blocks, if it is contiguous on disk. Though the unit of write is small, it still
performs better than the target directed approach. With larger array dimensions, both
the source directed and basic (square) approach increase in cost.

Our implementation performs better than the alternatives. The relative performance
benefit of our new approach increases with the size of the array. It starts with a single-
pass solution and then uses a two-pass solution for arrays with dimensions larger than
32,000. But the execution time increases gradually and is not drastically affected by the
exact problem instance at hand. Unlike the other three approaches, our implementation
performs comparably for both the transformations evaluated.

6 Conclusions
In this paper we proposed a new approach to efficient transformation of the blocked
layout of multidimensional disk-based arrays. The proposed approach was implemented
as a new copy primitive within the DRA I/O library. Experimental results demonstrated
the benefit of the new approach over existing mechanisms. The extension of this approach
to the parallel context is being pursued.

Acknowledgments

We acknowledge the support from the National Science Foundation through the Infor-
mation Technology Research program (CHE-0121676) and Pacific Northwest National
Laboratory. In addition, We would like to thank the Ohio Supercomputer Center (OSC)
for the use of their computing facilities.

References

1. Chen, Y., Foster, I., Nieplocha, J., Winslett, W.: Optimizing collective I/O performance on
parallel computers: A multisystem study. In: 11th ACM Intl. Conf. on Supercomputing.
(1997)

2. Seamons, K.E., Winslett, M.: Multidimensional array I/O in Panda 1.0. The Journal of
Supercomputing 10 (1996) 191–211

3. The Panda Project – Data Management for High-Performance Scientific Computation.
(http://drl.cs.uiuc.edu/panda/)

4. Foster, I., Nieplocha, J.: Disk Resident Arrays: An array-oriented I/O library for out-of-core
computations. In Buyya, R., Jin, H., Cortes, T., eds.: Disk Arrays and Parallel I/O: Theory
and Practice. IEEE Computer Society Press (2001)

5. Anderson, G.L.: A stepwise approach to computing the multidimensional fast Fourier trans-
form of large arrays. IEEE Transactions on Acoustics and Speech Signal Processing 28 (1980)
280–284

6. Bailey, D.H.: FFTs in external or hierarchical memory. Journal of Supercomputing 4 (1990)
23–35

398 S. Krishnamoorthy et al.

7. Kazhiyur-Mannar, R., Wenger, R., Crawfis, R., Dey, T.K.: Adaptive resolution isosurface
construction in three and four dimensions. Technical Report OSU-CISRC-7/03–TR38, School
of Computer and Information Science, The Ohio State University (2003)

8. Tensor Contraction Engine – Synthesis of High-Performance Algorithms for Electronic Struc-
ture Calculations. (http://www.cse.ohio-state.edu/˜saday/TCE/)

9. Baumgartner, G., Bernholdt, D., Cociorva, D., Harrison, R., Hirata, S., Lam, C., Nooijen,
M., Pitzer, R., Ramanujam, J., Sadayappan, P.: A high-level approach to synthesis of high-
performance codes for quantum chemistry. In: Proceedings of Supercomputing 2002. (2003)

10. Cociorva, D., Gao, X., Krishnan, S., Baumgartner, G., Lam, C., Sadayappan, P., Ramanujam,
J.: Global communication optimization for tensor contraction expressions under memory
constraints. In: 17th International Parallel & Distributed Processing Symposium (IPDPS).
(2003)

11. Cociorva, D., Baumgartner, G., Lam, C., Sadayappan, P., Ramanujam, J., Nooijen, M., Bern-
holdt, D., , Harrison, R.: Space-time trade-off optimization for a class of electronic structure
calculations. In: Proc. of ACM SIGPLAN PLDI 2002. (2002)

12. Cociorva, D., Wilkins, J., Baumgartner, G., Sadayappan, P., Ramanujam, J., Nooijen, M.,
Bernholdt, D., Harrison, R.: Towards automatic synthesis of high-performance codes for
electronic structure calculations: Data locality optimization. In: Proc. of the Intl. Conf. on
High Performance Computing. (2001)

13. Krishnan, S., Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam, C., Sadayappan, P.,
Ramanujam, J., Bernholdt, D., Choppella, V.: Data locality optimization for synthesis of
efficient out-of-core algoritms. In: Proc. of the Intl. Conf. on High Performance Computing.
(2003)

14. Krishnan, S., Krishnamoorthy, S., Baumgartner, G., Lam, C., Ramanujam, J., Choppella, V.,
Sadayappan, P.: Efficient synthesis of out-of-core algorithms using a nonlinear optimization
solver. In: Proc. of 18th Intl. Parallel & Distributed Processing Symposium (IPDPS). (2004)

15. High Performance Computational Chemistry Group: NWChem, A Computational Chem-
istry Package for Parallel Computers, Version 4.6. Pacific Northwest National Laboratory,
Richland, Washington 99352–0999, USA. (2004)

16. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: a portable programming model
for distributed memory computers. In: Supercomputing. (1994) 340–349

17. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: A nonuniform memory access
programming model for high-performance computers. The Journal of Supercomputing 10
(1996) 169–189

18. Nieplocha, J., Foster, I.: Disk resident arrays: An array-oriented I/O library for out-of-core
computations. In: Proceedings of the Sixth Symposium on the Frontiers of Massively Parallel
Computation, IEEE Computer Society Press (1996) 196–204

19. Eklundh, J.O.: A fast computer method for matrix transposing. IEEE Trans. on Computers
20 (1972) 801–803

20. Kaushik, S.D., Huang, C.H., Johnson, R.W., Sadayappan, P., Johnson, J.R.: Efficient trans-
position algorithms for large matrices. In: Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, ACM Press (1993) 656–665

21. Suh, J., Prasanna, V.K.: An efficient algorithm for out-of-core matrix transposition. IEEE
Trans. on Computers 51 (2002) 420–438

22. Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam, C., Sadayappan, P.: On efficient out-
of-core matrix transposition. Technical Report OSU-CIRSC-9/03-T52, School of Computer
and Information Science, The Ohio State University (2003)

23. Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam, C.C., Sadayappan, P.: Efficient
parallel out-of-core matrix transposition. In: Proceedings of the International Conference on
Cluster Computing, IEEE Computer Society Press (2003) to appear.

24. The Ohio Supercomputer Center. (http://www.osc.edu)

Autonomic Storage System Based on
Automatic Learning�

Francisco Hidrobo1 and Toni Cortes2

1 Universidad de Los Andes, Mérida 5101, Venezuela,
2 Universitat Politécnica de Catalunya, Barcelona 08034, Spain

hidrobo@ula.ve, toni@ac.upc.es

Abstract. In this paper, we present a system capable of improving the
I/O performance in an automatic way. This system is able to learn the
behavior of the applications running on top and find the best data place-
ment in the disk in order to improve the I/O performance. This system
is built by three independent modules. The first one is able to learn the
behavior of a workload in order to be able to reproduce its behavior later
on, without a new execution. The second module is a drive modeler that
is able to learn how a storage drive works taking it as a “black box”. Fi-
nally, the third module generates a set of placement alternatives and uses
the afore mentioned models to predict the performance each alternative
will achieve. We tested the system with five benchmarks and the system
was able to find better alternatives in most cases and improve the per-
formance significantly (up to 225%). Most important, the performance
predicted where always very accurate (less that 10% error).

1 Introduction

One of the main trends in the computing world is the increasing needs for I/O
capacity and performance shown by applications.

Many approaches to solve this problem have been proposed in the last decades.
One of the most promising consists of configuring the storage system and the
placement of data to maximize the storage-system performance for a specific
workload. In general, this approach consists of finding the optimal configuration
and data placement for the I/O system given a specific workload. Currently,
these optimizations are usually done by experts who use their experience and
intuition to make this configuration and placement. A tool that could perform
this tuning in an automatic way would be a great step in making this technique
available to a wider range of sites. Furthermore, this tool becomes even more
useful if the optimal configuration and placement varies throughout the time
making it more difficult to keep the right placement up to date.

� This work was supported in part by a grant from FONACIT (Venezuela) which is
gratefully acknowledged, by the Ministry of Science and Technology (Spain), and by
FEDER funds of the European Union under grants TIC2001-0995-C02-01.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 399–409, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

400 F. Hidrobo and T. Cortes

Our objective is to design a storage system capable of extracting all potential
performance and capacity available in a heterogeneous environment with as little
human interaction as possible. We envision the system as an advanced data-
placement mechanism that analyzes the workload to decide the best distribution
of data among all available devices, and the best placement within each device.

The aim of this paper is to present the global design of our proposal. This
design includes a disk model based on neural networks, an approach to model
the workload based on reduced traces and some sample strategies to generate
different placements.

2 Autonomic Storage System: A Global Picture

In order to place the work in the right context, we will first give a global descrip-
tion of how the whole system works, and then we will describe in detail each of
the parts that build it.

In the starting point, when the system is new, we have a set of disks attached
to the system. The first thing we have to do is to model them. This model should
have two main properties. First it should be able to predict the performance of
a given workload, without having to run it. Second, it should treat the disk as a
“black box”.

Once we have all disks modeled, and thus we can predict the performance
of any possible workload, we start learning the workload behavior. This step
mainly consists of tracing the requests done to the disk and keeping them in
file-system internal data structures.

Periodically, which could be once a day, once a week, or any other period de-
pending on the needs, the system uses the workload behavior learned to generate
different placement alternatives that may (or may not) improve the performance
of the applications running on the system. As these new placements cannot be
implemented and tested, we will use the disk models to predict the performance
each new placement would achieve.

After the performance of all proposed placements is predicted, we pick the
best one and compare it with the performance of the current workload (which
has been learned at the same time as the workload). If the new placement is
better that 10% the performance of the current one, then we take the effort
of moving the blocks to implement the new placement and thus improve the
performance of the applications using these disks.

It is also important to see, that whenever a new disk is added, it has to be
modeled and then it will be used by the generator of placement alternatives to
place blocks in it.

Once described the module as a whole, it is important to notice that the
objective of this paper is to test that all modules are possible and that the final
system works well. Our current version is not integrated in the file system, but
it is implemented as separated modules that work off-line, but placing them in
the kernel and running them on-line it is just an implementation problem that
lies as future work.

Autonomic Storage System Based on Automatic Learning 401

3 Disk Model

The main objective of this module, and also the main difference compared to
other approaches, is to design a model that has no previous knowledge about
the drive to model.

In our system, we propose a general model based on a mathematical function.
We assume that we can find a function (M) that approximates the service time
St for each request. Thus, our general model can be expressed by:

St ≈ M(R)

where: R is the input vector with components:
RAddr: address of the first-requested block,
RJump: difference (in blocks) between this request and the previous one.
RSize: request size.
St is the request service time.
Our experience has shown us that it is better to have one model for each

operation (Read and Write). Thus, we will use one model for each request type.
In [1], we studied different approaches using several applications and drives,

and we found that neural network are the best mechanism to model drives.
Neural Networks have a high capacity for function approximation, and this

is exactly our objective. We have tested a simple architecture based on feed-
forward network to resolve the function approximation problem because it has
been proved to be a simple and effective approach.

We use a feed-forward neural net with the following configuration: 3 neurons
in input layer, 25 neurons in the hidden layer, and one neuron in output layer
(service time). To resolve the problem, we use a Levenberg-Marquardt back-
propagation algorithm.

As we can see, this approach behaves as a “black box” and does not need
any previous knowledge about the device, it can learn the behavior by run-
ning a synthetic trace. This learning process was described in a previous
paper [1].

4 Workload Model

We focused the workload model on files because it allows us to focus the effort
toward the most important (i.e. used) files of the application to reduce the size
of the model and the complexity of the data-placement module.

Our file model is based on the segments accessed and their relationship.
We define a segment as a set of blocs requested in a single disk operation.
Please keep in mind that our model works at disk-drive level and thus segments
are not necessarily what users request, but what the operating system (or file
system) sends to the disk drive after being filtered by the buffer cache and some
possible reordenation done during the process. Thus, our file model stores, for
each segment, the following information:

402 F. Hidrobo and T. Cortes

– The first logical block requested. Using logical blocks makes our model in-
dependent of the physical location of the block.

– The total number of requests made to this direction. Used in order to keep
some information about the importance of different segments.

– Request type (read/write). This value is expressed as read probability.
– The average size of the requests made to this segment.
– The list of possible predecessor requests. This list contains information about

the requests that preceded it in the trace. Each entry in the list has:
• the file id. This field is used for two reasons. The first one is to identify

the physical location of the last accessed block. Second, it is used to find
relationships among different files.

• the last logical block of the previous request. This field is used to find the
number of blocks the disk has “jumped” from one request to the other.

• the number of times that this element preceded the request. This field
is used to know the percentage of times this sequence occurred.

As we can see, this model fulfills all our requirements. It can be generated
on-line because new requests can be added very easily. No physical information
is kept, and thus it is block-location independent. It does not keep any time
information and thus it is device independent. It does not grow unnecessarily but
it has enough information (even inter-file relationships) for the data placement
module to take decisions. Finally, building a trace with the information required
by the drive model previously described (initial block, R/W, jump and size of
the request) is trivial.

5 Prediction and Data Placement

This module implements its functionality through three independent steps: gen-
eration of placement alternatives, evaluation of the generated alternatives, and
application of the best placement found.

5.1 Generation of Placement Alternatives

In order to generate a placement, we first decide a logical order in which blocks
should be placed and then we decide in which disk blocks we map them. Finally,
we may refine the solution to take into account specific drive characteristics.

Logical Ordering. The main idea is to encourage spatial locality. This ap-
proach can reduce the seek distance and can increase the probability that the
disk read-ahead improves the general performance. We can follow two different
approaches:

a) Based on the Access Pattern. We use the access pattern represented in the
file model, to find the probabilistic access sequence. We can generate a directed
graph G(V, E), where the vertex set (V) represents the accessed blocks. The set
of edges (E) is defined as follows: Eij belongs to E if block i is acceded after
block j. Furthermore, each edge Eij has a weight (edge weight), which represents
the number of times that block j is preceded by i.

Autonomic Storage System Based on Automatic Learning 403

In order to generate the logical ordering, we eliminate edges, taking only the
edge that has the largest weight, until each node only has one input edge and
one output edge, except the first and the last one.

b) Based on Sequential Structure. We directly use the logical order of the
file regardless of the real accesses. This means that we use the pointers to data
blocks to make the list.

Physical Placement. Once we have the logical order, we need to find a spot
(or spots) in the disk to place them sequentially according to the logical order. To
do it, we have several alternatives regarding the sets of disk blocks we consider
to relocate the file. The three studied alternatives are presented here:

a. All disk blocks. It uses all disk blocks except those that contain metadata
such as superblock copies. This option may move blocks from other files.

b. File-used blocks. It uses all blocks used by the defined as important files.
c. File-used blocks plus free blocks.

Refinement: Special Drive Conditions. Depending on the drive type, it
may have some special conditions that could be taken into account to refine the
physical placement. In this work we have only tested one that deals with the
different density of disk zones.

Hot Blocks. If the disk has a faster area, we can try to place the most used
blocks in this area. We will divide the previous list in two sections. One, as big
as the fast zone, with the most used blocks. A second one, with the rest of the
file blocks. Both lists will be ordered as explained before. This refinement looses
locality, but gains bandwidth, a trade off that has to be evaluated. To simplify
things, we will only apply this refinement when all disk blocks are used.

5.2 Evaluation of Alternatives

For each proposed placement, the system generates a new allocation map and
takes the file model for each “important” file to create an estimate trace for
these files. Then, the disk model is used to predict the performance.

5.3 Application of the Proposed Placement

Here, the module applies the placement proposed by the “winning alternative”.
In order to take some action we demanded that the placement improves the
performance, at least, 10%. We decided to use 10% as threshold, because smaller
gains may not be enough for the trouble of data movement and because our
predictions have a potential error of up to 10%.

6 Experiments and Results

In this section, we are going to show how our global system works. In order to
show it, we are going to use different workloads and to run the workload in a

404 F. Hidrobo and T. Cortes

file system artificially aged according to [2] (We also executed the tests in a new
file system; but for space reasons will not be presented).

6.1 Workloads

Synthetic Benchmarks

1. SSA: Simple Sequential Access. The application reads one file sequentially.
In each read it requests 64KB. It will show us the behavior in the simplest
case: accessing a single file (but no necessarily using regular intervals).

2. FSA: Fixed Stride Access. In this case, we used more complex pattern access
than sequential. It uses a stride of 512KB and reads 8KB in each requests.

3. MSA: Multiple Sequential Access. Here, the application reads simultaneous
three files. It requests a segment of the first file, then a segment of second one
and a segment of third file. In each read it requests 64KB. These operations
are repeated until reading the files completely. It will allow us to observe what
happens when several files are involved, but with a reproducible behavior.

The inter-arrival time was uniformly distributed (0 and 100 ms) in all case.
The files used were 300Mbytes each and we called them: file1, file2 and file3.

Sequence of Access to WEB Pages. In this case, we took a personal WEB
page generated by a standard tool. This information is organized in many direc-
tories and files. In the test, we accessed a sequence of pages, where each requested
page implied the access to a set of related files, which are normally small in size.
Therefore, in this application the interrelation between files is more important
that the access pattern within each file.

TPC-H Benchmark. Finally, we have tested the TPC-H benchmark, which is
a decision support benchmark for Databases. We created a database of 1 Gbytes
and used Postgres SQL 7.2.1 for LINUX. We ran all queries, except queries
number 7, 9, 20 and 21 because these queries contain functions not supported
by our database manager system.

6.2 Results

Following the procedure described in the section 5.1, we created 10 possible
placements for each list of important files. Table 1 presents all possible combi-
nations and the names we have given them.

Table 1. Possible placements implemented

Based on Based on
Access Pattern Sequential Structure
APAD SSAD

Hot blocks
All disk blocks (all file blocks fit) APAD HF SSAD HF

Hot blocks
(not all file blocks fit) APAD HNF SSAD HNF

Used blocks APUB SSUB
Used+free blocks APUF SSUF

Autonomic Storage System Based on Automatic Learning 405

Synthetic Workload on an Aged File System. If we apply the SSAD place-
ment alternative for the SSA benchmark created on an aged file system, we could
improve the performance in 44.5% as Figure 1 shows. In this experiment it is
important to observe that, although the access pattern should be sequential,
APAD does not achieve as good performance as SSAD. The reason behind this
unexpected behavior, is that some requests were reordered when the access pat-
tern was learned, but the real access is sequential. If more repetitions had been
done to learn the pattern, as will probably be in a real system, this reordenation
will only appear in the pattern if they occur very frequently and not just once.

For the FSA benchmark, Figure 2, the improvement could reach up to 225%
with APAD placement.

Fig. 1. SSA on on file system aged Fig. 2. FSA on file system aged

With regard to MSA benchmark, Figure 3 shows that the best placement,
APAD, could improvement the performance over 100% for three files.

When we applied the winning placement and measured the real performance
(Figure 4), we can observe that the relative errors were again very small, but for
file1 of MSA where the relative error is over 100%, which makes the global error
for the MSAA benchmark grow unexpectedly.

The problem in MSA benchmark is that the buffer cache policies generate a
different behavior when the blocks are remapped. Therefore, the access pattern
learned and used to make the prediction is very different from the one obtained
once the new placement has been applied. To prove this fact, we executed MSA
benchmark turning off the read-ahead mechanism in the buffer cache. In this new
experiment, the relative error was, once again, below 10% for all files. Obviously,
the proposal is not to eliminate the read-ahead in the buffer cache to obtain
reliable results; rather the idea is to develop a integrated approach between our
system and the file system to guarantee that such changes of behavior will not
be produced or will be taken into account by the prediction system.

406 F. Hidrobo and T. Cortes

Fig. 3. MSA on file system aged Fig. 4. Best placement (Relative error)

Fig. 5. Sequence of access to WEB pages Fig. 6. Runtime reduction for TPC-H

Sequence of Access to Pages WEB on a File System Aged. As we can see
in figure 5, the values show us that the alternatives based on the access pattern
could improve the performance near to 100%. The reason for this behavior is
that file were spread throughout all the disk while they need to be close.

TPC-H on a File System Aged. The best placement alternative for the
TPC-H on an aged file system is SSAD, and could improve the performance in
142% for access to partsupp table, 73 % for order table, 32% for lineitem table
and 39% if we take all tables together.

To give a final idea of the potential improvements, we computed the real run-
time improvement for each query and then all queries together. Figure 6 shows
the runtime (in seconds) obtained for each query with the original placement
and when the placement SSAD was applied. The global reduction is 14.64%.

In a real system, we would not first learn the behavior, then move data, and
finally reexecute the application. The normal behavior is that we learn during
some time, move the data, and then continue the execution (not repeating exactly

Autonomic Storage System Based on Automatic Learning 407

what we learned). To test how our system would behave in such an environment
we tested WEB and TPC-H benchmarks. In the first case we learned from one
sequence of pages (one possible session) and tested with a different one (another
session by another user). In the TPC-H we learned from half of the queries and
tested the other half.

The results showed that the performance improvement obtained with the
new placements and the “not learned” part of application were similar to the
ones presented in the previous sections. This means that the system is able to
do accurate predictions and it can be used for autonomic computing.

7 Related Work

The first kind of storage-drive models we find in the bibliography are based on
simulation techniques. In this group we found specially interesting the proposals
done by Ruemmler and Wilkes [3] and the one done by Ganger et al. [4, 5].
Another possibility is the usage of analytical models where the input is not a
trace (as in the previous group), but a characterization of the load [6] Both,
simulations and analytical models need prior knowledge of the disks, which is
not always easy to find, while our neural network approach does not. Finally,
there is also another group of proposals that treat the drive as a “black box”
and learn the behavior after a training period [7, 8] but they either need huge
data strutres or work at a very high level (not request level as we need).

With regard to application model, some works have been proposed in charac-
terizations and modeling of I/O access pattern [9–14]. Most of these studies were
made at the file system level. Gómez and Santonja [15] developed an approach to
analyze and model disk access pattern but cannot be learned and used on-line.
In some aspect our workload model is similar to the presented by Madhyastha
and Reed in [16], and by Oly in [17]. They used Hidden Markov Model (HMM)
for classification and prediction of I/O access patterns. Basically, They use the
model to predict the next action for the file system or to propose an allocation
strategy according to the access pattern classification.

Finally, some work has been done on block replacement to improve I/O per-
formance [18, 19], but are not integrated in an autonomic system as ours.

Regarding our global system, there are some tools similar to our system such
as MINERVA [20] and Hippodrome [21] development in the HP Laboratories.
However, they target their work to the configuration of RAID systems.

8 Conclusions

In this paper, we have presented an autonomic storage system based on au-
tomatic learning of previous behavior. This system uses a modular design to
explore different placement possibilities and decides which one is better and
whether the new placement is worth the effort of making the changes.

408 F. Hidrobo and T. Cortes

In addition, to achieve the autonomic storage system, we have proposed novel
mechanisms to model disks and applications that may be of use to the research
community in different environments.

The tests done showed that the performance prediction is reliable. Further-
more, we have also shown that this prediction can be used to improve the per-
formance significantly when the data is not correctly placed.

References

1. Hidrobo, F., Cortes, T.: Towards a Zero-Knowledge Model for Disk Drives. In:
Proceedings of the AMS, Seattle, WA, USA, IEEE Computer Society Press (2003)

2. Smith, K.A., Seltzer, M.I.: File System Aging Increasing the Relevance of File
System Benchmark . In: Proceedings of SIGMETRICS. (1997)

3. Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling. IEEE Computer
27 (1994) 17–28

4. Ganger, G., Worthington, B., Patt, Y.: The DiskSim Simulation Environment
(Version 2.0). http://www.ece.cmu.edu/~ganger/disksim/ (2004)

5. Schindler, J., Ganger, G.R.: Automated Disk Drive Characterization. In: Proceed-
ings of SIGMETRICS, Santa Clara, CA, USA, ACM Press (2000) 112–113

6. Shriver, E., Merchant, A., Wilkes, J.: An analytic behavior model for disk drives
with readahead caches and requests reordering. In: SIGMETRICS, Madison, Wis-
consin, USA, ACM Press (1998) 182–191

7. Thornock, N.C., Tu, X.H., kelly Flanagan, J.: A STOCHASTIC DISK I/O SIM-
ULATION TECHNIQUE. In: Proceedings of Winter Simulation Conference, At-
lanta, GA, USA, ACM Press (1997) 1079–1086

8. Anderson, E.: Simple table-based modeling of storage devices. Technical Report
HPL-SSP-2001-04, HP Laboratories (2001) http://www.hpl.hp.com/SSP/papers/.

9. Kotz, D., Nieuwejaar, N.: Dynamic File-Access Characteristics of a Production
Parallel Scientific Workload. In: Proceedings of Supercomputing, Washington,
DC, USA, IEEE Computer Society Press (1994) 640–649

10. Kroeger, T.M., Long, D.D.: The Case for Efficient File Access Pattern Modeling.
In: Proceedings of HotOS, AZ, USA, IEEE Computer Society (1999) 14–19

11. Ware, P.P., Jr., T.W.P., Nelson, B.L.: Modeling File-system Input Traces via
a Two-level Arrival Process. In: Proceedings of the 28th Conference on Winter
Simulation, Coronado, California, United States, ACM Press (1996) 1230–1237

12. Ware, P.P., Thomas W. Page, J.: Automatic Modeling of File System Workloads
Using Two-Level Arrival Processes. ACM TOMACS 8 (1998) 305–330

13. Ruemmler, C., Wilkes, J.: UNIX Disk Access Patterns. In: Proceedings of Winter
USENIX Conference, San Diego, CA, USA (1993) 405–420

14. Ganger, G.R.: Generating Representative Synthetic Workloads. An Unsolved Prob-
lem. In: Proceedings of 21st International Computer Measurement Group Confer-
ence, Nashville, TN, USA, Computer Measurement Group (1995) 1263–1269

15. Gómez, M.E., Santoja, V.: A new approach in the analysis and modeling of disk
access pattern. In: Proceedings of ISPASS, Austin, Texas, IEEE Press (2000)

16. Madhyastha, T., Reed, D.: Input/Output Access Pattern Classification Using
Hidden Markov Models. In: IOPADS, San Jose, CA, USA, ACM Press (1997)

17. Oly, J.: Markov Model Prediction of I/O requests for Scientific Applications. Mas-
ter’s project, University of Illinois at Urbana-Champaign (2000)

Autonomic Storage System Based on Automatic Learning 409

18. Vongsathorn, P., Carson, S.: A system for adaptive disk rearrangement. Software
- Practice and Experience 20 (1990) 225–242

19. Akyürek, S., Salem, K.: Adaptive Block Rearrangement. ACM TOCS 13 (1995)
89–121

20. Alvarez, G., Borowsky, E., Go, S., Romer, T., Becker-Szendy, R., Golding, R.,
Merchant, A., Spasojevic, M., Veitch, A., Wilkes, J.: MINERVA: an automated
resource provisioning tool for large-scale storage systems. TOCS 19 (2001) 483

21. Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., Veitch, A.: Hippo-
drome: running circles around storage administration. In: Proceedings of FAST,
Monterey, CA, USA, USENIX, Berkeley, CA. (2002) 175–188

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 410–419, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Broadcast Based Cache Invalidation and
Prefetching in Mobile Environment

Narottam Chand, Ramesh Joshi, and Manoj Misra

Electronics and Computer Engineering Department,
Indian Institute of Technology,

Roorkee – 247 667, India
{narotdec, joshifcc, manojfec}@iitr.ernet.in

Abstract. Caching at mobile client is an important technique for improving the
performance in wireless data dissemination. It can reduce the number of uplink
requests, server load, query latency and can increase the data availability.
Battery energy and limited bandwidth are two major constraints imposing
challenges to the realization of caching at mobile clients. A cache invalidation
strategy ensures that the data items cached in a mobile client are consistent with
those stored on the server. In our invalidation scheme, to minimize uplink
requests, all recently updated or requested items are broadcast immediately
following the invalidation report. To further improve the caching performance,
prefetching is used. Three update report strategies are presented to reduce
average access time and minimize the client energy for cache invalidation.
Simulation experiments show that the LCF strategy dramatically improves the
average access time for mobile clients, reduces the number of uplink requests
and conserves the client energy.

1 Introduction

Users of mobile devices wish to access dynamic data, such as stock quotes, news
items, current traffic conditions, weather reports, email and video clips via wireless
networks. Caching at mobile client can relieve bandwidth constraints imposed on
wireless and mobile computing. Copies of remote data can be kept in the local mem-
ory of the mobile client to substantially reduce user requests for retrieval of data from
origin server. This not only reduces the uplink and downlink bandwidth consumption
but also the average query latency. Caching frequently accessed data in mobile client
can also save the energy used to retrieve the repeatedly requested data at client side.
A cache invalidation strategy is used to ensure that the data items cached in a mobile
client are consistent with those stored on the server.

Barbara and Imielinski [14] provide a caching solution where the server periodi-
cally broadcasts an invalidation report (IR) in which the changed data items are indi-
cated. An IR based strategy has long query latency and it makes poor utilization of
available wireless bandwidth. To minimize uplink requests and downlink broadcasts,

Broadcast Based Cache Invalidation and Prefetching in Mobile Environment 411

we propose a broadcast strategy, called update report (UR), where all the recently
updated or requested items are broadcast immediately after the invalidation report
(IR).

One important issue in broadcast strategies is to determine an optimal broadcast
schedule i.e. the order in which items are transmitted. This paper presents broadcast
based invalidation techniques that are favorable in terms of access time and tuning
time. The objective is to provide an efficient and effective update report, so that mo-
bile clients can validate their cache and download updated or requested data from the
broadcast channel with minimum of energy expenditure such that average access time
associated with each data item is minimized. To further improve the caching per-
formance, prefetching at mobile clients is used.

The rest of the paper is organized as follows. Section 2 gives a description of the
related work. Section 3 presents the caching model and preliminaries. In section 4, we
present the update report based caching scheme. In section 5, we describe simulation
experiments for establishing the performance of our methods. Conclusion is given in
section 6.

2 Related Work

The caching in mobile environment is complicated by the fact that the caches need to be
kept consistent. A number of broadcast based cache invalidation strategies have been
proposed for mobile environments. Barbara and Imielinski [14] provided three cache
invalidation schemes, namely Broadcasting Timestamps (TS), Amnesic Terminals (AT)
and Signatures (SIG), which use different invalidation reports for a stateless server. Jing
et al. [10] proposed a Bit-Sequence (BS) scheme that uses a hierarchical structure of
binary bit sequences with an associated set of timestamps to represent clients with dif-
ferent disconnection times. Tan [7] reexamined the BS method and studied different
organizations of the invalidation report. These new organizations facilitate clients to
selectively tune to the portion of the report that are of interest to them. Hue et al. [12]
proposed a scheme to reduce the false invalidation rates based on BS reports. Wu et al.
[6] proposed a scheme which modifies the TS or AT algorithms to include cache valid-
ity checks after reconnection. Hu and Lee [3] have proposed a family of invalidation
algorithms. The essence of these algorithms is that the type of invalidation report to be
sent is determined dynamically based on system status such as disconnection frequency
and duration as well as update and query pattern. G. Cao in [4], [5] addresses the prob-
lem of long query latency with a UIR based approach. In this approach, a small fraction
of the essential information (called updated invalidation report (UIR)) related to cache
invalidation is replicated several times within an IR interval, and hence the client can
answer a query without waiting until next IR. However, if there is a cache miss, the
client still needs to wait for the data to be delivered. In [1], [15], author addresses vari-
ous problems associated with the IR based cache invalidation strategies. To improve the
query latency and cache hit ratio, clients intelligently prefetch the data that are most
likely used in the future. Kahol et al. [2], [9] present an asynchronous stateful (AS)
scheme to maintain cache consistency. Each mobile client maintains its own Home
Location Cache (HLC) to deal with the problem of disconnections. Yuen et al. [8]

N. Chand, R. Joshi, and M. Misra 412

proposed a cache invalidation scheme based on absolute validity interval (AVI) for each
data item. Although a number of broadcasting algorithms that aim to minimize the ac-
cess time for data items [20], [21], [22] have been proposed, but most of them are only
based on access frequency of data items and do not take into consideration the clients
who have cached the data items. In our broadcast based caching strategies, data items
cached by different clients are also considered while selecting the contents and schedule
of broadcast.

3 Background and Preliminaries

This section describes our caching model and some of the preliminaries.

3.1 Caching Model in Mobile Environment

A mobile computing environment consists of two distinct sets of entities: Mobile
Hosts (MHs) and Fixed Hosts (FHs). Some of the fixed hosts called Mobile Support
Stations (MSSs), are augmented with a wireless interface in order to communicate
with the mobile hosts, which are located within a radio coverage called a cell. Each
MSS stores a complete copy of the database and hence acts like a database server.
Henceforth, we use the terms MSS and server interchangeably. An MH communi-
cates with a server over a wireless communication link. The wireless channel is
logically separated into two sub-channels: downlink and uplink channel [17]. The
communication is asymmetric (i.e. the uplink bandwidth is much less than that of
downlink).

It is assumed that the database is updated only by the server. The servers them-
selves form a wired distributed system in which a fully replicated database resides.
The database comprises a set D of N data items, d1, d2, ..., dN. An important property
of data items is that their values can be highly dynamic as they are used to maintain
some real-world information e.g., a news update. Each item dj is of same size Sdata (in
bits). As the wireless communication within a cell is independent of other cells,
henceforth we concentrate on a single cell. Inside a cell, there are M mobile hosts,
MH1, MH2, ..., MHM.

An application program runs on the mobile host as a client process and communi-
cates with the server through message, i.e., the client sends an uplink request (query)
for the data it needs to the server and the server responds by sending the requested
data on the downlink [2]. In order to minimize the number of uplink requests, the
client caches a portion of the database in its local nonvolatile memory. To ensure
cache consistency, each server periodically broadcasts update reports. All active cli-
ents listen to the reports and invalidate their cache contents accordingly.

3.2 Definitions

Following are some definitions and notations that are used during further discussion:

Access Time (AT). It indicates the time elapsed between the query submission and
receipt of the response. We denote ATi as the access time associated with data item di.

Broadcast Based Cache Invalidation and Prefetching in Mobile Environment 413

Tuning Time (TT). It indicates the total time that a mobile client spends actively listening
to the channel in a complete access period. TT determines the energy consumption of
MHs because they could slip into doze mode when they are not actively listening on the
channel. As mobile clients have limited battery energy, the reduction of TT is an impor-
tant issue in data broadcast technology [18], [23].

Di. Actual data of an item with id di.
r
it . The latest request time of item di. It represents the most recent time when di has

been requested by a client.
ni. The number of mobile clients who have cached the data item di.
TATi. The total access time of data item di indicates the sum of access times for di by
different clients. If ni is the number of clients who have cached the item di, then TATi

= ni.ATi. We need to concentrate on the order of data items in one broadcast interval,
so as to minimize = iTATTAT . TAT gives a measure of total access time experi-

enced by all the MHs in one broadcast cycle.
AAT. The average access time to download the actual data for an item from the UR.

=
i

n
TATAAT

.

4 Update Report (UR) Based Caching

To reduce the number of uplink requests and downlink broadcasts, we introduce the
concept of update report (UR). URs are broadcast synchronously with period L. The
structure of a UR is shown in Fig. 1.

IR INDEX DATA

Fig. 1. Structure of a UR

At interval Ti:
IRi = {(dx, tx)|(dx∈D)∧(nx > 0)∧(Ti - w.L < tx ≤ Ti)}

INDEXi = {dx|((Ti -1 < tx ≤ Ti) ∧(nx>0))∨(Ti –1 < r
it ≤ Ti)}

DATAi = {Dx|dx∈INDEXi}

INDEXi defines the order in which data appears in DATAi. IRi contains the update
history of past w broadcast intervals, whereas DATAi contains actual data value for
the items which have been updated or requested during the previous IR interval. UR
can handle the broadcast of variable size items by including size of each item as part
of INDEX, i.e., INDEX = {(dx, lx)}, where lx is the size (bytes) of item dx. Supporting
variable size data, increases the size of INDEX and hence the client tuning time.

N. Chand, R. Joshi, and M. Misra 414

4.1 Broadcast UR to Utilize Bandwidth

In most IR based algorithms [2], [3], [6], [7], [8], [10], [11], [13], [14], [16], [19],
updating a cached item, may generate many uplink requests and downlink broadcasts,
and thus make poor utilization of available wireless bandwidth. Similar to [1], [4],
[5], [15], [23], we address the problem by asking the server to broadcast all the re-
cently updated/requested data items which are cached by one or more clients. If a
client observes that the server is broadcasting an item which is an invalid entry in its
local cache, it will download the item, thus, saving on uplink and downlink band-
width.

4.2 Saving Energy

Clients may wake up during the UR broadcast time and selectively tune-in to the
channel to save energy. After broadcasting IR, the server broadcasts INDEX followed
by actual data. Every client listens to the IR if not disconnected. At the end of IR, the
client downloads INDEX and locates the interesting item that will come, and listens
to the channel at that time to download the data. This strategy saves energy since the
client selectively tunes to the channel and can stay in doze mode most of time.

4.3 Scheduling Algorithms

Given various data items with their cache count, problem is to decide in what se-
quence to schedule the updated/requested items in INDEX, which are cached by one
or more clients, so as to minimize the average access time and tuning time to
download the actual data broadcast in DATA. Formally the problem may be stated as:

The Input: The data items di, i=1, 2, ..., N, are defined by their cache counts ni.

The Schedule: A schedule INDEX of di(1), di(2), ..., di(n) is a finite sequence ds(1), ds(2), ...,
where 1≤s(i)≤n, ni(r)>0, r=1, 2, ..., n. Here, n is the total number of items, cached by
one or more clients and have been updated/requested in the recent interval. Schedule
defines the order in which actual data for recently updated/requested items is to be
broadcast.

Objective Function: We are interested in minimizing the metrics AAT and TT.
Now we present three scheduling strategies to broadcast update reports.

Increasing Order of Items id (IOI) Strategy. In this strategy, the server chooses n
data items to be broadcast in the increasing order of their item id i.e. if di and di+1 are
to be broadcast then di is scheduled before di+1. Algorithm 1 shows the detailed steps.

Algorithm 1 (IOI)

for each recently updated/requested data item di with ni>0
Item[di].priority=N-di;
select data items in decreasing order of priority from Item[];
add these items into INDEX to prepare update report;

Broadcast Based Cache Invalidation and Prefetching in Mobile Environment 415

Broadcast by Random Order (BRO) Strategy. In this strategy, each data item to be
broadcast is assigned unique random priority and items are scheduled in decreasing
order of priority. Algorithm 2 describes this scheduling strategy.

Largest Count First (LCF) Strategy. This strategy schedules the recently
updated/requested items according to their cache count. The data for an item with
higher count is broadcast earlier than for an item with lower count. Ties are resolved
by scheduling an item with lower id earlier. Details are shown in Algorithm 3.

An example. We explain an example to demonstrate the above scheduling strategies.
Consider 10 items to be broadcast due to invalidation during a particular UR interval
as shown in Table 1. For the understanding purpose, we consider ATi as the time
elapsed from the start of DATA broadcast in UR to the time when Di has been
downloaded. It is assumed that it takes a unit time to download actual data for an
item.

Table 1. An example

IOI BRO LCF Item di Count ni ATi
INDEX TATi INDEX TATi INDEX TATi

2 5 1 2 5 9 12 23 25
5 2 2 5 4 7 2 30 32
6 1 3 6 3 21 18 9 36
7 1 4 7 4 23 100 41 36
9 12 5 9 60 5 10 21 30

21 6 6 21 36 2 30 2 30
23 25 7 23 175 41 63 5 14
24 2 8 24 16 6 8 24 16
30 16 9 30 144 30 144 6 9
41 9 10 41 90 24 20 7 10

Total 79 537 407 238

AAT (IOI) = 6.79, AAT (BRO) = 5.15, AAT (LCF) = 3.01

Algorithm 2 (BRO)

for each recently updated/requested data item di with ni>0
 Item[di].priority=unique random value not assigned earlier to any item;
select data items in decreasing order of priority from Item[];
 add these items into INDEX to prepare update report;

Algorithm 3 (LCF)

for each recently updated/requested data item di with ni>0
 Item[di].priority=ni;
select data items in decreasing order of priority from Item[];
 add these items into INDEX to prepare update report;

N. Chand, R. Joshi, and M. Misra 416

4.4 Prefetching

In mobile environment, data item requested by one client is available for all other
clients in the cell, thus prefetching such data item into the cache may improve cache
hit ratio and reduce further access latency [24], [25]. However, prefetching the data
items may result in the replacement of some recently accessed useful data items thus
degrading cache performance. We use a prefetching scheme where the items are pre-
ferred for prefetching based on high access probability. A client takes the decision to
prefetch a hot (most frequently) item if either it has sufficient empty space or there is
an item in the cache that has not been used for a time period longer than some thresh-
old (α). Thus, LRU with time threshold is used as replacement policy to evict an item
from the cache and replace it with the item being prefetched. As the proposed UR
strategy broadcasts items in nonincreasing order of hotness, a client willing to
prefetch k hottest items may download first k items from the broadcast.

In the broadcast based prefetching, the mobile client does not send uplink request, thus
reducing the burden on the server while improving cache performance at the mobile client
and utilization of scarce wireless bandwidth. With a proper selection of time threshold (α),
a performance trade off between energy consumption and access latency may be main-
tained. Simulation experiments show an improvement in hit ratio due to prefetching.

5 Performance Evaluation

We have performed simulation to evaluate the performance of the proposed schemes.
Table 2 shows most of the system parameters. The simulation model consists of a
single server per cell serving multiple clients. The database can only be updated by
the server, while the queries are generated by the clients following an exponential
distribution. The mean inter-arrival time of queries generated by all clients is Tq. The
inter-arrival time of updates at the server is distributed exponentially with a mean of
Tu. The server periodically broadcasts update reports (UR) every L seconds. The IR
field of UR report covers a broadcast window of w broadcast intervals.

In the experiment, we study the average access time (AAT) of the three proposed
scheduling strategies for UR broadcasting under different update arrival times. The
results are shown in Fig. 2. The AAT falls with the increase of update time as the
number of invalidations decreases, hence requiring less downloads. LCF algorithm

Table 2. Simulation parameters

Parameter Value Parameter Value
Server database size (N) 1000 items UIR replicate times (m-1) 4

Item size (Sdata) 4096 bits Broadcast window (w) 10 L

Client cache size (C) 30 items Mean query generate time (Tq) 2 sec

Maximum clients per cell (M) 30 Mean update arrival time (Tu) 1 - 10000 sec

Item id size (Sid) 32 bits Uplink bandwidth (Bup) 19.2 Kbps

Timestamp size (Tdata) 32 bits Downlink bandwidth (Bdown) 100 Kbps

Broadcast interval (L) 20 sec Time threshold (α) 30 sec

Broadcast Based Cache Invalidation and Prefetching in Mobile Environment 417

outperforms the IOI and BRO algorithms because an item with higher cache count is
given priority so that most of the client requests are satisfied earlier, thus reducing the
AAT. The LCF scheduling is orthogonal to other IR based methods, it can be used in
conjunction with any caching schemes where the server aggregates data requests from
all its clients and broadcasts the requested data after each IR. We demonstrate the
effectiveness of LCF in combination with the UIR scheme [1]. Fig. 3 shows that
UIR+LCF scheme reduces the query delay.

To evaluate the effectiveness of UR strategy to bandwidth utilization and conserve
client energy, we study the effect of update arrival time over number of uplink requests
and tuning time, and compare the results with TS based invalidation strategy. In Fig. 4,
the mean number of uplink requests per 100 queries is plotted against the mean update
arrival time. At low update arrival time (i.e. high update rate), the number of uplinks is
higher because more items are invalidated. The UR scheme performs better than TS
scheme as in UR, most of the uplink requests are generated because of cache miss
whereas in TS both the cache miss and invalidation cause the uplink requests.

As shown in Fig. 5, the UR scheme which uses selective tuning, performs better
under all update rates than TS scheme, and thus, conserves the client energy. Fig. 6
shows how prefetching improves the cache hit ratio.

Mean update arrival time (sec)

1 10 100 1000 10000

A
ve

ra
ge

 a
cc

es
s

ti
m

e
(s

ec
)

0

1

2

3

4

IOI strategy
BRO strategy
LCF strategy

Mean update arrival time (sec)

1 10 100 1000 10000

Q
ue

ry
 d

el
ay

 (
se

c)

0

2

4

6

8

10

12

14

16

18

20

TS scheme
UIR scheme
UIR+LCF scheme

Fig. 2. Average access time as a function Fig. 3. Query delay as a function of mean
of mean update arrival time update arrival time

Mean update arrival time (sec)

1 10 100 1000 10000

N
um

be
r

of
 u

pl
in

k
re

qu
es

ts
 p

er
 1

00
 q

ue
ri

es

75

80

85

90

95

100

TS scheme
Our scheme

Mean update arrival time (sec)

1 10 100 1000 10000

T
un

in
g

ti
m

e
pe

r
ac

ce
ss

 (
se

c)

2

4

6

8

10

12

14

16

18

20

TS scheme
Our scheme

Fig. 4. Uplink requests as a function of mean Fig. 5. Tuning time as a function of mean
update arrival time update arrival time

N. Chand, R. Joshi, and M. Misra 418

Mean update arrival time (sec)

1 10 100 1000 10000

H
it

 r
at

io

0.0

0.2

0.4

0.6

0.8
TS scheme
Our (without prefetch) scheme
Our (with prefetch) scheme

Fig. 6. Cache hit ratio as a function of mean update arrival time

6 Conclusions

This paper considers the cache invalidation and broadcasting in integration and stud-
ies the problem of scheduling update reports. Three scheduling schemes have been
studied and it has been shown that LCF performs better than IOI and BRO. Simula-
tion results show that a UR based caching strategy along with prefetching performs
better than an IR based strategy in terms of average access time, number of uplink
requests, tuning time and cache hit. Future work is to investigate the effect of client
disconnection and mobility on UR based caching strategies.

References

1. Cao, G.: On Improving the Performance of Cache Invalidation in Mobile Environments.
ACM/Kluwer Mobile Network and Applications, 7(4). (2002) 291-303.

2. Kahol, A., Khurana, S., Gupta, S.K.S., Srimani, P.K.: A Strategy to Manage Cache
Consistency in a Disconnected Distributed Environment. IEEE Transaction on Parallel
and Distributed Systems, 12(7). (2001) 686-700.

3. Hu, Q., Lee, D.K.: Cache Algorithms Based on Adaptive Invalidation Reports for Mobile
Environments. Cluster Computing, 1(1). (1998) 39-50.

4. Cao, G.: A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.
ACM International Conference on Computing and Networking (Mobicom), (2001) 200-
209.

5. Cao, G.: Proactive Power-Aware Cache Management for Mobile Computing Systems.
IEEE Transactions on Computers, Vol. 51, No. 6 (2002) 608-621.

6. Wu, K.L., Yu, P.S., Chen, M.S.: Energy-Efficient Mobile Cache Invalidation. Distributed
and Parallel Databases, Kluwer Academic Publishers, Vol. 6. (1998) 351-372.

7. Tan, K.L.: Organisation of Invalidation Reports for Energy-Efficient Cache Invalidation
in Mobile Environments. Mobile Networks and Applications, 6 (2001) 279-290.

8. Yuen, J.C., Chan, E., Lam, K., Lueng, H.W.: Cache Invalidation Scheme for Mobile
Computing Systems with Real-Time Data. SIGMOD, (2000) 34-39.

9. Kahol, A., Khurana, S., Gupta, S., Srimani, P.: An Efficient Cache Maintenance Scheme
for Mobile Environment. 20th Int. Conf. on Distributed Computing Systems, (2000) 530-
537.

Broadcast Based Cache Invalidation and Prefetching in Mobile Environment 419

10. Jing, J., Elmagarmid, A., Helal, A., Alonso, R.: Bit-Sequences: An Adaptive Cache In-
validation Method in Mobile Client/Server Environments. Mobile Networks and Applica-
tions (1997) 115-127.

11. Yao, J.F., Dunham, M.H.: Caching Management of Mobile DBMS. Journal of Integrated
Computer-Aided Engineering, Vol. 8, No. 2 (2001).

12. Hou, W.C., Su, M., Zhang, H., Wang, H.: An Optimal Construction of Invalidation
Reports for Mobile Databases. In Proceedings of CIKM, (2001) 458-465.

13. Nam, S.H., Chung, Y., Cho, S.H., Hwang, C.S.: Asynchronous Cache Invalidation Strat-
egy to Support Read-Only Transactions in Mobile Environments. IEICE Trans. Inf. and
Syst. Vol. E85-D, No. 2 (2002).

14. Barbara, D., Imielinski, T.: Sleepers and Workaholics: Caching Strategies in Mobile
Environments. Proceedings of the ACM SIGMOD Conference on Management of Data,
(1994) 1-12.

15. Cao, G.: A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.
IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 5 (2003) 1251-
1265.

16. Lee, S.K.: Caching and Concurrency Control in a Wireless Mobile Computing Environ-
ment. IEICE Trans. Inf. and Syst. Vol. E85-D, No. 8 (2002).

17. Fong, C.C.F., Lui, J.C.S., Wong, M.H.: Distributed Caching and Broadcast in a Wireless
Mobile Computing Environment. The Computer Journal, Vol. 42, No. 6 (1999) 455-472.

18. Cai, J., Tan, K.L.: Energy-Efficient Selective Cache Invalidation. Wireless Networks,
(1999) 489-502.

19. Tan, K.L., Cai, J., Ooi, B.C.: An Evaluation of Cache Invalidation Strategies in Wireless
Environments. IEEE Transactions on Parallel and Distributed Systems, Vol. 12, No. 8
(2001).

20. Sun, W., Shi, W., Shi, B.: A Cost-Efficient Scheduling Algorithm of On-Demand Broad-
casts. Kluwer Wireless Networks, No. 9 (2003) 239-247.

21. Chen, C., Lee, C., Ke, C.: Compression-based Broadcast Strategies in Wireless Informa-
tion Systems. In Proceedings of the AINA, (2003) 13-18.

22. Kenyon, C., Schabanel, N.: The Data Broadcast Problem with Non-Uniform Transmission
Times. Algorithmica, (2003) 146-175.

23. Lai, K.Y., Tari, Z., Bertok, P.: Cost Efficient Broadcast Based Cache Invalidation for
Mobile Environments. SAC, (2003) 871-877.

24. Shen, H., Kumar, M., Das, S., Wang, Z.: Energy-Efficient Data Caching and Prefetching
of Mobile Devices Based on Utility. ACM/Kluwer Journal of Mobile Networks and
Applications (MONET), Special Issue on Mobile Services.

25. Yin, L., Cao, G.: Adaptive Power-Aware Prefetch in Wireless Networks. IEEE Transac-
tions on Wireless Communication (to appear).

Efficient Algorithm for Energy Efficient
Broadcasting in Linear Radio Networks

Gautam K. Das, Sandip Das, and Subhas C. Nandy

Indian Statistical Institute, Kolkata - 700 108, India

Abstract. Given a set S of n radio-stations located on a d-dimensional
space, a source node s(∈ S) and an integer h (1 ≤ h ≤ |S| − 1), the
h-hop broadcast range assignment problem deals with finding the range
assignments for the members in S so that s can communicate with all
other members in S in at most h-hops, and the total power consumption
is minimum. The problem is known to be NP-hard for d ≥ 2. We propose
an O(n2) time algorithm for the one dimensional version (d = 1) of the
problem. This is an improvement over the existing results on this problem
by a factor of h [5].

1 Introduction

While designing radio network, several interesting and difficult problems arise
due to the shared nature of wireless medium, limited transmission power (range)
of wireless devices, node mobility, and battery limitations. Here we consider the
problem of assigning transmission ranges to the nodes of the radio-network to
minimize power consumption while ensuring broadcasting from a dedicated node
(called source) to all other nodes in the network.

A radio-network is a finite set S of radio-stations located on a geograph-
ical region which can communicate each other by transmitting and receiving
radio signals. Each radio-station s ∈ S is assigned a range ρ(s) (a positive real
number) in order to communicate with other stations. A radio-station s can
communicate (i.e., send a message) directly (i.e., in 1-hop) to any other station
t, if the Euclidean distance between s and t is less than or equal to ρ(s). If s can
not communicate directly with t due to its assigned range, then communication
between them can be achieved using multi-hop transmissions. If the maximum
number of hops allowed (h) is small, then communication between a pair of
radio-stations happen very quickly, but the power consumption of the entire
radio-network becomes high. On the other hand, if h is large then the power
consumption decreases, but communication delay takes place. The tradeoff be-
tween the power consumption of the radio-network and the maximum number of
hops needed between a communicating pair of radio-stations are studied exten-
sively in [7, 8, 9]. The power power(s) required by a radio station s to transmit
a message to another radio-station s′ satisfies power(s)

δ(s,s′)β > γ, where δ(s, s′) is the
Euclidean distance between s and s′, β is referred as the distance-power gradi-
ent and γ(≥ 1) is the transmission quality of the message [10]. We assume that

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 420–429, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Algorithm for Energy Efficient Broadcasting 421

β = 2 and γ = 1, and so power(s) = (ρ(s))2. The total cost of a range assignment
R = {ρ(s) | s ∈ S} is written as cost(R) =

∑
s∈S power(s) =

∑
s∈S(ρ(s))2.

The objective of h-hop broadcast range assignment problem is to assign trans-
mission ranges ρ(t) to the radio-stations t ∈ S so that a dedicated radio-station
(say s ∈ S) can transmit message to all other radio-stations in the network us-
ing at most h-hops, and the total power consumption of the entire network is
minimum. If h = 1, the problem becomes trivial. Here, ρ(s) = Maxt∈Sδ(s, t),
and ρ(t) = 0 for all t ∈ S \ {s}. For arbitrary h, the problem is known to be
NP-hard even in 2D [2, 4]. In [5], the one dimensional version of the problem is
considered, and a dynamic programming based algorithm is proposed. It runs
in O(hn2) time. We improve the time complexity result of the 1D version of the
problem. Our algorithm is simple and it runs in O(n2) time and O(hn) space.

In spite of the fact that the model considered in this paper is simple, it is very
much useful in studying road traffic information system where the vehicles follow
roads and messages are to be broadcasted along lanes. Typically, the curvature
of the road is small in comparison to the transmission range so that we can
consider that the vehicles are moving on a line [3]. Linear radio networks have
been observed to be important in several recent studies [3, 5–8]

2 Structure of Optimal Broadcast Range Assignment

Let us assume that the radio-stations S = {s1, s2, . . . , sn} are ordered on
the x-axis from left to right. The radio-station s1 is positioned at the origin.
The position of si will be denoted by x(si). We will use R(S, s, h) to denote the
optimum h-hop broadcast range assignment for broadcasting message from the
source station s(∈ S) to all other radio-stations in S in at most h-hops.

Definition 1. In a h-hop broadcast range assignment R(S, s, h) a right-bridge
←−−s�sr corresponds to a pair of radio-stations (s�, sr) such that s� is to the left of
s, sr is to the right of s, and δ(s�, sr) ≤ ρ(sr) < δ(s�−1, sr). In other words,
sr can communicate with s� in 1-hop due to its assigned range, but it can not
communicate with s�−1.

Definition 2. In a h-hop broadcast range assignment R(S, s, h), a right-bridge
←−−s�sr (if it exists) is said to be functional in R(S, s, h), if there exists a radio-
station si ∈ S such that the minimum number of hops among all paths from s
to si that avoids the direct (1-hop) communication ←−−s�sr, is greater than h.

Similarly, define a left-bridge −−→s�sr and a functional left-bridge in a range
assignment R(S, s, h). Here s� and sr are respectively to the left and right of s.

Theorem 1. [5] Given a set of radio-stations S = {s1, s2, . . . , sn}, a source
node s ∈ S, and an integer h (1 ≤ h ≤ n−1), the optimal h-hop broadcast range
assignment R(S, s, h) contains at most one functional bridge.

The dynamic programming based algorithm proposed in [5] solves the prob-
lem in three phases. It computes optimal solutions having (i) no functional

422 G.K. Das, S. Das, and S.C. Nandy

(left/right) bridge, (ii) one functional left-bridge only, and (iii) one functional
right-bridge only. Finally, the one having minimum total power requirement is
reported. Our algorithm is based on the same principle as in [5], but it considers
the geometry of the range assignment for obtaining the optimal solution, and
this leads to an algorithm with improved time complexity.

3 Geometric Properties

Lemma 1. For a set of radio-stations S = {s1, s2, . . . , sn}, cost(R(S, s1, μ)) =
cost(R(S, sn, μ)).

Lemma 2. In the optimum μ-hop broadcast range assignment R(S, s1, μ), if the
range assigned to s1 is ρ(s1) = δ(s1, sj) for some j > 1, then in R(S\{s1}, s2, μ),
ρ(s2) ≥ δ(s2, sj).

Proof. In R(S, s1, μ), ρ(s1) = δ(s1, sj) implies that ρ(s2) = . . . = ρ(sj−1) = 0.
Thus, if cost(R(S, s1, μ)) = C then cost(R(S \ {s1, . . . , sj−1}, sj , μ− 1)) = C −
(δ(s1, sj))2. Now, let us assume that the range assigned to s2 in R(S\{s1}, s2, μ)
is ρ(s2) = δ(s2, sk). We need to prove k ≥ j.

Let cost(R(S \ {s1}, s2, μ)) = C ′.
This implies, cost(R(S \ {s1, s2, . . . , sk−1}, sk, μ− 1) = C ′ − (δ(s2, sk))2.
Thus, {δ(s1, sk),R(S \{s1, s2, . . . , sk−1}, sk, μ−1)} is a feasible range assign-

ment (may not be optimum) for the μ-hop broadcast from s1 to all the nodes in
S \{s1}, and its cost is equal to C ′− (δ(s2, sk))2 +(δ(s1, sk))2 ≥ C. This implies
C − C ′ ≤ (δ(s1, s2))2 + 2δ(s1, s2)δ(s2, sk).

By a similar argument, {δ(s2, sj),R(S \{s1, s2, . . . , sj−1}, sj , μ−1)} is a fea-
sible range assignment (may not be optimum) for the μ-hop broadcast from s2 to
all the nodes in S\{s1, s2}, and its cost is equal to C−(δ(s1, sj))2+(δ(s2, sj))2 ≥
C ′. This implies, C−C ′ ≥ (δ(s1, s2))2 +2δ(s1, s2)δ(s2, sj). Combining these two
inequalies, we have k ≥ j. ��

In the following lemma, we prove that if we increase the number of hops for
broadcasting from a fixed vertex, say s1, to all the vertices to its right, then the
gain in the cost obtained in two consecutive steps are monotonically decreasing.

Lemma 3. cost(R(S, s1, μ)) − cost(R(S, s1, μ + 1)) ≥ cost(R(S, s1, μ + 1)) −
cost(R(S, s1, μ + 2)).

Proof. Let A = {a0 = s1, a1, a2, . . . aμ−1} denote the (ordered) subset of radio-
stations of S having non-zero ranges in R(S, s1, μ). We use aμ to denote the
radio-station sn, and cost(A) to denote cost(R(S, s1, μ)). Here, the range as-
signed to ai ∈ A is (x(ai+1) − x(ai)) for i = 0, 1, 2, . . . , μ − 1. Again, let
B = {b0 = s1, b1, b2, . . . bμ+1} denotes the set of radio stations having non-
zero ranges in R(S, s1, μ+2), i.e., cost(B) = cost(R(S, s1, μ+2)). As earlier, sn

is denoted by bμ+2, and the ranges assigned to bi(∈ B) are (x(bi+1)− x(bi)) for
i = 0, 1, 2, . . . , μ + 1. The two range assignments (A and B) are shown in Figure
1(a) using dashed and solid lines.

Efficient Algorithm for Energy Efficient Broadcasting 423

Observe that, x(a0) − x(b1) < 0, and x(aμ) − x(bμ+1) > 0. This implies,
there exists at least one i ∈ {1, 2, . . . , μ − 1} such that x(ai) − x(bi+1) ≤ 0
and x(ai+1) − x(bi+2) ≥ 0. We consider the smallest i ≥ 0 such that x(ai+1) −
x(bi+2) ≥ 0, and construct two (ordered) subsets of radio stations of length
μ+1, namely C and D, where C = {a0 = b0, a1, . . . , ai, bi+2, bi+3, . . . , bμ+1} and
D = {a0 = b0, b1, b2, . . . , bi+1, ai+1, ai+2, . . . , aμ−1}. The ranges assigned to the
members in C and D are respectively

• {x(a1)−x(a0), . . . , x(ai)−x(ai−1), x(bi+2)−x(ai), x(bi+3)−x(bi+2), . . . , x(bμ+2)
−x(bμ+1)} (see Figure 1(b)), and
• {x(b1)−x(b0), . . . , x(bi+1)−x(bi), x(ai+1)−x(bi+1), x(ai+2)−x(ai+1), . . . , x(aμ)
−x(aμ−1)} (see Figure 1(c)).

s1=a0 bμ+1ai bi+2

sn=aμ

(μ+2)−hop broadcast range assignment from s1 to sn

μ−hop broadcast range assignment from s1 to sn

(a)

ai+1bi+1b1 a1 bi aμ-1bμ

(b)

(μ+1)−hop broadcast range assignment from s1 to sn

=bμ+2

bμ+1ai bi+2

sn=aμ

(μ+1)−hop broadcast range assignment from s1 to sn

ai+1bi+1b1 a1 bi aμ-1bμ =bμ+2

bμ+1ai bi+2

sn=aμ

(c)

ai+1bi+1b1 a1 bi aμ-1bμ =bμ+2

=b0

s1=a0

=b0

s1=a0

=b0

Fig. 1. Proof of Lemma 3

The corresponding costs of the range assignments are

cost(C) =
∑i−1

j=0(x(aj+1)−x(aj))2+(x(bi+2)−x(ai))2+
∑μ+1

j=i+2(x(bj+1)−x(bj))2,

cost(D) =
∑i

j=0(x(bj+1)−x(bj))2+(x(ai+1)−x(bi+1))2+
∑μ−1

j=i+1(x(aj+1)-x(aj))2.

Thus, cost(C)+ cost(D) = cost(A)+ cost(B) + 2(x(ai)−x(bi+1))(x(ai+1)−
x(bi+2)) ≤ cost(A) + cost(B) (due to the choice of i as mentioned above).

Let O indicate the optimal choice of the subset of μ+1 radio-stations having
non-zero ranges such that s1 can send message to sn in μ + 1 hops and the cost
of range assignment is minimum, (i.e., cost(O) = cost(R(S, s1, μ + 1)). Thus we
have, 2× cost(O) ≤ cost(C) + cost(D) ≤ cost(A) + cost(B). ��

424 G.K. Das, S. Das, and S.C. Nandy

4 Algorithms

Let sα ∈ S be the given source station (not necessarily the left-most/right-most
in the ordering of S). Our algorithm for broadcsting from sα to all other radio-
stations sj ∈ S consists of three phases. In Phase 1, we prepare four initial
matrices. These are used in Phases 2 and 3 for computing optimal solution with
no functional bridge, and exactly one functional bridge.

Lemma 4. If in a linear ordered set of radio-stations {sa, sa+1, . . . , sb}, the
source station is at sa (one end of the above set), then for any 1 ≤ m < b− a−
1, the optimum m-hop broadcast range assignment R({sa, sa+1, . . . , sb}, sa, m)
should satisfy

∑b−1
k=a ρ(sk) = x(sb)− x(sa).

For notational convenience, if the source radio-station (say sa) is at one end
of the linearly ordered destination stations, then we use R(sb, sa, μ) to denote
the optimal range assignment R({sa, sa+1, . . . , sb}, sa, μ).

4.1 Phase 1

In this phase, we prepare the following four initial matrices. These will be ex-
tensively used in Phases 2 and 3. Recall that sα is the source station.

M1: It is a h × α − 1 matrix. Its (m, j)-th element (1 ≤ j < α) indicates the
optimum cost of sending message from sj to sα using m hops. In other words,
M1[m, j] = cost(R(sα, sj , m)), where 1 ≤ m ≤ h and 1 ≤ j < α.

M2: It is a h × α − 1 matrix. Its (m, j)-th element (1 < j ≤ α) indicates the
optimum cost of sending message from sj to s1 using m hops. In other words,
M2[m, j] = cost(R(s1, sj , m)), where 1 ≤ m ≤ h and 1 < j ≤ α.

M3: It is a h × n − α matrix. Its (m, j)-th element (α < j ≤ n) indicates the
optimum cost of sending message from sj to sα using m hops. In other words,
M3[m, j] = cost(R(sα, sj , m)), where 1 ≤ m ≤ h and α < j ≤ n.

M4: It is a h × n − α matrix. Its (m, j)-th element (α ≤ j < n) indicates the
optimum cost of sending message from sj to sn using m hops. In other words,
M4[m, j] = cost(R(sn, sj , m)), where 1 ≤ m ≤ h and α ≤ j < n.

Note that, the columns of M1 are indexed as [1, 2, . . . , α− 1], whereas those
in M2 are indexed as [2, 3, . . . , α]. Similarly, the columns of M3 are indexed as
[α + 1, α + 2, . . . , n], whereas those in M4 are indexed as [α, α + 1, . . . , n − 1].
We use incremental approach (in terms of hops) for constructing the matrices.
Let us consider the construction of the matrix M1. Similar procedures work for
constructing the other three matrices.

Each entry of the matrix M1 contains a tuple (χ, ptr); the χ field contains
cost(R(sα, sj , m)), and its ptr field is an integer which contains the index of the
first radio-station (after sj) on the m-hop path from sj to sα. We interchangably
use M1[m, j] and M1[m, j].χ to denote cost(R(sα, sj , m)). After computing up
to row m of the matrix M1, the elements in the m + 1-th row can easily be
obtained as follows:

Consider an intermediate matrix A = ((A[j, k])) where A[j, k] = the cost of
(m + 1)-hop communication from sj to sα with first hop at sk = (δ(sj , sk))2 +

Efficient Algorithm for Energy Efficient Broadcasting 425

M1[m, k].χ. Thus, M1[m + 1, j].χ = Minα−1
k=j+1A[j, k], and M1[m + 1, j].ptr will

contain the value of k for which A[j, k] is contributed to M1[m + 1, j].χ.
Straight forward application of the above method needs O(n2) time. But,

Lemma 1 says that, if in the optimum (m+1)-hop path from sj to sα first hops
at node sk, then for any node sj′ with j′ > j, the optimum (m + 1)-hop path
from s′

j to sα first hops at node sk′ with k′ ≥ k. A simple method for computing
the minimum of every row in the matrix A works in O(nlogn) time as follows:

Compute all the entries in the α
2 -th row of the matrix A, and find the min-

imum. Let it corresponds to A[α
2 , β]. Next, compute the minimum entry in the

α
4 -th row of A by considering {A[α

4 , j], j = 1, 2, . . . , β}, and compute the mini-
mum entry in the 3α

4 -th row of A by considering {A[3α
4 , j], j = β, β+1, . . . , α−1}.

The process continues until all the rows of A are considered.
We now describe an efficient method of computing the minimum entry in

each row of matrix A using monotone matrix searching [1].

Definition 3. [1] A matrix M is said to be monotone if for every j, k, j′, k′ with
j < j′, k < k′, if M [j, k] ≥ M [j, k′] then M [j′, k] ≥M [j′, k′].

Lemma 5. The matrix A is a monotone matrix.

Proof. Given A[j, k] ≥ A[j, k′], where A[j, k] = (δ(sj , sk))2 + M1[m, k] and
A[j, k′] = (δ(sj , sk′))2 + M1[m, k′]. Thus, M1[m, k]−M1[m, k′] ≥ (δ(sj , sk′))2 −
(δ(sj , sk))2. Now, A[j′, k]− A[j′, k′] = (δ(sj′ , sk))2 − (δ(sj′ , sk′))2 + M1[m, k]−
M1[m, k′] ≥ (δ(sj′ , sk))2 − (δ(sj′ , sk′))2 + (δ(sj , sk′))2 − (δ(sj , sk))2 ≥ 0 (on
simplification). ��

A recursive algorithm is described in [1]. It can compute the minimum entry
in each row of a α × α monotone matrix in O(α) time provided each entry of
the matrix can be computed in O(1) time. Using that algorithm, the matrix M1
can be computed in O(α× h) time.

Lemma 6. Phase 1 needs O(nh) time.

Proof. Follows from the fact that M1, M2 can be constructed in O(α×h) time,
and M3, M4 needs O((n− α)×h) time. ��

4.2 Phase 2

In this phase, we compute the optimal functional bridge-free solution for broad-
casting message from sα to the other nodes in S. Note that, the range to be
assigned to sα is at least Max(δ(sα, sα−1), δ(sα, sα+1)).

Without loss of generality, assume that δ(sα, sα−1) ≤ δ(sα, sα+1). Thus,
ρ(sα) is initially assigned to δ(sα, sα+1), and let sk (k < α) be the farthest
radio-station such that sα can communicate with sk in 1-hop (i.e., δ(sk, sα) ≤
δ(sα, sα+1) < δ(sk−1, sα)). If we use R(S, sα, h|ρ(sα) = d) to denote the opti-
mum range assignment for the h-hop broadcasting from sα to all the nodes in S
subject to the condition that the range assigned to sα is d, then

426 G.K. Das, S. Das, and S.C. Nandy

R(S, sα, h|ρ(sα) = δ(sα, sα+1)) =
{R({s1, . . . , sk}, sk, h− 1), δ(sα, sα+1),R(S \ {s1, . . . , sα}, sα+1, h− 1)},
= {R(s1, sk, h− 1), δ(sα, sα+1), R(sn, sα+1, h− 1)}
and its cost is C = cost(R(S, sα, h|ρ(sα) = δ(sα, sα+1))
= (δ(sα, sα+1))2 + M2[h− 1, k] + M4[h− 1, α + 1].

This can be computed in O(1) time using the matrices M2 and M4.
We use two temporary variables TEMP Cost and TEMP id to store C and

sα+1.
Next, we increment ρ(sα) to Min(δ(sα, sk−1), δ(sα, sα+2)), and apply same

procedure to calculate the optimum cost of the h-hop broadcast from sα under
this circumstance. This may cause updating of TEMP Cost and TEMP id. The
same procedure is repeated by incrementing ρ(sα) to its next choice in the set
{δ(sα, sk), k = 1, 2, . . . , α− 1}⋃{δ(sα, sj), j = k + 1, . . . , n} so that it can com-
municate direcetly with one more node than its previous choice. At each step,
the TEMP Cost and TEMP id are adequately updated. Thus, the procedure is
repeated for O(n) times, and the time complexity of this phase is O(n).

4.3 Phase 3

In this phase, we compute an optimal range assignment for the h-hop broad-
casting from sα to all other nodes in S where the solution contains a functional
right-bridge only. Similar method is adopted to compute the optimal solution
with one functional left-bridge only. The one having minimum cost is chosen as
the optimal solution obtained in this phase.

Let us consider a range assignment which includes a right-bridge ←−−sisj , i <
α < j. It is realized in the following ways:

Scheme 1: Assign ρ(sj) = δ(sj , si).
Scheme 2: If δ(sj , sk) < δ(sj , si) < δ(sj , sk+1) and δ(sj , sk+1) < δ(sj , si−1)
then ρ(sj) = δ(sj , sk+1).

We assume that sj is reached from sα using m hops. Thus, using Scheme 1,
h-hops connection from sα to all the nodes in S is achieved by (i) reaching s1
from si in (h −m − 1) hops, and (ii) reaching sn from sk in (h −m − 1) hops.
Here the cost of range assignment is B1 = cost(R(sj , sα, m)) + (δ(si, sj))2 +
cost(R(s1, si, h−m− 1)) + cost(R(sn, sk, h−m− 1)).

In Scheme 2, as sj can directly communicate to sk+1 to the right and si to
the left, the h-hop connection from sα to all the nodes in S is established by
(i) reaching s1 from si in (h −m − 1) hops, and (ii) reaching sn from sk+1 in
(h−m−1) hops. Here the cost of range assignment is B2 = cost(R(sj , sα, m))+
(δ(sj , sk+1))2 + cost(R(s1, si, h−m− 1)) + cost(R(sn, sk+1, h−m− 1)).

Denoting by B(←−−sisj , m) the cost of range assignment with a right bridge ←−−sisj

where sj is reached from sα in m hops, we have B(←−−sisj , m) = Min(B1, B2).
Apart from identifying sk, B(←−−sisj , m) can be calculated in O(1) time, because

cost(R(sj , sα, m)) = cost(R(sα, sj , m)) = M3[m, j] (by Lemma 4),

Efficient Algorithm for Energy Efficient Broadcasting 427

cost(R(s1, si, h−m− 1)) = M2[h−m− 1, i],
cost(R(sn, sk, h−m− 1)) = M4[h−m− 1, k],

and all these matrices are already available. In order to get an optimal solution
with a right-bridge, we need to find Minα−1

i=1 Minn
j=α+1Minh

m=1B(←−−sisj , m).
In our algorithm, we fix each si, and compute Minn

j=α+1Minh
m=1B(←−−sisj , m)

with the help of the following lemma.

Lemma 7. Let sj ∈ Sα = {sα+1, sα+2, . . . , sn} and R(sj , sα, μ) indicates the
optimal range assignment for sending message from sα to sj using μ hops, then
cost(R(sj , sα, μ−1))−cost(R(sj , sα, μ)) ≤ cost(R(sj+1, sα, μ−1))−cost(R(sj+1,
sα, μ)).

Proof. Similar to the proof of Lemma 3. ��
Lemma 8. While using the bridge ←−−sisj, i < α < j, if B(←−−sisj , μ) ≤ B(←−−sisj , μ+1)
then B(←−−sisj , μ + 1) ≤ B(←−−sisj , μ + 2).

Proof. The reduction in cost for increasing the number of hops from μ to μ + 1
to reach from sα to sj is a1 = cost(R(sj , sα, μ)) − cost(R(sj , sα, μ + 1)) ≥ 0.
In order to maintain h-hop reachability from sα to s1 and sn, we need to reach
both from si to s1 and from sk to sn using at most h − μ − 2 hops instead
of h − μ − 1 hops. Thus, the amount of increase in the corresponding costs
are a2 = cost(R(s1, si, h − μ − 2)) − cost(R(s1, si, h − μ − 1)) ≥ 0 and a3 =
cost(R(sn, sk, h− μ− 2))− cost(R(sn, sk, h− μ− 1)) ≥ 0.

As stated in the lemma, B(←−−sisj , μ)−B(←−−sisj , μ+1) ≤ 0 implies a1−a2−a3 ≤ 0.
Now, the gain in cost for increasing the number of hops from μ + 1 to μ + 2

to reach from sα to sj is a′
1 = cost(R(sj , sα, μ + 1))− cost(R(sj , sα, μ + 2)) ≥ 0

This causes the reduction in number of hops to reach from si to s1 and sk to
sn from h − μ − 2 to h − μ − 3. The loss in the corresponding costs are a′

2 =
cost(R(s1, si, h−μ−3))−cost(R(s1, si, h−μ−2)) ≥ 0 and a′

3 = cost(R(sn, sk, h−
μ− 3))− cost(R(sn, sk, h− μ− 2)) ≥ 0.

By Lemma 3, a′
1 ≤ a1, a′

2 ≥ a2 and a′
3 ≥ a3.

Thus, B(←−−sisj , μ + 1)−B(←−−sisj , μ + 2) = a′
1 − a′

2 − a′
3 ≤ a1 − a2 − a3 ≤ 0. ��

Lemma 8 implies that while using the right-bridge←−−sisj , we vary the number of
hops m to reach from sα to sj , and compute the corresponding cost B(←−−sisj , m).
As soon as B(←−−sisj , μ) < B(←−−sisj , μ + 1) is observed, there is no need to check the
costs by increasing m beyond μ + 1.

After computing the optimum range assignment with the right-bridge ←−−sisj ,
we proceed to compute the same with right-bridge ←−−−−sisj+1. The following lemma
says that if the optimum B(←−−sisj , m) is achieved for m = μ then while considering
the right-bridge ←−−−−sisj+1, the optimum B(←−−−−sisj+1, m) will be achieved for some
m ≥ μ. It needs to mention that, we could not explore any relationship among
the optimum costs of range assignments using ←−−sisj and ←−−−−sisj+1.

Lemma 9. For a given si ∈ S, i < α, if Minh
m=1B(←−−sisj , m) and

Minh
m=1B(←−−−−sisj+1, m) are achieved for m = μ and ν respectively, then ν ≥ μ.

428 G.K. Das, S. Das, and S.C. Nandy

Proof. As si is fixed, we compute optimal range assignment R(s1, si, h−m− 1)
to reach from si to s1.

While using ←−−sisj , ρ(sj) = δ(sj , si), and this enables sj to reach sk to its right
(i.e. δ(sj , si) ≥ δ(sj , sk)). Similarly, while using ←−−−−sisj+1, ρ(sj+1) = δ(sj+1, si),
and this enables sj+1 to reach s� to its right (i.e. δ(sj+1, si) ≥ δ(sj+1, s�)). Here
k ≤ �. In order to prove the lemma, we need only to show that B(←−−−−sisj+1, μ−1) ≥
B(←−−−−sisj+1, μ).

By Lemma 8, this will automatically imply B(←−−sisj , m − 1) ≥ B(←−−sisj , m) for
all m ≤ μ. Thus, if Min(B(←−−−−sisj+1, m)) is achieved for m = ν, then ν ≥ μ. To
prove the above inequality, let

a1 = cost(R(sj , sα, μ− 1))− cost(R(sj , sα, μ)),
a′
1 = cost(R(sα, sj+1, μ− 1))− cost(R(sα, sj+1, μ)),

a2 = cost(R(s1, si, h− μ− 1))− cost(R(s1, si, h− μ)),
a3 = cost(R(sn, sk, h− μ− 1))− cost(R(sn, sk, h− μ)) and
a′
3 = cost(R(sn, s�, h− μ− 1))− cost(R(sn, s�, h− μ)).

As B(←−−sisj , μ − 1) > B(←−−sisj , μ), we have a1 − a2 − a3 > 0. By Lemma 7,
a′
1 ≥ a1 and a′

3 ≤ a3. Now, B(←−−−−sisj+1, μ−1)−B(←−−−−sisj+1, μ) = the amount of gain
in cost for increasing the number of hops from μ − 1 to μ to reach sα to sj+1
while using the bridge ←−−−−sisj+1 = a′

1 − a2 − a′
3 ≥ a1 − a2 − a3 > 0. ��

Given a source-station sα and another station si (i < α), the optimal range
assignment of the members in S consisting of a functional right-bridge incident
at si, can be computed using the following algorithm:

Algorithm Range Assign Using Right Bridge(si)
Step 1: We initialize μ = 1, OPT j = α, OPT cost = ∞ and k store = α;

Next we start the execution with m = 1 and j = α+1. (* The role of k store
will be clear in the procedure compute invoked from this algorithm. *)

Step 2: At each j, we execute compute(B(←−−sisj , m), k store) by incrementing
m from its current value upwards until
(i) B(←−−sisj , m) > B(←−−sisj , m− 1) is achieved (see Lemma 8) or
(ii) m attains its maximum allowable value Min(h− 2, j − α).

Step 3: Update OPT cost and OPT j observing the value of B(←−−sisj , m−1) or
B(←−−sisj , m) depending on whether Step 2 has terminated depending on Case
(i) or Case (ii).

Step 4: For the next choice of j, update μ by m−1 or m depending on whether
Case (i) or (ii) occured in Step 2 (see Lemma 9).

Procedure compute(B(←−−sisj , m), k store)
• Initialize k = k store.
• Increment k to identify the rightmost radio-station such that δ(sj , sk) ≤

ρ(sj)(= δ(sj , si)).
• Set k store = k for further use.
• Compute B(←−−sisj , m) = (ρ(sj))2+R(sj , sα, m)+R(s1, si, h−m−1)+R(sn, sk, h−

m− 1); the last three terms are available in M3[m, j], M2[h−m− 1, i] and
M4[h−m− 1, k] respectively.

Efficient Algorithm for Energy Efficient Broadcasting 429

Theorem 2. For a given si (i < α), algorithm Range Assign using Right Bridge
needs O(n− α + h) time in the worst case.

Proof. Follows from Lemmata 8 and 9, and the role of k store in the procedure
compute for locating rightmost sk such that δ(sj , sk) ≥ ρ(sj). ��

4.4 Complexity Analysis

Theorem 3. Given a set of radio stations S and a source station sα ∈ S, the
optimum range assignment for broadcasting message from sα to all the members
in S using at most h-hops can be computed in O(n2) time and using O(nh) space.

Proof. Phase 1 and Phase 2 can be executed in O(nh) and O(n) respectively.
Finally in Phase 3, we fix si to left of sα and identify the optimum solution with
a functional right-bridge incident at si in O(n − α + h) time (see Theorem 2).
For (α− 1) such si’s, the total time required in this phase is O(α× (n−α+h)).
Similarly, the worst case time required for finding the optimum range assignment
with one functional left-bridge is O((n−α)× (α + h)). Thus, the result follows.

��

References

1. A. Aggarwal and M. Klawe, Applications of generalized matrix searching to geo-
metric algorithms, Discrete Applied Mathematics, vol. 27, pp. 3-23, 1990.

2. A.E.F. Clementi, P. Crescenzi, P. Penna, P. Rossi, P. Vocca, On the Complexity of
Computing Minimum Energy Broadcast Subgraph, 18th Annual Symp. on Theoret-
ical Aspects of Computer Science(STACK’01), Lecture Notes in Computer Science,
vol. 1770, pp. 651-660, 2000.

3. A. E. F. Clementi, A. Ferreira, P. Penna, S. Perennes, R. Silvestri, The minimum
range assignment problem on linear radio networks, Algorithmica, vol. 35, pp. 95-
110, 2003.

4. M. Zagalj, J. P. Hubaux, C. Enz, Minimum-Energy broadcast in All-Wireless Net-
works : NP-Completeness and Distribution Issues, MOBICOM, pp. 172-182, 2002.

5. A.E.F. Clementi, M Di Ianni, R. Silvestry, The Minimum Broadcast Range As-
signment Problem on Linear Multi-Hop wireless Networks, Theoretical Computer
Science(TCS), vol. 299, pp. 751-761, 2003.

6. C. Gaibisso, G. Proietti, R. Tan, Efficient Management of Transient Station Fail-
ures in Linear Radio Communication Networks with Bases, Proc. 2nd Internatonal
Workshop on Approximation and Randomized Algorithms in Communication Net-
works (ARACNE), Carleton Scientific, pp. 37-54, 2001.

7. L. Kirousis, E. Kranakis, D. Krizanc and A. Pelc, Power consumption in packet
radio networks, Theoretical Computer Science, vol. 243, pp. 289-305, 2000.

8. R. Mathar and J. Mattfeldt, Optimal transmission ranges for mobile communi-
cation in linear multihop packet radio networks, Wireless Networks, vol. 2, pp.
329-342, 1996.

9. P. Piret, On the connectivity of radio networks, IEEE Trans. on Information The-
ory, vol. 37, pp. 1490-1492, 1991.

10. K. Pahlavan, A. Levesque, Wireless Information Networks, John Wiley, New York,
1995.

Characterization of OpenMP Applications on
the InfiniBand-Based Distributed Virtual Shared

Memory System�

Inho Park1, Seon Wook Kim1, and Kyung Park2

1 Department of ECE, Korea University, Seoul, Korea
2 ETRI, Taejeon, Korea

Abstract. For the past years, architectures and programming models
about distributed virtual shared-memory (DVSM) systems have been ex-
tensively studied. The DVSM needs communication between distributed
processing nodes in order to maintain memory consistency, therefore the
communication-related overhead determines the overall performance. Re-
cently many advanced hardware-based interconnection technologies have
been introduced, and one of them is the InfiniBand Architecture (IBA)
which supports shared-memory programming semantics by means of
remote direct-memory access (RDMA) and atomic operations. In this
paper, we describe the implementation of our InfiniBand-based DVSM
system, and evaluate its performance using SPEC OMP benchmarks.
We show that our DVSM system to use full features of the IBA can
improve the performance significantly over the IPoIB-based traditional
system on the IBA, and furthermore the performance of one application
on the IBA-based DVSM system is better than on the hardware-based
shared-memory system.

1 Introduction

For the past years, in order to build high-performance large-scale computer sys-
tems we have connected distributed processing nodes through the high speed in-
terconnection network instead of building shared-memory multiprocessor (SMP)
systems. One of the popularly used distributed-memory multiprocessor systems
is a cluster due to easy maintainability, expandability, and scalability at low
cost [1]. But it is difficult for a programmer to parallelize sequential programs
on the distributed-memory system, since he must know when to communicate,
where data exist, and who receives or sends data.

In order to provide easy programming environment on the distributed-memory
system, a distributed virtual shared-memory (DVSM) system has been intro-

� This work was supported in part by the Ministry of Information & Communica-
tions, Korea, under the Information Technology Research Center (ITRC) Support
Program, and by the University Research Program by the Electronics and Telecom-
munications Research Institute, Taejeon, Korea.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 430–439, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Characterization of OpenMP Applications 431

duced [2–4]. The DVSM system allows processes to access physically distributed
memory spaces through one virtual shared memory space, therefor a program-
mer is able to use the shared-memory parallel programming APIs on the system,
such as OpenMP [5] and PThread. However, the performance of applications
on the DVSM system, especially when executing parallel applications, heav-
ily depends on the network performance and network programming semantics.
For example, a coherence mechanism to support memory consistency through
networks occurs many kinds of overheads, such as interrupting communicating
processes, sending the most recent copies, communicating and maintaining the
execution orders, and so on. In order to overcome the performance limitation,
various versions of DVSM systems and code optimization techniques have been
proposed. [2, 3, 4, 6, 7, 8, 9].

Recently many advanced interconnection technologies to connect multiple
processing nodes have been proposed to support Gbit bandwidth, such as AM,
VMMC, FM, U-Net, LAPI, and so on [10]. These techniques are usefully used
to build high-performance distributed systems due to low communication la-
tency. One of the proposed architectures is the InfiniBand Architecture [11]
that implements in hardware legacy software protocol tasks to support Re-
mote Direct Memory Access (RDMA) and atomic operations. These functional-
ities can remove many DVSM-related overheads because a process is able to
receive and send data without interrupting other processes. The InfiniBand
standard is proposed to overcome the PCI bus speed. The InfiniBand Archi-
tecture (IBA) consists of processing nodes, I/O nodes, and System Area Net-
work (SAN) to connect nodes. InfiniBand supports switched fabric to guaran-
tee high stability and wide bandwidth. IBA can be used to construct from a
small size cluster to a parallel supercomputer. The detailed description is shown
in [11].

There are a few research activities about programming environment on top
of the InfiniBand. The research in [12] describes the implementation of the OS-
layered DVSM on the IBA. This approach needs to modify kernels in order
to integrate the InfiniBand primitives with OS kernels. Our approach is the
application-layered InfiniBand-based DVSM, and therefore we do not need any
modification inside kernels. And while our framework uses a lazy release consis-
tency, the DVSM in [12] uses a sequential consistency. Also the InfiniBand-based
MPI implementation has been done extensively [13].

In this paper, we describe briefly the three variants of implementation (a base,
an ownership assignment, and a page prefetching) for the IBA-based DVSM
system based on the lazy release consistency (LRC) model. And we evaluate
their performance by using realistic SPEC OMP benchmarks. We show that
our DVSM to use full features of the IBA (to use Verbs API) can improve
the performance significantly over using the IPoIB protocol stack-based DVSM
system on the IBA. Furthermore, the performance of one application on our
DVSM system is higher than the hardware SMP machine.

432 I. Park, S.W. Kim, and K. Park

2 InfiniBand-Based Distributed Virtual Shared-Memory
Systems

In this section, we briefly describe three implementations of our page-based
DVSM systems on the InfiniBand [14]. One is a basic implementation which
does not include any optimization scheme, i.e. a minimal implementation to
preserve memory consistency. Another implementation assigns an ownership to
each page in order to reduce page segmentation violation overhead, and the third
implementation uses a page prefetching technique at serial and parallel section
boundaries to hide page copy latency. All implementations are based on the lazy
release consistency model [2].

2.1 Basic Implementation

In the traditional implementation of the DVSM system to use socket program-
ming a process should talk with other processes in order to send and receive the
data through process interruption. But on the InfiniBand we use RDMA Infini-
Band primitives without interrupting processes. Figure 1 explains the difference
between two schemes.

(a) Without RDMA. (b) With RDMA.

Fig. 1. The difference to access data on remote nodes

In order to record read and write operations per page, we maintain an interval
table whose entry has two bits to mark read and write operations and whose
number of entries is equal to the number of pages in globally allocated virtual
shared-memory. When a page segmentation violation occurs, the related bit is
set. The interval table is cleared after all necessary diff operations are performed
to other processes.

Each synchronization includes two internal barriers, b0 and b1. At the first
barrier (b0) each process broadcasts the interval table to all the participant

Characterization of OpenMP Applications 433

processes. Since the size of the interval table is small (only 6.4KB for 100MB
virtually allocated shared-memory) and we use RDMA write operations (i.e. does
not need to wait completion message), the related communication overhead is
negligible. After the first barrier, the diff operations are applied to other processes
if necessary by considering all the other processes’ interval tables. After all the
diff operations are performed, a page to have the most recent copy is write-
memory protected. If a page has an old copy, the page is both read and write
memory-protected for receiving the most recent copy from other processes at the
first read and write operations.

2.2 Ownership Assignment

It is well known that the overhead associated with the page segmentation viola-
tion is very large, and it degrades the performance seriously. In order to reduce
the occurrence of segmentation violations, we assign an ownership to each page.
The basic idea is that if a page is completely localized to one process, then the
page does not need to be communicated with other processes.

The page owner information is maintained inside the interval table by ex-
tending one bit to mark a page ownership. By using the owner information, page
owners are not memory-protected. The page owner is write memory-protected
after only other processes perform read and write operations. If this situation
happens one more time, then the page ownership is assigned to the other process
at the next synchronization. The next new owner is determined by each process
locally.

2.3 Page Prefetching

We consider the history about page movement across processes between serial
and parallel sections in OpenMP execution. There are two region boundaries:
from a serial to a parallel, and from a parallel to a serial sections. We maintain
fork and join prefetch tables per parallel region by using the start address of
the parallel region as a reference. The fork prefetch table records the page seg-
mentation violation due to data movement from a serial to a parallel regions,
and the joint prefetch table does from a parallel to a serial regions. Our DVSM
system examines these two tables at each execution boundary, and performs diff
operations ahead of page segmentation faults, i.e. page prefetch.

3 Performance Evaluation

3.1 Experiment Methods

For performance evaluation of our IBA-based DVSM system, we used four bench-
marks (swim, mgrid, wupwise, and applu) from SPEC OMP3.51 suite [15]. We
did not optimize any code for performance improvement from the officially de-
livered benchmarks from SPEC, but we scaled down the number of iterations in
SPEC OMP for short execution (it does not change any program characteristics).

434 I. Park, S.W. Kim, and K. Park

We implemented the DVSM system on the InfiniBand to use Verbs API in
order to use full features of the InfiniBand semantics. We used four processing
nodes connected with the 4X Mellanox InfiniBand, and each node includes a
Intel 2.0GHz Xeon processor, 512MB memory, and 133MHz 4X PCI-X 128MB
memory HCA board. Also for comparing with the performance on the hardware
SMP machine, we measured the SPEC applications on the bus-based SMP to
use four 2.8GHz Xeon processors, 512MB memory.

There are the following five measurements: Execution on the hardware-based
SMP machines (SMP), TreadMarks execution to use IPoIB protocol stack on the
InfiniBand (TMK), execution on the basic implementation to use the Verbs on the
InfiniBand (IBA-B), execution to use ownership assignment with IBA-B (IBA-O),
and execution to use page prefetching with IBA-O (IBA-P). We used TreadMarks
DVSM for performance comparison, since it also uses the lazy release consistency
model [2].

3.2 Performance

Overall. Figure 2 shows the speedup of the OpenMP benchmarks on 2 and 4
processors with respect to one processor execution. In applu and swim there is
no speedup in the DVSM executions. In mgrid there is speedup at the execution
of our DVSM system, but less than the SMP execution. In wupwise, the speedup
of our InfiniBand-based DVSM system is higher than the SMP execution. The
figure shows that there is no speedup in the TreadMarks execution, and the
result is different from that in [6]. The reason of the performance difference
is that our processor’s performance is much higher than those in [6], so the
communication overhead dominates the overall execution time. The ownership
assignment implementation performs well in most applications, but the page
prefetching technique does not work well in mgrid and wupwise.

Figure 3 shows the memory size in the RDMA transactions on the IBA-based
DVSM system on P0 in 4 process execution. In each application about 100MB
virtual shared-memory is used in each HCA. In applu the ownership assign-
ment increases the page read transactions, but decreases the diff transactions.
It implies that the page ownership is assigned correctly, but many pages are
shared across processes. The page prefetching technique increases the diff trans-
actions significantly without increasing diffs and performance gain in mgrid. It
implies that the page ownership is assigned correctly, but the program behavior
is changing and the history is ineffective.

Applu. Figure 4 shows the overhead analysis in applu execution. The barrier
overhead in the TreadMarks execution is considered only as BAR1 in the legend.
The execution in the application itself is marked as COMP. In the SMP execution,
it is impossible to distinguish operations in the legend, so we consider as COMP
only.

The barrier overhead on the TreadMarks is significantly reduced on the
InfiniBand-based approach. But the second barrier is still large, and there is
no performance difference in three variants of the IBA-based DVSM system.

436 I. Park, S.W. Kim, and K. Park

Fig. 4. The overhead analysis in applu

Characterization of OpenMP Applications 439

4. R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based SVM protocols
for SMP clusters: Design, simulations, implementation and performance. In The
Fourth IEEE Symposium on High-Performance Computer Architecture (HPCA-4),
January 1998.

5. OpenMP Forum, http://www.openmp.org/. OpenMP: A Proposed Industry Stan-
dard API for Shared Memory Programming, October 1997.

6. S. J. Min, A. Basumallik, and R. Eigenmann. Supporting realistic OpenMP ap-
plications on a commodity cluster of workstations. Lecture Notes in Computer
Science (WOMPAT2003), 2716:170–179, 2003.

7. J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. Nelson, and C. Offner.
Extending OpenMP for NUMA machines. In Proceedings of the IEEE/ACM Su-
percomuting, pages 49–55, Dallas, TX, 2000.

8. V. Schuster and D. Miles. Distributed OpenMP, Extensions to OpenMP for SMP
Clusters. 2000.

9. A. Basumallik, S. J. Min, and R. Eigenmann. Towards OpenMP execution on
software distributed shared memory systems. Lecture Notes in Computer Science
(WOMPEI’2002), 2327:457–468, 2002.

10. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. Mer-
ritt, E. Gronke, and C. Dodd. The virtual interface architecture. IEEE Micro,
pages 66–76, 1998.

11. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.0.
October 2000.

12. T. Birk, L. Liss, and A. Schuster. Efficient exploitation of kernel access to In-
finiBand: a software DSM example. In Hot Interconnects, Stanford, CA, August
2003.

13. J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp,
and B. Toonen. Design and implementation of MPICH2 over infiniband with
RDMA support. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

14. I. Park and S. W. Kim. Implementation of infiniband-based software distributed
shared-memory systems. Technical Report ECE-CL-20040101, 2004.

15. V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and B. Parady.
SPEComp: A new benchmark suite for measuring parallel computer performance.
Lecture Notes in Computer Science (WOMPEI2001), 2104:1–10, 2001.

Fast and Scalable Startup of MPI Programs in
InfiniBand Clusters�

Weikuan Yu, Jiesheng Wu, and Dhabaleswar K. Panda

Network-Based Computing Lab
Dept. of Computer Science and Engineering

The Ohio State University
{yuw, wuj, panda}@cse.ohio-state.edu

Abstract. One of the major challenges in parallel computing over large scale
clusters is fast and scalable process startup, which typically can be divided into two
phases: process initiation and connection setup. In this paper, we characterize the
startup of MPI programs in InfiniBand clusters and identify two startup scalability
issues: serialized process initiation in the initiation phase and high communication
overhead in the connection setup phase. To reduce the connection setup time, we
have developed one approach with data reassembly to reduce data volume, and
another with a bootstrap channel to parallelize the communication. Furthermore,
a process management framework, Multi-Purpose Daemons (MPD) system is
exploited to speed up process initiation. Our experimental results show that job
startup time has been improved by more than 4 times for 128-process jobs, and
the improvement can be more than two orders of magnitude for 2048-process jobs
as suggested by our analytical models.

1 Introduction

The MPI (Message Passing Interface) Standard [12] has evolved as a de facto parallel
programming model for distributed memory systems. Traditional research over MPI
has been largely focusing on the high performance communication between processes.
As cluster computing becomes a prominent platform of high performance computing,
scalable process management of MPI applications becomes an active research topic [3,
1]. One of the major challenges in process management is the fast and scalable startup
of large-scale applications [2, 6, 10, 4, 9]. This issue becomes even more pronounced
in the large scale systems with thousands of nodes. A parallel job is usually launched
by a process manager, which is often referred to as the process initiation phase. These
initiated processes usually require assistance from the process manager to set up peer-
to-peer connections before starting communication and computation. This is referred to
as the connection setup phase.

InfiniBandArchitecture (IBA) [8] has been recently standardized in industry to design
next generation high-end clusters for both data-center and high performance computing.
Large cluster systems with InfiniBand are being deployed. For example, in the Top500
list released in November 2003 [15], the 3rd, 111th, and 116th most powerful supercom-
puters use InfiniBand as their parallel application communication interconnect. These

� This research is supported in part by a DOE grant #DE-FC02-01ER25506, NSF Grants #CCR-
0204429 and #CCR-0311542, and a grant from Los Alamos National Laboratory.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 440–449, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters 441

three systems have 2200, 256, and 512 processors, respectively. The startup of MPI
applications in InfiniBand clusters at such a large scale is a challenging issue. It may
take more than ten minutes to go through the above mentioned process initiation and
connection setup phases for an application with 1000 processes without scalable and
high performance startup support.

In this paper, we have taken on the challenge to support a scalable and high per-
formance startup of MPI programs over InfiniBand clusters. With MVAPICH [13] as
the platform of study, we have analyzed the startup bottlenecks. Accordingly, different
approaches have been developed to speed up the connection setup phase, one with data
reassembly at the process manager and another using pipelined all-to-all broadcast over
a ring of InfiniBand queue pairs (referred to as a bootstrap channel). In addition, we have
exploited a process management framework, Multi-Purpose Daemons (MPD) system to
further speed up the startup. The bootstrap channel is also utilized to reduce the impact
of communication bottlenecks in MPD, including multiple process context switches and
quadratically increasing data volume over the MPD management ring. Over 128 pro-
cesses, our work improves the startup time by more than 4 times. Scalability Models
derived from these results suggest that the improvement can be more than two orders of
magnitude for the startup of 2048-process jobs.

The rest of the paper is structured as follows. Section 2 gives an overview of Infini-
Band. Section 3 describes the challenge of scalable startup faced by parallel programs
over InfiniBand and related work on process management. Section 4 describes the de-
sign of startup with different approaches to improve the connection setup time and the
process initiation phase. Experiments results are provided in 5. Finally, we conclude the
paper in Section 6.

2 Overview of InfiniBand Architecture

The InfiniBand Architecture (IBA) [8] defines a System Area Network (SAN) for in-
terconnecting computing nodes and I/O nodes. In an InfiniBand network, a switched
communication fabric is defined to allow many devices to communicate concurrently
at high bandwidth and low latency. Processing nodes are connected as end-nodes to the
fabric with Host Channel Adapters (HCAs).

InfiniBand provides four types of transport services: Reliable Connection (RC), Re-
liable Datagram (RD), Unreliable Connection (UC), and Unreliable Datagram (UD).
The often used service is RC in the current InfiniBand products and software. It is also
our focus in this paper. To support RC, a connection must be set up between two QPs
before any communication. In the current InfiniBand SDK, each QP has a unique iden-
tifier, called QP-ID. This is usually an integer. For network identification, each HCA
also has a unique 16-bit local identifier (LID). To make a connection, a pair of QPs must
exchange their QP IDs and LIDs.

3 Problem Statement and Related Work

This section first characterizes the scalability constraints of the startup of MPI programs
in InfiniBand clusters. It then provides a brief discussion of related work and motivates
the study for a scalable startup scheme.

442 W. Yu, J. Wu, and D.K. Panda

3.1 Startup of MPI Applications using MVAPICH

MVAPICH [13] is a high performance implementation of MPI over InfiniBand. Its design
is based on MPICH [5] and MVICH [11]. The current implementation of MVAPICH
utilizes the Reliable Connection (RC) service for the communication between processes.
The connection-oriented nature of IBA RC-based QPs requires each process to create at
least one QP for every peer process. To form a fully connected network of N processes,
a parallel application needs to create and connect at least N × (N − 1) QPs during the
initialization time. Note that it is possible to have these QPs be allocated and connected
in an on-demand manner [16], however this requires that the connection management
subsystem of IBA can handle either peer-to-peer or client-server model connection es-
tablishment, which is not mature yet in the current IBA software. Another reason for the
fully-connected connection model is simplicity and robustness. Therefore, this connec-
tion model has been used in many MPI implementations, including MVAPICH.

process (rank)

daemons
(rsh/ssh)

launcher (port)

fork/exec

(a) The Initiation Phase

lid,qp{N−1}

process 0

process 1

launcher
...lid0,qp{N−1} lid1,qp{N−1}

lid,qp{N−1}

(b) The Connection Setup Phase

Fig. 1. The Startup of MPI Applications in Current MVAPICH

The startup of an MPI application using MVAPICH can also be divided into two
phases. As shown in Fig. 1(a), an MPI application using MVAPICH is launched with
a simple process launcher iterating over UNIX remote shell (rsh) or secure shell (ssh)
to start individual processes. Each process connects back to the launcher via a port
exposed by the launcher. Except the rank of the process, each process has no global
knowledge about the parallel program. In the second phase of connection setup, as
shown in Fig. 1(b), each process creates N − 1 QPs, one for each peer process, for
an N-process application. Then, these processes exchange their local identifiers (LIDs)
and corresponding QP identifiers (QP-IDs), as mentioned in Section 2 for connection
setup. Since each process is not connected to its peer processes, the data exchange has
to rely on the connections that are created to the launcher in the first phase. The launcher
collects data about LIDs and QP-IDs from each process, and then sends the combined
data back to each process. Each process in turn sets up connections over InfiniBand with
the received data. A parallel application with fully connected processes is then created.

3.2 The Scalability Problem

The startup paradigm described above is able to handle the startup of small scale parallel
applications. However, as the size of an InfiniBand cluster goes to 100s–1000s, the

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters 443

limitation of this paradigm becomes pronounced. For example, launching a parallel
application with 2000 processes may take tens of minutes. There are two main scalability
bottlenecks, one in each phase. The first bottleneck is rsh/ssh-based startup in the process
initiation phase. This process startup mechanism is simple and straightforward, but its
performance is very poor on large systems. The second bottleneck is the communication
overhead for exchanging LIDs and QP-IDs in the connection setup phase. To launch
an N-process MPI application, the launcher has to receive data containing (N − 1)
QP-IDs from each process. Then it returns the combined data with N × (N − 1) QP-
IDs to each process. In total, the launcher has to communicate data in the amount of
O(N3) for an N-process application. Each QP-ID is usually a four-byte integer, for a
1024-process application the launcher will receive almost 4 MegaBytes data and sends
almost 4 Gigabytes of data. This communication typically goes through the management
network which is normally Fast Ethernet or Gigabit Ethernet. This incurs significant
communication overhead and slowdown to the application startup.

3.3 Related Work

Numerous work have been done to provide resource management framework for col-
lections of parallel processes, ranging from basic iterative rsh/ssh-based process launch
in MVICH [11] to more sophisticated packages like MPD [3], Cplant [2], PBS [14],
LoadLeveler/POE [7], to name a few. Compared to the rsh/ssh-based iterative launch of
processes, all these packages can provide more scalable startup and retain better mon-
itoring and control of parallel programs. However, they typically lack efficient support
for complete exchange of LIDs and QP-IDs as required by parallel programs over Infini-
Band clusters. In this paper, we focus on providing an efficient support for the complete
exchange of LIDs and QP-IDs, and applying such a scheme to one of these package,
MPD, in order to obtain efficient process initiation support. We choose to study MPD [3]
because it is one of the systems widely distributed along with MPICH [5] releases and
has a large user base.

4 Designing Scalable Startup Schemes

This section describes the design of scalable startup schemes in InfiniBand clusters. We
first describe different approaches used to enhance the connection setup phase while
the processes are still launched via rsh/ssh daemons. Then we exploit the advantages of
MPD [3], to replace the rsh/ssh based scheme and achieve efficient process initiation.
We also characterize some MPD features and their limitations to the scalable startup of
MPI applications in InfiniBand clusters. We also introduce the concept of a bootstrap
channel which can be used to overcome these limitations.

4.1 Efficient Connection Setup

As mentioned in the previous section, because the launcher has to collect, combine and
broadcast QP IDs, the volume of these data scales up in the order of O(N3), which leads
to prolonged connection setup time. One needs to consider two directions in order to
reduce the connection setup time. The first direction is to reduce the volume of data that
needs to be communicated. The other direction is to parallelize communication for the
exchange of QP IDs.

444 W. Yu, J. Wu, and D.K. Panda

Approach 1: Reducing the Data Volume with Data Reassembly (DR). To have pro-
cesses fully connected over InfiniBand, each process needs to connect with another
peer process via one QP. This means that each process needs to obtain N − 1 QP IDs,
one for each peer. That is to say, out of the combined data of N × (N − 1) QP IDs
in the launcher, each process only needs to receive N − 1 QP IDs that is specifically
targeted for itself. This requires a centralized component, i.e., the launcher, to collect
and reassembly QP IDs. The biggest advantage of this data reassembly (DR) scheme is
that the data volume exchanged can be reduced down to an order of O(N2). But there
are several disadvantages associated with this scheme. First, the entire set of QP IDs
need to be reassembled before sending them to each client processes. This constitutes
another performance/scalability bottleneck at the launcher. Second, the whole procedure
of receive-reassembly-send is also serialized at the launcher.

lid,qp{lhs,rhs}

lid,qp{lhs,rhs}

launcher

(lid,qp){lhs,rhs}

(lid,qp){lhs,rhs}

process 0

process 1process 2

process 3

(a) Setup a Bootstrap Channel

lid,qp{N−1}

process 0

process 1

(2) (3)(1)

(1) (0) (3)

process 2

process 3

(2)

(1)

(0)

(3)

(0)

(2)

lid,qp{N−1} lid,qp{N−1} lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}lid,qp{N−1}lid,qp{N−1}

lid,qp{N−1}

lid,qp{N−1}

(b) Ring-Based All-to-all Broadcast of QP
Data

Fig. 2. Parallelizing the Total Exchange of InfiniBand Queue Pair Data

Approach 2: Parallelizing Communication with a Bootstrap Channel (BC). More
insights can be gained on the possible parallelism with further examination of the startup.
Essentially, what needs to be achieved at the startup time is an all-to-all personalized
exchange of QP IDs, i.e., each process receives the specific QP IDs from other processes.
In the original startup scheme as shown in Fig. 1, the launcher performs a gather/broadcast
to help the all-to-all broadcast of their QP data. On top of that, the DR scheme in
Section 4.1 reassembles and “personalizes” QP data to reduce the data volume. Both do
not exploit the parallelism of all-to-all personalized exchange.Algorithms that parallelize
an all-to-all personalized exchange can be used here. These algorithms are usually based
on a ring-, hypercube- or torus-based topology, which requires more connections to be
provided among processes. With the initial star topology in the original startup scheme,
providing these connections has to be done through the launcher. However, since a
parallel algorithm can potentially overlap both sending and receiving QP data, it promises
better scalability over clusters with larger sizes.

Among the three possible parallel topologies, the ring-based topology requires the
least number of additional connections, i.e., 2 per process. This would minimize the
impact of the ring setup time. Another design option to be considered is that which type

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters 445

of connections should be provided. Either TCP/IP- or InfiniBand-based connections
can be used. Since the communication over InfiniBand is much faster than that over
TCP/IP (see [17] for detail latency comparison between them), we choose to use a ring
of InfiniBand QPs as a further boost to the parallelized data exchange.

The second approach works as follows. First, each process creates two QPs for
its left hand side (lhs) and right hand side (rhs) processes, respectively. We call these
QPs bootstrap QPs. Second, the DR scheme mentioned in Section 4.1 is used to set
up connections between these bootstrap QPs as shown in Figure 2(a). Thus, a ring of
connections over InfiniBand is created, as shown by the dotted line in Figure 2(a). We
refer to this ring as a bootstrap channel (BC). After this channel is set up, each process
initiates a broadcast of its own QP IDs through the channel in the clockwise direction as
shown in Fig. 2(b) with four processes. Each process also forwards what it receives to
its next process. In this scheme, we take advantage of both communication parallelism
and high performance of InfiniBand QPs to reduce the communication overhead.

4.2 Fast Process Initiation with MPD

MPD [3] is designed to be a general process manager interface that provides the needed
support for MPICH, from which MVAPICH is developed. It mainly provides fast startup
of parallel applications and process control to the parallel jobs. MPD achieves its scalable
startup by instantly spreading a job launch request across its ring of daemons, then
launches one ring of manager and another ring of application processes in a parallel
fashion (see [17] for detailed description of MPD systems). For processes to exchange
individual information MPD system also exposes a BNR interface with a put/fence/get
model. A process stores (puts) a (key,value) pair at its manager process, a part of the
MPD database, then another process retrieves (gets) that value by providing the same
key after a synchronization phase (fence).

Store (put) Retrieve (get) RepRetrieve (get) Req

Processes

mpd managers

peer 3

peer 2

peer 1

process 0

process 1

process 2

process 3

(a) Exchange of Queue Pair IDs Over the
Ring of Manager

Store (put) Retrieve (get) Req Retrieve (get) Rep

Processes

mpd managers

lhs

rhs

process 3

process 0

process 1

process 2

(b) Setting up Bootstrap Channel within Pro-
cesses

Fig. 3. Improving the Scalability of MPD-Based Startup

Although this fast and parallelized process startup from MPD solves the process
initiation problem, the significant volume of QP data still poses a great challenge to the
MPD model. As shown in Fig. 3(a), the database is distributed over the ring of manager
processes when each process stores (puts) their process-specific data to its manager. To
collect the data from every peer process, one process has to send a request and get the

446 W. Yu, J. Wu, and D.K. Panda

reply back for the target process.At the completion of these data exchanges, each process
then sets up connections with all the peers, as shown with process 0 in Fig. 3(a). Together,
messages for the request and the reply make a complete round over the manager ring.
For a parallel job with N processes, there are N × (N − 1) message exchanges in total.
Each of these messages is in the order of O(N) bytes and has to go through the ring
of manager processes. In addition, since application processes store and retrieve data
through their corresponding manager processes at each node, process context switches
are very frequent and they further degrade the performance of ring-based communica-
tion. Furthermore, the message passing is over TCP/IP sockets, which delivers lower
performance than InfiniBand-based connections (see [17] for latency comparisons).

There are different alternatives to overcome these limitations. One way of doing that
is to replace the connections for the MPD manager ring withVAPI connections to provide
fast communications. In addition, copies of QP data can be saved at each manager process
as the first copy of QP data passes through the ring. Then further retrieve (get) requests
can get the data from the local manager directly instead of the MPD manager ring. This
approach will improve the communication time, however, the process context switches
still exist between the application processes and manager processes. In addition, retrieve
requests made before QP data reaches the local manager process still has to go through
the manager ring. Last but not least, this approach necessitates a significant amount of in-
strumentation of MPD code and has only limited portability to InfiniBand-ready clusters.

Instead of exchanging all the QP data over the ring of MPD manager processes, we
propose to exchange QP IDs over the bootstrap channel described in Section 4.1. Though
setting up the bootstrap channel still needs help from the ring of manager processes. As
shown in Fig. 3(b), each process first creates and stores QP IDs for its left side (lhs)
and right hand side (rhs) processes to the local manager. Then, from the database, they
retrieve QP IDs for its left hand side and right hand side processes, and set up Infini-
Band connections accordingly. Eventually a ring of such connections are constructed
and together form a bootstrap channel. This bootstrap channel is utilized to perform a
complete exchange of QP IDs as described in Section 4.1. Since this bootstrap channel
is provided within the application processes and over InfiniBand, this approach will not
only provide fast communication and eliminate the process context switches, but also
reduce the number of communications through each manager process.

5 Performance Evaluation

Our experiments were conducted on a 256-node cluster of 4GB DRAM dual-SMP
2.4GHz Xeon at the Ohio Supercomputing Center. For fast network discovery with
data reassembly (DR) or the bootstrap channel (BC), we used ssh to launch the parallel
processes. Performance comparisons were provided against MVAPICH 0.9.1 (Original).
Since Networked File System (NFS) performance could be a big bottleneck in a large
cluster and mask out the performance improvement of startup, all binary executable files
were duplicated at local disks to eliminate its impact.

5.1 Experimental Results

Table 1 shows the startup time for parallel jobs of different number processes using
different approaches. SSH-DR represents ssh-based startup with QP data assembly (DR)

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters 447

Table 1. Comparisons of Parallel Job Startup Time over MVAPICH with Different Approaches

Number of Processes 4 8 16 32 64 128
Original (sec) 0.59 0.92 1.74 3.41 7.3 13.7
SSH-DR (sec) 0.58 0.94 1.69 3.37 6.77 13.45
SSH-BC (sec) 0.61 0.95 1.70 3.38 6.76 13.3
MPD-BC (sec) 0.61 0.63 0.64 0.84 1.58 3.10

at the process launcher. SSH-BC represents ssh-based startup using the bootstrap channel
(BC) to exchange QP IDs. MPD-BC represents MPD-based startup with a bootstrap
channel for the exchange of QP IDs.

As the number of processes increases, both SSH-DR and SSH-BC reduce the startup
time, compared to the original approach. This is because data reassembly can reduce
the data volume by an order of O(N) and the bootstrap channel can parallelize the
communication time. Note that the BC-based approach performs slightly worse than
the the original and DR-based approach for small number of processes. This is due
to the overhead from setting up the additional ring over InfiniBand. As the number of
processes increases, the benefits become greater. Both SSH-BC and SSH-DR will be
able to provide more scalable startup for a job with thousands of processes since they
remove the major communication bottleneck imposed by potentially large volume of
QP data. In contrast, the MPD-based approach with a bootstrap channel provides the
most scalable startup. On one hand, MPD-BC provides efficient parallelized process
initialization, compared to the ssh-based schemes. On the other hand, it also pipelines
the QP data exchange over a ring of VAPI connections, hence this approach speeds up
the connection setup phase. Compared to the original approach, the MPD-BC approach
reduces the startup time for a 128-process job by more than 4 times.

5.2 Analytical Models and Evaluations for Large Clusters

As indicated by the results from Section 5.1, the benefits of the designed schemes will be
more pronounced for parallel jobs with larger number of processes. In this section, we
further analyze the performance of different startup schemes and provide parameterized
models to gain insights about their scalability over large clusters. The total startup time
Tstartup can be divided into the process initiation time and the connection setup time,
denoted as Tinit and Tconn respectively. Based on the scalability analysis, we use the
following model to describe the startup time of the original scheme (Original), ssh-based
scheme with data reassembly (SSH-DR) and the MPD-based scheme with the bootstrap
channel (MPD-BC). Each of the models shows the time for the startup of N processes,
and the last component describes the time for other overheads that are not quantified in
the models, for example, process switching overhead.

Original: Tstartup = (O0 ∗N) + (O1 ∗N ∗ (WN + WN2)) + O2
The process initiation phase time Tinit scales linearly as the number of processes in-
creases with ssh/rsh-based approaches, while during the connection setup there are 2N
messages communicated over TCP/IP. Half of them are gathered by the launcher, each
being in the order of O(N) bytes; the other half are scattered by the launcher, each of
O(N2) bytes .

448 W. Yu, J. Wu, and D.K. Panda

SSH-DR: Tstartup = (D0 ∗N) + (Dcomp ∗N3 + D1 ∗ 2N ∗WN) + D2
The process initiation time Tinit scales linearly with ssh/rsh. During the connection setup
phase, the amount of computation scales in the order of O(N3) (the constant Dcomp can
be very small, being the time for extracting one QP Id), and there are 2*N message
communicated over TCP/IP. Half of them are gathered by the launcher, each being in the
order of O(N) bytes; The other half are scattered by the launcher, each of them is only
O(N) bytes due to reassembly.

MPD-BC: Tstartup = (M0 + N ∗Wreq) + (Mch setup ∗N + M1 ∗N ∗WN) + M2
The process initiation time Tinit scales constantly using MPD, however there is a small
fractional increase of communication time for the request message Wreq . During the con-
nection setup phase, the time to setup a bootstrap channel increases in the order of O(N).
Each process also handles N message in the pipeline, each in the order of O(N) bytes.

Original: Tstartup (sec) = (0.100 ∗N) + (10.5 ∗N ∗ (WN + WN2)) + 0.12
SSH-DR: Tstartup (sec) = (0.100 ∗N) + (8.5e−9 ∗N3 + 10.5 ∗N ∗WN) + 0.12
MPD-BC: Tstartup (sec) = (0.20+0.0010∗N)+(0.0180∗N +2.5∗N ∗WN)+0.30

The above scalability models are parameterized based on our analytical modeling.
As shown in Fig. 4, the experiment results confirm the validity of these models for jobs
with 4 to 128 processes. Fig. 5 shows the scalability of different startup schemes when
applying the same models to larger jobs from 4 to 2048 processes. Both SSH-DR and
MPD-BC improves the scalability of job startup significantly. Note that MPD-BC scheme
improves the startup time by about two orders of magnitudes for 2048-process jobs.

6 Conclusions and Future Work

In this paper, we have presented schemes to support scalable startup of MPI programs in
InfiniBand clusters. With MVAPICH as the platform of study, we have characterized the
startup of MPI jobs into two phases: process initiation and connection setup. To speed
up connection setup phase, we have developed two approaches, one with queue pair data
reassembly at the launcher and the other with a bootstrap channel. In addition, we have

0

4

8

12

16

20

4 8 16 32 64 128

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original
SSH-DR
MPD-BC

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Fig. 4. Performance Modeling of Different
Startup Schemes

0

500

1000

1500

2000

2500

4 8 16 32 64 128 256 512 1024 2048

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Fig. 5. Scalability Comparisons of Different
Startup Schemes

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters 449

exploited a process management framework, Multi-Purpose Daemons (MPD) system,
to improve the process initiation phase. The performance limitations in the MPD’s ring-
based data exchange model, such as exponentially increased communication time and
numerous process context switches, are eliminated by using the proposed bootstrap
channel. We have implemented these schemes in MVAPICH [13]. Our experimental
results show that, for 128-process jobs, the startup time has been reduced by more than
4 times. We have also developed an analytical model to project the scalability of the
startup schemes. The derived models suggest that the improvement can be more than
two orders of magnitudes for the startup of 2048-process jobs with the MPD-BC startup
scheme.

In future, we want to provide a file broadcast mechanism to MPD system to achieve
efficient loading of jobs [10]. Furthermore, we intend to provide a hypercube-based
scalable startup over really large systems, e.g., future Peta-scale clusters with tens of
thousands of processors.

References

1. M. Baker, G. Fox, and H. Yau. Cluster Computing Review, November 1995.
2. R. Brightwell and L. A. Fisk. Scalable parallel application launch on Cplant. In Proceedings

of Supercomputing, 2001, Denver, Colorado, November 2001.
3. R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process management

system for parallel programs. Parallel Computing, 27(11):1417–1429, 2001.
4. E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll. STORM: Lightning-Fast Re-

source Management. In Proceedings of the Supercomputing ’02, Baltimore, MD, November
2002.

5. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation
of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828, 1996.

6. E. Hendriks. Bproc: The beowulf distributed process space. In Proceedings of the Interna-
tional Conference on Supercomputing, New York, New York, June 2002.

7. IBM. Using the Parallel Operating Environment, Version 4, Release 1, 2004.
8. Infiniband Trade Association. http://www.infinibandta.org, 2000.
9. M. Jette and M. Grondona. SLURM: Simple Linux Utility for Resource Management. In

Proceedings of the International Conference on Linux Clusters, San Jose, CA, June 2003.
10. A. Kavas, D. Er-El, and D. G. Feitelson. Using Multicast to Pre-Load Jobs on the ParPar

Cluster. Parallel Computing, 27(3):315–327, 2001.
11. Lawrence Berkeley National Laboratory. MVICH: MPI for Virtual Interface Architecture.

http://www.nersc.gov/research/FTG/mvich/index.html, August 2001.
12. Message Passing Interface Forum. MPI: A message-passing interface standard. The Interna-

tional Journal of Supercomputer Applications, 8(3–4):159–416, 1994.
13. Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand on VAPI Layer.

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html.
14. OpenPBS Documentation. http://www.openpbs.org/docs.html, 2004.
15. TOP 500 Supercomputers. http://www.top500.org/, 2003.
16. J. Wu, J. Liu, P. Wyckoff, and D. K. Panda. Impact of On-Demand Connection Management

in MPI over VIA. In Proceedings of the International Conference on Cluster Com puting,
2002.

17. W. Yu, J. Wu, and D. K. Panda. Fast and Scalable Startup of MPI Programs in InfiniBand
Clusters. Number OSU-CISRC-5/04-TR33, Columbus, OH 43210, May 2004.

Parallel Performance of Hierarchical Multipole
Algorithms for Inductance Extraction�

Hemant Mahawar1,��, Vivek Sarin1, and Ananth Grama2

1 Department of Computer Science, Texas A&M University,
College Station, TX, U.S.A.

{mahawarh, sarin}@cs.tamu.edu
2 Department of Computer Science, Purdue University, West Lafayette, IN, U.S.A.

ayg@cs.purdue.edu

Abstract. Parasitic extraction techniques are used to estimate signal
delay in VLSI chips. Inductance extraction is a critical component of the
parasitic extraction process in which on-chip inductive effects are esti-
mated with high accuracy. In earlier work [1], we described a parallel
software package for inductance extraction called ParIS, which uses a
novel preconditioned iterative method to solve the dense, complex linear
system of equations arising in these problems. The most computation-
ally challenging task in ParIS involves computing dense matrix-vector
products efficiently via hierarchical multipole-based approximation tech-
niques. This paper presents a comparative study of two such techniques:
a hierarchical algorithm called Hierarchical Multipole Method (HMM)
and the well-known Fast Multipole Method (FMM). We investigate the
performance of parallel MPI-based implementations of these algorithms
on a Linux cluster. We analyze the impact of various algorithmic param-
eters and identify regimes where HMM is expected to outperform FMM
on uniprocessor as well as multiprocessor platforms.

1 Introduction

The design and testing phases in the development of VLSI chips rely on accu-
rate estimation of the signal delay. Signal delay in a VLSI chip is due to the
parasitic resistance (R), capacitance (C), and inductance (L) of the interconnect
segments. At high frequencies, the physical proximity of interconnect segments
leads to strong inductive coupling between neighboring conductors. This cou-
pling arises because a magnetic field is created when current flows through a
conductor. This magnetic field opposes any change in the current flow within
the conductor as well as in the neighboring conductors. Self-inductance is the

� Support for Mahawar and Sarin was provided by NSF-CCR 9984400, NSF-CCR
0113668, and Texas ATP 000512-0266-2001 grants. Grama’s research was supported
by NSF-EEC 0228390 and NSF-CCF 0325227 grants. Computational resources were
acquired through NSF-DMS 0216275 grant.

�� Corresponding author.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 450–461, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Parallel Performance of Hierarchical Multipole Algorithms 451

resistance offered to change in current within the conductor. Mutual inductance
refers to the resistance offered to change in current in a neighboring conduc-
tor. Inductance extraction refers to the process of estimating self and mutual
inductance between interconnect segments of a chip.

To estimate inductance between a set of conductors in a particular config-
uration, one needs to determine current in each conductor under appropriate
equilibrium conditions. The surface of each conductor is discretized using a uni-
form two-dimensional grid whose edges represent current-carrying filaments. The
potential drop across a filament is due to its own resistance and due to the induc-
tive effect of other filaments. Kirchoff’s current law is enforced at the grid nodes.
This results in a large dense system of equations that is solved using iterative
methods such as the generalized minimum residual method (GMRES) [2]. Each
iteration requires a matrix-vector product with the coefficient matrix, which can
be computed without explicitly forming the matrix itself. Matrix-vector prod-
ucts with the dense matrix are computed approximately via multipole algorithms
such as the Fast Multipole Method (FMM) [3, 4].

In an earlier paper [1], we described an object-oriented parallel inductance
extraction software called ParIS. The software uses a formulation in which cur-
rent is restricted to the subspace satisfying Kirchoff’s law through the use of
solenoidal basis functions. The reduced system of equations is solved by a pre-
conditioned iterative solver in which products with the dense coefficient matrix
and the preconditioner are computed via FMM. Improved formulation and the
associated preconditioning is responsible for significant reduction in computa-
tional and storage requirements [5]. ParIS achieves high parallel efficiency on a
variety of multiprocessors with shared-memory, distributed-memory, and hybrid
architectures.

In this paper, we present a comparative study of multipole-based methods
for computing dense matrix-vector products. We consider the well-known FMM
algorithm and a hierarchical algorithm, called Hierarchical Multipole Method
(HMM), which can be considered as a variant of the FMM based on particle-
cluster multipole evaluations only (related to a Barnes-Hut type approach [6]).
We present parallel formulations of these methods and discuss their performance
on a Beowulf cluster. We analyze the impact of parameters such as the multipole
degree (d), the multipole acceptance criterion threshold (α), and the maximum
number of particles allowed in a leaf box (s) on these methods. Since these param-
eters influence both accuracy and cost, it is important to develop a framework
to select the optimal method for a given set of parameters. The experimental
results presented in this paper can be used to identify the optimal method for
difference parameter subspaces.

The paper is organized as follows – Section 2 outlines the inductance extrac-
tion problem, the solenoidal basis method, and the software design of ParIS;
Section 3 describes HMM and FMM algorithms and outlines their parallel for-
mulations; Section 4 presents a set of experiments on an AMD cluster to illus-
trate the performance of these methods for a range of parameters; and Section 5
presents concluding remarks.

452 H. Mahawar, V. Sarin, and A. Grama

2 Background

2.1 Inductance Extraction Problem

For a set of t conductors, we need to determine an t × t impedance matrix
that represents pairwise mutual inductance among the conductors at a given
frequency. The element (l, k) of the matrix equals the potential drop across
conductor l when there is zero current in all the conductors except conductor k
that carries unit current. The kth column is computed by solving an instance
of the inductance extraction problem with the right hand side denoting unit
current flow through conductor k. The impedance matrix can be computed by
solving t instances of this problem with different right hand sides.

The current density J at a point r is related to potential φ by the following
equation [7]

ρJ(r) + jω

∫
V

μ

4π

J(r′)
‖r− r′‖dV ′ = −∇φ(r), (1)

where μ is magnetic permeability of the material, ρ is the resistivity, r is position
vector, ω is frequency, ‖r− r′‖ is the Euclidean distance between r and r′, and
j =

√−1. The volume of the conductor is denoted by V and incremental volume
with respect to r′ is denoted by dV ′.

To obtain a numerical solution for (1), each conductor is discretized into a
mesh of n filaments f1, f2, . . . , fn. Current is assumed to flow along the filament
length. The current density within a filament is assumed to be constant. Filament
currents are related to the potential drop across the filaments according to the
linear system

[R + jωL]If = Vf , (2)

where R is an n× n diagonal matrix of filament resistances, L is a dense induc-
tance matrix denoting the inductive coupling between current carrying filaments,
If is the vector of filament currents, and Vf is the vector of potential difference
between the ends of each filament. The kth diagonal element of R is given by
Rkk = ρlk/ak, where lk and ak are the length and cross-sectional area of the
filament fk, respectively. Let uk denote the unit vector along the kth filament.
The elements of the inductance matrix L are given by

Lkl =
μ

4π

1
akal

∫
rk∈fk

∫
rl∈fl

uk · ul

‖rk − rl‖dVkdVl.

Kirchoff’s current law states that the net current flow into a mesh node must
be zero. These constraints on current lead to additional equations

BT If = Is, (3)

where BT is a sparse m × n branch index matrix and Is is the known branch
current vector of length m with non-zero values corresponding to the source
currents. The branch index matrix defines the connectivity among filaments and
nodes. The (k, l) entry of the matrix is −1 if filament l originates at node k, 1
if filament l terminates at node k, and 0 otherwise. Since the unknown filament

Parallel Performance of Hierarchical Multipole Algorithms 453

potential drop Vf can be represented in terms of node potential Vn by the
relation BVn = Vf , one needs to solve the following system of equations to
determine the unknown filament current If and node potential Vn[

R + jωL −B
BT 0

] [
If

Vn

]
=

[
0
Is

]
. (4)

For systems involving a large number of filaments, it is not feasible to compute
and store the dense matrix L. These linear systems are typically solved using
iterative techniques such as GMRES. The matrix-vector products with L are
computed using fast hierarchical methods such as the FMM. The main hurdle
in this matrix-free approach is the construction of effective preconditioners for
the coefficient matrix.

2.2 The Solenoidal Basis Method

We present a brief overview of the solenoidal basis method for solving (4) (see,
e.g., [5] for details). Consider the discretization of a ground plane shown in Fig. 1.
Current flowing through the filaments must satisfy Kirchoff’s law at each node
in the mesh. The bold line indicates a path for current that satisfies boundary
conditions. Current is made up of two components: constant current along the
bold line shown on the left and a linear combination of mesh currents as shown in
the partial mesh on the right. This converts the system in (4) into the following
system with a different right hand side[

R + jωL −B
BT 0

] [
I

Vn

]
=

[
F
0

]
. (5)

The main difference between matrix representations in (4) and (5) is that the
former uses current boundary conditions and the later uses potential boundary
conditions.

Solenoidal functions are a set of basis functions that satisfy conservation
laws automatically. Figure 1 shows how to construct unit circular flows on mesh
cells that automatically satisfy Kirchoff’s law at the grid nodes. The unknown
filament currents can be expressed in the solenoidal basis: I = Px, where x is
vector of unknown mesh currents and P is a sparse matrix whose columns denote
filament current in each mesh. A column of P consists of four non-zero entries
that have the value 1 or −1 depending on the direction of current flow in the
filaments of the cell.

The system (5) is converted to a reduced system

PT [R + jωL]Px = PT F, (6)

which is solved by a preconditioned iterative method. The preconditioning step
involves product with a dense matrix that represents the inductive coupling
among filaments placed at the cell centers. This preconditioning scheme can be
implemented using FMM as well, and leads to rapid convergence of the iterative

454 H. Mahawar, V. Sarin, and A. Grama

Node

Filament

Current
Source

Y−dimension filament

X − dimension filament

Fig. 1. Discretization of a ground plane with a mesh of filaments (left) and solenoidal
current flows in each mesh cell (right) (Reproduced from [5])

method. On a set of benchmark problems, a serial implementation of this soft-
ware is up to 5 times faster than FastHenry [7], a commonly available induction
extraction software, with only one-fifth of memory requirements [5].

2.3 ParIS: Parallel Inductance Extraction Software

We have developed an object-oriented parallel implementation of the solenoidal
basis algorithm for inductance extraction [1]. This software combines the ad-
vantages of the solenoidal basis method, fast hierarchical methods for dense
matrix-vector products, and a highly effective preconditioning scheme to provide
a powerful package for inductance extraction. In addition, the software includes
an efficient parallel implementation to reduce overall computation time [8] on
multiprocessors.

The building blocks of ParIS are conductor elements. Each conductor is uni-
formly discretized with a mesh of filaments. Kirchoff’s law constraints on the
filament currents of a conductor contribute a block in the system matrix. The
most time-consuming step in the solution of the reduced system involves matrix-
vector products with the impedance matrix, which is the sum of a diagonal ma-
trix R and a dense inductance matrix L. Since the preconditioning step involves
matrix-vector product with a dense matrix, which is similar to L, it is worthwhile
to reduce the cost of the matrix-vector product with L.

3 Hierarchical Multipole-Based Algorithms

The computational complexity of a matrix-vector product with a dense n × n
matrix is O(n2). This can be reduced significantly through the use of hierarchi-

Parallel Performance of Hierarchical Multipole Algorithms 455

cal approximation techniques. These algorithms exploit the decaying nature of
the 1

r kernel for the matrix entries to compute approximations with acceptable
error. Higher accuracy can be achieved at the expense of more computation.
Well-known techniques such as the Barnes-Hut [6] method compute particle-
cluster interactions to achieve O(n log n) complexity, whereas the Fast Multipole
Method (FMM) [4] computes cluster-cluster interactions in addition to particle-
cluster interactions to achieve O(n) complexity.

3.1 Hierarchical Multipole Method

The hierarchical multipole method (HMM) can be viewed either as an aug-
mented version of the Barnes-Hut method or as a variant of FMM that uses
only particle-cluster multipole evaluations. The method works in two phases:
the tree construction phase and the potential computation phase. In the tree
construction phase, a spatial tree representation of the domain is derived. At
each step in this phase, if the domain contains more than s particles, where s
is a preset constant, it is recursively divided into eight equal parts. This pro-
cess continues until each part has at most s elements. The resulting tree is an
unstructured oct-tree. Each internal node in the tree computes and stores an
approximate multipole series representation of the particles contained in its sub-
tree. The multipole series of a node is computed from the series of its children
through an up-traversal of the nodes from the leaves to the root. Once the tree
has been constructed, the potential at each particle can be computed as follows:
a multipole acceptance criterion is applied to the root of the tree to determine
if an interaction can be computed; if not, the node is expanded and the process
is repeated for each of the eight children. The multipole acceptance criterion
computes the ratio of the distance of the point from the center of the box to
the dimension of the box. If this ratio is greater than α, where α is a constant
greater than

√
3/2, an interaction can be computed.

3.2 Fast Multipole Method

ParIS uses a variant of FMM to compute approximate matrix-vector products
with dense matrices. FMM is used to compute the potential at each filament
due to the current flow in all filaments. The algorithm divides the domain into
eight equal non-overlapping subdomains, and continues the process recursively
until each subdomain has at most s filaments, where s is a parameter that is
chosen to maximize computational efficiency. A subdomain is represented by a
subtree whose leaf nodes contain the filaments in the subdomain. These subdo-
mains are distributed across processors. The potential evaluation phase consists
of two traversals of the tree. During the up-traversal, multipole coefficients are
computed at each node. These coefficients can be used to compute potential
due to all the filaments within the node’s subdomain at a far away point. The
multipole computation does not require any communication between processors.
During the down-traversal, local coefficients are computed at each node from the
multipole coefficients. The local coefficients can be used to compute potential

456 H. Mahawar, V. Sarin, and A. Grama

due to far away filaments at a point within the node’s subdomain. Potential due
to near by filaments is computed directly.

3.3 Parallel Formulation

To exploit parallelism at the conductor level, each conductor is assigned to a
different processor. The data structures native to a conductor are local to its
processor. This includes the filaments in a conductor and the associated oct-
tree. With the exception of matrix-vector products with the inductance matrix,
all other computations are local to each conductor.

The matrix-vector product with the inductance matrix involves two types of
filament interactions. Interactions among the filaments of the same conductor
are computed locally by the associated processor. To get the effect of filaments
in other conductors, a processor needs to exchange multipole coefficients with
other processors. Since matrix-vector products with the dense inductance matrix
and the preconditioner are computed at each iteration, ParIS identifies those
nodes in a conductor’s tree that are required by other conductors during a pre-
processing step. The cost of this step is amortized over the number of iterations
of the solver. While computing the dense matrix-vector product, communication
is needed for the translation of the multipole coefficients of these nodes to nodes
on other processors. Communication is also needed between adjacent nodes that
belong to different subtrees when computing direct interactions. This type of
communication is proportional to the number of filaments on the subdomain
boundary.

Additional parallelism is available within each conductor. By assigning dif-
ferent processes or threads to all the nodes at a specific level in the oct-tree,
we are able to partition the computation for subdomains among processes.
Fewer processes can be assigned to the top part of the oct-tree to further im-
prove parallel efficiency. With different sized conductors, one can have more
processes associated with larger conductors. This scheme allows load balanc-
ing to a certain extent. A variety of parallel implementations are discussed in
[9–12].

Conductor nConductor kConductor 2Conductor 1

MPI Communication

OpenMP

Tree 1
Sub

Tree 2
Sub

OpenMP

Tree n
Sub

OpenMP

Fig. 2. Two-tier parallelization scheme implemented in ParIS

Parallel Performance of Hierarchical Multipole Algorithms 457

A two-tier parallelization approach shown in Fig. 2 simplifies the implementa-
tion in hybrid or mixed mode using both MPI and OpenMP. The software can be
executed on a variety of platforms ranging from shared-memory multiprocessors
to workstation clusters seamlessly [1].

4 Experiments

To investigate the performance of hierarchical multipole algorithms used in ParIS
we considered the cross-over benchmark problem. Figure 3 shows two layered
cross-over of interconnect segments called buses. The problem consists of deter-
mining the impedance matrix of these buses. Each bus is assumed to be 2cm long
and 2mm wide. Buses within a layer are separated by 300μm while the layers
are separated by 3mm. This problem leads to a non-uniform point distribution
for the dense matrix-vector multiplication algorithm.

The main goal of this study is to analyze the performance of HMM and FMM
codes within ParIS. Instead of solving the full inductance extraction problem, we
observed the performance of the codes for a fixed number of GMRES iterations.
Each iteration involved dense matrix-vector products with the coefficient matrix
as well as the preconditioner. The results are identical to the case when the
full inductance extraction problem is solved because the dense matrix-vector
products account for over 98% of the execution time (see, e.g., [5]).

A generalized notion of efficiency is used to provide a uniform basis to com-
pare different experiments. We compute scaled efficiency as shown below:

Es =
BOPS

p
, (7)

where p is the number of processors and BOPS is the average number of base
operations executed per second. A base operation equals the cost of computing
a direct interaction between a pair of filaments. In principle, BOPS should re-
main unchanged when the number of conductors and filaments per conductor
are varied. With this definition of efficiency, it possible to compare the perfor-
mance of the code on a variety of benchmarks that require different number of
interactions. The experiments were conducted on the Tensor cluster at Texas
A&M University. The cluster consists of 1.4GHz 64-bit AMD Opteron proces-
sors running LAM/MPI on SuSE-Linux, connected via Giga-bit ethernet. GNU
compilers were used on Tensor for compiling the code.

Fig. 3. The cross-over benchmark

458 H. Mahawar, V. Sarin, and A. Grama

4.1 Impact of Parameters

The performance of the hierarchical multipole algorithms depends on the choice
of multipole degree (d), the multipole acceptance criterion determined by α,
and the maximum number of particles allowed per leaf box (s). Since d and α
parameters influence accuracy of the approximate dense matrix-vector product,
a fair comparison is possible only when the impedance error is bounded. In these
experiments, the impedance error was always within 1% of a reference value that
was calculated by FMM with d = 8.

The dominant computation in FMM consists of multipole-to-local transla-
tions (M2Ls) with computational cost proportional to (d + 1)4. The dominant
computation in HMM consists of multipole evaluations at particles (M2Ps) with
computational cost proportional to (d + 1)2. Table 1 shows that with increase
in d, the FMM time increases proportional to (d + 1)4, while the HMM time
increases proportional to (d+1)2. For HMM experiments, α was chosen to be 1.

Table 1. Effect of the multipole degree (d) on the execution time, in secs, for different
choices of maximum particles per leaf box (s)

FMM code HMM code
d s=2 s=8 s=32 s=128 s=2 s=8 s=32 s=128

1 49.5 18.3 12.7 29.9 25.7 21.5 21.3 34.8
2 225.8 62.5 25.3 32.8 46.8 36.5 31.3 41.9
4 1513.3 398.2 110.8 50.7 110.8 84.5 63.0 61.9

The execution time for both methods decreases when s is increased due to
a decrease in the number of M2Ls and M2Ps. The cost of direct interactions is
proportional to s2 and is negligible for small values of s. Direct interactions begin
to dominate the overall cost for large values of s, resulting in higher execution
time. Table 1 shows that when s is increased, the FMM execution time reduces
rapidly due to reduction in M2Ls, until the direct interactions begin to dominate
the computational cost. Similarly, the HMM execution time decreases due to
reduction in M2Ps, until the direct interactions begin to dominate. The decrease
in the HMM case is not as rapid due to the lower complexity of M2Ps compared
to M2Ls. For a given problem, one can identify (d, s) pair that minimizes the
execution time for each method.

HMM has an additional parameter for the multipole acceptance criteria. A
large value of α improves the accuracy of the approximate dense matrix-vector
product at additional computational cost. Larger values of α increase the number
of direct interactions as well as the number of M2Ps by ensuring that multipole
evaluations at particles are computed for smaller boxes. This behavior is clear in
Tables 2 and 3. The increase in time with α can be estimated from the increase
in the number of direct interactions. A choice of s = 8 is used in Table 2 and
d = 2 is used in Table 3.

Parallel Performance of Hierarchical Multipole Algorithms 459

Table 2. Effect of the multipole acceptance criterion threshold (α) on the execution
time, in secs, of the HMM code for different choices of multipole degree (d)

α d=1 d=2 d=4

1 21.5 36.5 84.5
1.5 40.1 70.6 158.2

Table 3. Effect of the multipole acceptance criterion threshold (α) on the execution
time, in secs, of the HMM code for different choices of maximum particles per leaf
box (s)

α s=2 s=8 s=32

1 46.8 36.5 31.3
1.5 89.3 70.5 59.5

4.2 Parallel Performance

The parallel performance of FMM and HMM codes is primarily determined by
the ratio of computation to communication. To compute M2L between a pair
of oct-tree nodes residing on different processors, multipole coefficients must
be exchanged. This requires communication of (d + 1)2 data units followed by
M2L computation, which is proportional to (d + 1)4. Thus, the computation-
to-communication ratio grows rapidly with increase in d. On the other hand,
computing M2P between a node and a particle requires communication of (d+1)2

data units followed by M2P computation, which is proportional to (d + 1)2. In
this case, there will be limited effect of d on the parallel performance as long as
the multipole coefficients received by a processor q are stored and reused by the
particles on q.

The use of scaled efficiency Es defined in (7) allows us to scale the problem
linearly with processors. A cross-over problem with p conductors was chosen for
experiments that used p processors. This benchmark is characterized by proxim-
ity between pairs of conductors on different layers. Thus, the number of M2Ls
and M2Ps requiring communication grows linearly with the number of conduc-
tors p. Similarly, the number of direct interactions that require communication
between processors also grows linearly with p. This is observed in Table 4 for
the HMM code with α = 1.

The computation in FMM is varied, with M2Ls forming the dominant com-
ponent. Table 5 shows the parallel execution time for the FMM code for s = 8
and s = 32. The execution time grows much faster with p for the case when
s = 32 because of reduced M2Ls and increased direct interactions. This behav-
ior is consistent with the observation that the FMM code achieves higher parallel
efficiency for larger d.

The scaled efficiency allows us to compare the performance if the two meth-
ods. Table 6 shows the efficiency of the HMM and FMM codes on the cross-over

460 H. Mahawar, V. Sarin, and A. Grama

problem with s = 8 and α = 1. The codes maintain high efficiency as p in-
creases. The efficiency also increases when d is increased, and the effect is more
pronounced in the FMM code.

A comparison of the parallel execution time of the two methods for different
values of d is also instructive. Table 7 shows the ratio of parallel execution times

Table 4. Impact of multipole degree (d) on the execution time, in secs, of the HMM
code on p processors for two different choices of maximum particles per leaf box (s)

s = 8 s = 32
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

1 21.5 26.5 50.9 105.8 21.3 24.4 48.8 94.1
2 36.5 46.5 96.5 184.3 31.3 38.3 77.9 157.5
4 84.5 101.9 220.9 436.8 63.0 78.2 169.6 347.9

Table 5. Impact of multipole degree (d) on the execution time, in secs, of the FMM
code on p processors for two different choices of maximum particles per leaf box (s)

s = 8 s = 32
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

1 18.3 25.7 34.5 59.2 12.7 13.9 40.4 94.4
2 62.5 72.5 87.5 131.3 25.3 26.6 58.0 126.3
4 398.2 431.4 470.9 683.3 110.8 113.4 165.7 277.8

Table 6. Efficiency of the extraction codes on p processors for different choices of
multipole degree (d)

HMM code FMM Code
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

1 0.99 0.93 0.94 0.86 0.98 0.74 0.87 0.87
2 1.00 0.92 0.90 0.92 0.99 0.86 0.97 0.98
4 1.00 0.98 0.93 0.94 1.00 0.93 1.04 0.98

Table 7. Ratio of the execution time of FMM and HMM codes on p processors for
different choices of multipole degree (d)

s = 8 s = 32
d p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

1 0.9 1.0 0.7 0.6 0.6 0.6 0.8 1.0
2 1.7 1.6 0.9 0.7 0.8 0.7 0.7 0.8
4 4.7 4.2 2.1 1.6 1.8 1.4 1.0 0.8

Parallel Performance of Hierarchical Multipole Algorithms 461

of FMM and HMM codes for d = 1, 2, 4 and s = 8, 32. It is clear that HMM
is superior to FMM when a larger value of d is used. The comparative advan-
tage of HMM is diminished for s = 32 due to improved performance of FMM.

5 Conclusions

This paper presents a comparison of multipole-based methods for computing
dense matrix-vector products in inductance extraction problems. The Fast Mul-
tipole Method is compared with a hierarchical multipole method on a set of
benchmark problems. Numerical experiments are conducted on an AMD cluster
for range of parameters such as the multipole degree (d), the multipole accep-
tance criterion threshold (α), and the maximum number of particles allowed in a
leaf box (s). The results provide insight into the relative merits of these methods
and suggest ways to determine the optimal method for a given set of parameters.

References

1. Mahawar, H., Sarin, V.: Parallel software for inductance extraction. In: Proceedings
of the International Conference on Parallel Processing, Montreal, Canada (2004)

2. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, Boston (1996)

3. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. The
MIT Press, Cambridge, Massachusetts (1988)

4. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of
Computational Physics 73 (1987) 325–348

5. Mahawar, H., Sarin, V., Shi, W.: A solenoidal basis method for efficient inductance
extraction. In: Proceedings of the IEEE Design Automation Conference, New
Orleans, Louisiana (2002) 751–756

6. Barnes, J., Hut, P.: A hierarchical O(n log n) force calculation algorithm. Nature
324 (1986) 446–449

7. Kamon, M., Tsuk, M.J., White, J.: FASTHENRY: A multipole-accelerated 3D
inductance extraction program. IEEE Transaction on Microwave Theory and
Techniques 42 (1994) 1750–1758

8. Mahawar, H., Sarin, V.: Parallel iterative methods for dense linear systems in
inductance extraction. Parallel Computing 29 (2003) 1219–1235

9. Grama, A., Kumar, V., Sameh, A.: Parallel hierarchical solvers and precondition-
ers for boundary element methods. SIAM Journal on Scientific Computing 20
(1998) 337–358

10. Sevilgen, F., Aluru, S., Futamura, N.: A provably optimal, distribution-
independent, parallel fast multipole method. In: Proceedings of the International
Parallel and Distributed Processing Symposium, Cancun, Mexico (2000) 77–84

11. Singh, J.P., Holt, C., Totsuka, T., Gupta, A., Hennessy, J.L.: Load balancing and
data locality in hierarchical n-body methods. Journal of Parallel and Distributed
Computing 27 (1995) 118–141

12. Teng, S.H.: Provably good partitioning and load balancing algorithms for parallel
adaptive N-body simulation. SIAM Journal of Scientific Computing 19 (1998)
635–656

A New Adaptive Fault-Tolerant Routing
Methodology for Direct Networks�

M.E. Gómez1, J. Duato1, J. Flich1, P. López1, A. Robles1,
N.A. Nordbotten2, T. Skeie2, and O. Lysne2

1 Dept. of Computer Engineering, Universidad Politécnica de Valencia,
Camino de Vera, 14, 46071–Valencia, Spain

megomez@disca.upv.es
2 Simula Research Laboratory,

P.O. Box 134, N-1325 Lysaker, Norway

Abstract. Interconnection networks play a key role in the fault toler-
ance of massively parallel computers, since faults may isolate a large
fraction of the machine containing many healthy nodes. In this paper,
we present a methodology to design fully adaptive fault-tolerant routing
algorithms for direct interconnection networks that can be applied to dif-
ferent regular topologies. The methodology is mainly based on the selec-
tion of an intermediate node (if needed) for each source-destination pair.
Packets are adaptively routed to the intermediate node and, from this
node, they are adaptively forwarded to their destination. This methodol-
ogy requires only one additional virtual channel, even for tori. Evaluation
results show that the methodology is 7-fault tolerant, and for up to 14
faults, more than 99% of the combinations are tolerated, also without
significantly degrading performance in the presence of faults.

1 Introduction

There exist many compute-intensive applications that require continued research
and technology development to deliver computers with steadily increasing com-
puting power. The required levels of computing power can only be achieved with
massively parallel computers, such as the Earth Simulator [8] and the Blue-
Gene/L [1]. The long execution times of these applications requires keeping such
systems running even in the presence of failures. However, the huge number of
processors and associated devices (memories, switches, links, etc.) significantly
increases the probability of failure. In particular, failures in the interconnec-
tion network may isolate a large fraction of the machine, wasting many healthy
processors that otherwise could have been used. Although network components
are robust, they are usually working close to their technological limits and are
therefore prone to failures. Increasing clock frequencies leads to a higher power
dissipation, which again could lead to premature failures. Hence, fault-tolerant
mechanisms for interconnection networks are becoming a critical design issue for
large massively parallel computers.

� This work was supported by the Spanish Ministry of Science and Technology under
Grant TIC2003-08154-C06-01.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 462–473, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks 463

Faults can be classified as transient or permanent. Transient faults are usually
handled by communication protocols, using CRCs to detect faults and retrans-
mitting packets. In order to deal with permanent faults in a system, two fault
models can be used: static or dynamic. In a static fault model, all the faults are
known in advance when the machine is (re)booted. This fault model relies on
checkpoints in order to be effective. In a dynamic fault model, once a new fault is
found, actions are taken in order to appropriately handle the faulty component.

There exist several approaches to tolerate faults in the interconnection net-
work. Most of them are based on fault-tolerant routing algorithms. However,
these strategies require a significant amount of extra hardware resources (e.g.,
virtual channels), to route packets around faulty components [4], [12]. Alterna-
tively, there exist some fault-tolerant routing strategies that use none or very
few extra resources at the expense of providing a lower fault-tolerance degree [4],
[9], disabling a certain number of healthy nodes (either in blocks (fault regions)
[2], [3] or individually [5], [6]), preventing packets from being routed adaptively
[10], or drastically increasing the latencies for some packets [14].

What is really needed is a fault-tolerant strategy for the interconnection
network that does not degrade performance at all in the absence of faults, does
not significantly decrease network performance in the presence of faults, and
tolerates a reasonably large number of faults. This should be achieved without
disabling any healthy node and without requiring too many extra resources.

In this paper, we take on this challenge and propose a fault-tolerant routing
methodology that satisfies the properties mentioned above. The methodology
relies on a static fault model with checkpointing. It allows the use of fully adap-
tive routing in most cases and it does not sacrifice any healthy node. In order
to avoid faults, packets are sent adaptively to an intermediate node1. From that
node, the packet will be sent adaptively to the destination. The methodology
requires the use of at least three virtual channels. Note that two virtual channels
are already required to provide fully adaptive routing [13].

It is important to highlight the main differences between the proposed method-
ology and similar approaches in the literature. Unlike [14], in no case the pro-
posed methodology requires ejecting/reinjecting the packet at the intermediate
node, thus drastically reducing latency. Moreover, unlike [10], it does not need to
deactivate any lamb node to achieve high fault-tolerance. Furthermore, the pro-
posed methodology allows packets to be routed using adaptive routing, instead
of deterministic routing, thus increasing the overall network throughput.

The rest of the paper is organized as follows. In Section 2, the proposed
methodology is presented. In Section 3, the fault-tolerant routing algorithm re-
sulting from applying the methodology is evaluated. Finally, in Section 4, some
conclusions and future work are drawn.

2 Description of the Methodology

The methodology provides fault-tolerance both in n-dimensional mesh and torus
networks. For the sake of clarity, the description will mainly be based on a 3D

1 Intermediate nodes were also used by Valiant [15] for traffic balance.

464 M.E. Gómez et al.

torus network, with some particular cases explained on a 2D torus network.
The methodology tolerates both link and node failures. A node failure can be
modeled by the failure of all the links connected to it. Therefore, we will focus
only on link failures. When a link fails, we assume that it fails in both directions.
The methodology will assume a static fault model, thus, it will know in advance
where the failures are located. The proposed methodology will be focused only
in the computation of the new routing info for every source-destination pair2.

The methodology assumes that the initial (i.e., without faults) routing algo-
rithm routes packets by using fully adaptive routing with at least two virtual
channels (at least one adaptive and one escape) per physical channel. The adap-
tive channel(s) enables routing through any minimal path whereas the escape
channel guarantees deadlock freedom based on the bubble flow control [13]. A
fault-free path is computed by the methodology for each source-destination pair.
In the presence of faults, those paths that may use some faulty components are
not valid. The methodology avoids those faults by using intermediate nodes for
routing. Packets are first forwarded to an intermediate node, and later, from this
node to the destination node. Minimal adaptive routing is used in both subpaths.
Notice that packets are not ejected from the network at the intermediate node.

Next, we will describe how the intermediate nodes are selected.

2.1 Intermediate Nodes

We denote the source node of a path as S and the destination node as D. A
link connects two nodes whose coordinates only differ in one of the dimensions.
Faulty links (Ff) are represented by using the identifier of the node (the faulty
node F) with the lowest coordinate in the faulty dimension, or the node with
the highest coordinate if the link is the wraparound, and the faulty dimension
(f). The three coordinates of a given node N are denoted as (XN , YN , ZN).
Intermediate nodes are denoted as I.

If a faulty link Ff can be reached by packets sent from S to D, then an
intermediate node I is selected (if possible) in order to avoid Ff . Thus, an
intermediate node is used only if there is at least one failure along any possible
minimal path between S and D, that is, in a 3-D torus, if the failure is within the
cube defined by S and D. On the contrary, if the failure Ff can not be reached
for a particular S −D pair, normal routing is used.

The intermediate node I is selected inside the minimal adaptive cube defined
by S and D. Thus, both subcubes defined by S and I, and by I and D, are
inside this cube, but they are smaller and avoid the failure. Figure 1 shows these
subcubes for a given S, D, and I. If the packet is first sent to I and then to D,
the possible paths are reduced to the shaded areas, thus, avoiding the failure.
Packets are adaptively routed inside each stretch (S-I and I-D).

At the intermediate node, some action must be performed in order to avoid
deadlocks. We simply propose the use of two different escape channels. One of
them will be used as escape channel for the S-I stretch and the other one for
the I-D stretch. Therefore, we define two virtual networks. Each one relies on

2 Detection of faults, checkpointing, and distribution of routing info is out of the scope
of the methodology.

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks 465

F

I

S

D

Fig. 1. A minimal adaptive path for a S-D pair using an intermediate node

a different escape channel, but both use the same adaptive channel(s). That is,
if a packet is on its way to I, then it uses (if required) the first escape channel.
From I, the packet uses (if required) the second escape channel.

2.2 Selecting Intermediate Nodes

There may be several possible I nodes that can be used for each S − D pair.
The methodology computes the set of possible I nodes and then selects one of
them. Given a faulty link Ff , in order to compute the set of I nodes, some
properties can be deduced from the relative positions of S, D, and F in a 3D
torus network3:

– In one of the three dimensions, the I node must be placed between F and D.
That is, I must overcome or leave behind the failure in one of the dimensions.
This allows overriding the failure in the path between I and D.

– In another of the dimensions, the coordinate of the I node must lie between
S and F . That is, in one of the dimensions I must not overcome the failure.
This allows overriding the failure in the cube defined between S and I.

– Finally, in the remaining dimension, the coordinate of the I node can vary
between the coordinates of S and D.

Following the previous rules, I will avoid the failure, also providing a minimal
path. Figure 2 shows all the possible I nodes in a 3D torus when X is overcome
and Y is not overcome and vice versa. Notice that the two first aforementioned
rules can also be applied to the Z-dimension, leading to a possibly larger set of
possible intermediate nodes.

There are some cases where the previous rules must be done more precise:

– If the S coordinate is equal to the F coordinate in one dimension, then this
dimension must be overcome by the I nodes. This case is shown in Figure
3.(a) for a 2D torus, where Y is overcome and X is not, since YS = YF .

– If the D coordinate is equal to the F coordinate in one dimension, then the
coordinate of the I node in this dimension must lie between the S and the
F coordinates. That is, another dimension should be overcome. In Figure
3.(b), YD = YF , so the I nodes do not overcome Y .

3 For the sake of simplicity, the dimension f where the faulty link is located has not
been taken into account.

466 M.E. Gómez et al.

Source Fault Destination Intermediate

X+

Y+

Z+

Fig. 2. All the possible intermediate nodes for a particular S − D pair

Source Failure

Destination Possible intermediate nodes

X+

Y+

(a)

Source Failure

Destination Possible intermediate nodes

X+

Y+

(b)

Fig. 3. Possible I nodes for two particular cases: (a) YS = YF . (b) YD = YF

– Another special case arises when S, F , and D are in the same plane. That is,
the S, D, and F coordinates are the same for one dimension (for instance,
ZF = ZS = ZD). In this situation, if we want to follow a minimal path, then
the coordinate of I in this dimension must be also the same (i.e., I must also
be located in the same plane). Regarding the remaining coordinates, one of
them must overcome the fault and the the other one must not overcome the
fault. Such situations can be seen in Figures 3.(a) and 3.(b).

– If S, D, and F are in the same ring and the failure is between S and D
through the minimal path, it is impossible to find an I node in the minimal
path from S to D.

A possible solution is to travel in the opposite ring direction in order to
avoid the failure, selecting an intermediate node along this path. This case
can be seen in Figure 4.(a). A possible I node is the one that is halfway
between S and D through the non-minimal path. Notice that both paths
S − I and I −D are minimal, but the resulting S −D path is non-minimal.

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks 467

Source Failure

Destination Possible intermediate node

X+

Y+

(a)

Source FailureDestination

X+

Y+

Possible intermediate node

(b)

Fig. 4. Situations when S, F , and D are aligned in the same ring

– If S and D share the faulty link (see Figure 4.(b)) and the number of nodes
in the dimension is even, it is impossible to find a valid I node in the non-
minimal path from S to D as in the previous case.

The problem is that distance from S to the computed I is the same
both using the positive (faulty) and the negative directions of the dimen-
sion. Hence, the routing algorithm may select the wrong path. However, the
solution is simple. All we have to do is to move I nearer to S. Notice that
selecting I in this way also solves the previous case.

As the methodology uses at most one I node for every path, a selection of the
final I node is required. Although this selection may affect system performance,
at the current stage of this research, the selection is performed randomly.

2.3 Extension to More than One Failure

With the previous rules, all the 1-fault combinations are tolerated. In order
to support more than one failure, we define a forbidden zone where all the
failures are confined and use I nodes to avoid this zone. Moreover, for a given
S−D pair, only those failures located along any minimal path between them will
be considered. The I node must be computed following the rules presented in
Section 2.2. Figure 5.(a) shows the forbidden zone and the possible intermediate
nodes for a 2D Torus network.

However, in a scenario with more than one failure it may be necessary to
use additional mechanisms. E.g., with two faults located in the same ring, it is
impossible for some S − D pairs to find an adequate I. Figure 5.(b) shows a
case, where a combination of seven faults can not be tolerated with one I node
and adaptive routing in both stretches.

The figure shows a possible path that could be used, using the node located
at XS − 1, YS + 1 as I node. If minimal adaptive routing were used from S to
I, then some faults could be encountered. In order to properly reach I from
S, misrouting and switching off adaptive routing will be used. Misrouting will
force routing packets several hops along different directions. Once misrouting
is completed, then normal routing (or deterministic routing if adaptive routing

468 M.E. Gómez et al.

Source Failures

Destination Possible intermediate nodes

X+

Y+

(a)

Source FailureDestination

X+

Y+

Possible intermediate node

(b)

Fig. 5. 2D tori with several failures. (a). A faulty region is defined and I nodes are
computed. (b). Misrouting and disabling adaptive routing is required

is switched off) will be applied to the packet. In order to be deadlock-free, the
directions to misroute a packet must be used according to the order established
by the deterministic routing. In particular, the methodology will use the X+Y +
Z +X−Y −Z− direction-order routing, which is deadlock-free and adds routing
flexibility (it allows routing packets in both directions of the same dimension).

In the example shown in Figure 5.(b), by using direction-order routing, mis-
routing, and switching off adaptive routing, the packets will be misrouted one hop
in the X+ direction, and then forwarded deterministically (by using direction-
order routing) to the I node along the Y + and X− direction. In order to reach
D from I, misrouting must also be used in order to avoid faults. The packet
will be misrouted seven hops in the Y + direction to reach the D node. In each
subpath, we assume that packets are misrouted in at most three directions.

To sum up, in a scenario with more than one failure, the methodology will try
to override the faults by using all the strategies we have shown so far. Notice that
by applying the three mechanisms, it will be possible to compute different fault-
free paths for a given S−D pair, thus, being necessary to select among them. In
particular, for every S −D pair the methodology will first try to get a minimal
path. If no minimal path is found then it will try non-minimal paths by switching
off adaptivity and using misrouting in both stretches. The methodology will
always pick the path that provides the shortest path.

2.4 Required Resources and Complexity

A packet routed through intermediate nodes requires two subheaders. The first
one is used for routing the packet towards the intermediate node, and the sec-
ond one for routing the packet towards the final destination. At the intermediate
node, the first header is removed. However, nodes must select the proper escape
channel (if required). If the packet has two headers, then it must select the first
escape channel. If it has only one header, the second escape channel must be se-
lected. Packet subheaders also include control fields about misrouting (direction
and hops) and switching off adaptive routing (one bit).

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks 469

The methodology also requires routing info to be stored at each source node.
For every destination, this info includes the possible intermediate node (if re-
quired) and info about misrouting and switching off adaptive routing. Notice
that the amount of required memory is low. In a large system with 65,536 nodes
and 5 bytes for routing purposes, the memory size required will be 320KB.

The computational cost of the proposed methodology is low, especially if we
take into account that routing info is computed off-line. Most of the affected
paths only use an intermediate node to avoid faults, and the cost of computing
each intermediate node is O(1). Thus, for all the paths, the computational cost
is O(n2), where n represents the number of nodes. However, in a few cases,
misrouting has to be used, thus increasing the computational complexity. The
algorithm has to explore all the possible hops along each dimension (up to the
network radix, k) until a fault-free path is found. For a 3D Torus (with n = k3

nodes), in the worst case, the computational cost is O(k3) = O(n). Hence, the
computational cost for all the paths by using the proposed methodology is O(n3).

3 Evaluation of the Methodology

In this section, we evaluate the proposed methodology. First, we are interested
in analyzing its fault-tolerance. The methodology is n−fault tolerant, if it is
able to tolerate any combination of n failures. A given combination of failures
is tolerated if every S − D pair in the network can communicate avoiding the
failures. Some fault combinations may physically disconnect some nodes from
the network. This is not considered as a not tolerated combination.

We are also interested in analyzing how the methodology influences network
performance. For this purpose, we compare the performance degradation expe-
rienced by our methodology against the one experienced by a mechanism similar
to the one used in the BlueGene/L supercomputer. This system is chosen be-
cause it represents a state-of-the-art system, and uses adaptive routing and a
direct network (3-D torus). Thus, the methodology could be applied to this
system.

3.1 BlueGene/L Supercomputer

BlueGene/L [1] is configured as a 64 × 32 × 32 torus of computing nodes con-
structed with point-to-point serial links between the routers. It uses virtual
cut-through [11] and provides both adaptive and deterministic minimal-path
routing. Physical channels are multiplexed into up to four virtual channels. Vir-
tual channels are divided into two groups. Two of the virtual channels are used
for adaptive minimal routing [7], and two for deterministic minimal routing. One
of the deterministic channels is used as escape channel. The bubble flow con-
trol [13] is used in order to guarantee deadlock-freedom. The last deterministic
virtual channel is reserved for high-priority packets.

The BlueGene/L supercomputer uses a static fault model with checkpointing.
Fault-tolerance is achieved by marking healthy nodes as faulty in order to pre-
serve topology and routing, which is extremely convenient when it is hardwired
in each router. All the nodes included in four planes (4,096 or 8,192 nodes) that

470 M.E. Gómez et al.

contain the faulty node/link are marked as faulty. A special hardware bypasses
the four planes.

3.2 Simulation Model

A detailed event-driven simulator has been used which models a direct intercon-
nection network with point-to-point bidirectional serial links. Each router has
a non-multiplexed crossbar with queues only at the input ports. Each physical
input port uses four virtual channels, each providing buffering resources in order
to store up to two packets. A round-robin policy has been chosen to select among
packets contending for the same output port.

Packets are adaptively routed with minimal paths by using the two adaptive
virtual channels. In the two escape channels, packets are deterministically routed
following the X +Y +Z +X−Y −Z− order. The two escape channels are used
according to the bubble flow control mechanism. When a packet arrives at an
input port, the escape queue will be used only if the adaptive queues are full. The
output port selected for each routed packet will take into account the information
located in the packet header, the status of available output ports, and the status
of the neighbor nodes queues.

In all the presented results, the network topology is a 3D torus. Each node
has four internal ports connected to the processing node. We present results for
3× 3× 3 (27 nodes) and 8× 8× 8 (512 nodes) tori. Although actual systems are
built with larger topologies (e.g., a 32× 32× 64 torus for BlueGene/L), smaller
networks can be evaluated exhaustively from a fault-tolerant point of view and
the results can easily be extended to larger networks.

For each simulation run, the traffic has the following features. Packet gen-
eration rate is constant and the same for all the nodes. The destination of a
message is chosen randomly with the same probability for all the nodes. The
packet length is set to 128 bytes.

3.3 Evaluation Results

First, we have analyzed all the fault combinations for up to 5 faults in a 3×3×3
torus. With 5 faults, 25,621,596 fault combinations have been analyzed, and all
of them are tolerated by the methodology.

As the number of faults increases, the number of possible fault combinations
exponentially increases. Therefore, from a particular number of faults (six faults
for the 3× 3× 3 torus), it is impossible to explore all the fault combinations in
a reasonable amount of time. We will tackle this problem with two approaches.
First, we will focus on faults confined in a limited region of the network. Notice
that, the worst combinations of faults to be solved by the methodology are those
where they are closely located. As the number of fault combinations within such a
region is much lower than for the entire network, all the fault combinations can be
evaluated. This gives us an approximation of the effectiveness of the methodology
in the worst case. Secondly, a statistical analysis is performed, analyzing a subset
of the fault combinations, where the faults are randomly located over the entire
network. From the obtained results, statistical conclusions are extracted about
the fault-tolerance degree of the proposed methodology.

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks 471

For the first study, the faults are located over a region which will be formed
by all the links in the positive direction (in each dimension) of the nodes that are
one hop away from a node (the center node) randomly selected4. Such a region
will be referred to as a distance 1 region, and will be formed by 21 links (3 links
· 6 neighbours + 3 links of the center node) in a 3 × 3 × 3 Torus. Notice that
for a high number of faults, the center node will be hardly accessible, as very
few links will be not faulty. We have defined the distance 1 region in such a way
that only the center node can become disconnected.

All the fault combinations for up to 14 faults have been analyzed in the
distance 1 region. The methodology is 7-fault tolerant for the distance 1 region,
since the 116,280 fault combinations are tolerated. From 8 faults upwards, some
cases are not handled by the methodology. However, the methodology is able to
tolerate up to 11 faults in more than 99% of the analyzed combinations. For a
greater number of faults, the percentage of supported combinations progressively
decreases. Nevertheless, it is hard to imagine a system working for a long time
with such a high number of faults, without being repaired.

Next, we present a more realistic scenario, where the faults are randomly
located over the entire network. We generate random combinations of n faults
and analyze them in order to know if they can be tolerated by our mechanism. We
have analyzed 28,400,000 fault combinations in a 3× 3× 3 torus with different
numbers of link failures (up to 14). For all the cases analyzed, all the fault
combinations were solved by the methodology with an error always lower than
0.00074. This error represents the maximum probability that a fault combination
is not tolerated by the methodology. Therefore, the mechanism handles faults
very efficiently, even for more than 7 link faults.

It must be noticed that the fault tolerance analysis has been performed in
a 3 × 3 × 3 Torus. However, because the faults will be at the same or greater
distance in a larger network, it is reasonable to expect an equal or even better
fault-tolerance degree in larger networks.

Following, we focus on the performance analysis. In order to make the results
independent of the relative positions of the failures, we have run 50 simula-
tions (for each number of failures), each of them corresponding to a different
randomly-selected failure combination. Figure 6.(a) shows the mean overall net-
work throughput achieved for different numbers of failures in a 8× 8× 8 Torus.
The confidence intervals are always lower than ±1.6. As can be seen, the network
performance is not seriously affected by the presence of failures (throughput de-
creases by 5.5% for 6 faults and by 10% for 14 faults).

Finally, we compare the performance degradation when using our method-
ology against the performance degradation that would be obtained by a fault-
tolerant mechanism similar to the one used in the BlueGene/L supercomputer.
The BlueGene/L system disables four planes of nodes in order to deal with a
fault. As we are using a smaller torus network, we model the mechanism of the
BlueGene/L system by only disabling one plane. Figure 6.(b) shows the network

4 The selection of the center node will not affect results due to the symmetry property
of the torus network.

472 M.E. Gómez et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

fl
its

/c
yc

le
)

Number of failures

’Methodology’

(a)

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t (

fl
its

/c
yc

le
)

Number of failures

’Methodology’
’Disabling several planes’

(b)

Fig. 6. (a). Mean overall network throughput (flits/cycle) degradation in a 8 × 8 × 8
torus network. (b). Mean overall network throughput degradation for the proposed
methodology and for the BlueGene/L like mechanism, in an 8 × 8 × 8 Torus network

throughput obtained with the two methodologies when there are up to 7 faults
in a 8× 8× 8 Torus. Error bars are not shown as they are too small.

Notice that this is a worst case for the fault-tolerant mechanism similar to
the BlueGene/L mechanism, as we assume that the seven faults are located in
seven different planes. If the seven faults were located in the same plane, only
one plane would be disconnected. As shown in Figure 6.(b), when seven faults
are present, our proposed mechanism achieves better performance results than
the BlueGene/L-like mechanism does with only one fault present. Thus, even
if all the seven faults were in the same plane, our proposed mechanism would
still outperform the BlueGene/L-like mechanism. Network throughput degrades
only by up to a 6.4% with 7 random faults when using our mechanism, whereas
when using the BlueGene/L mechanism, the network performance drops by 88%
when disabling seven planes. These results must be put in context. That is,
they are obtained in a 8 × 8 × 8 Torus. For larger networks, in particular for
the 32 × 32 × 64 Torus used in the BlueGene/L supercomputer, a fault would
disconnect four planes of at least 32 × 32 nodes. That is, 4,096 out of 65,536
nodes. So, in the presence of seven faults, performance would decrease at least
6.25% (if the seven faults are in the same four planes). For our mechanism, in a
larger network, performance degradation in the presence of seven faults should
be significantly lower than the 6.4% obtained in the 8 × 8 × 8 Torus. This is
because the traffic unbalance introduced by the faulty links will be lower in a
larger network.

4 Conclusions

In this paper, we have proposed a fully adaptive fault-tolerant methodology
valid for n-dimensional mesh and torus networks with a static fault model.
The methodology relies mainly on the use of intermediate nodes in order to
avoid faults. However, to deal with particular fault configurations, some source-
destination pairs communicate through non minimal paths. Also, for some pairs
of nodes, adaptive routing is disabled in the subpaths in order to tolerate more
faults. Unlike other fault-tolerant approaches, the proposed methodology does

A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks 473

not need to disable any healthy node, only requires one additional virtual chan-
nel, and does not degrade performance in the absence of failures.

Evaluation results on a 27-node tori show that the proposed methodology is
7-fault tolerant. Additionally, the percentage of tolerated fault combinations is
greater than 99.9% when up to 14 failures are considered. Also, network through-
put degrades less than 10% when injecting 14 random failures in a 512-node
Torus. In contrast, a fault-tolerant mechanism similar to the one used in the
BlueGene/L may degrade network throughput by 88%.

References

1. IBM BG/L Team, An Overview of BlueGene/L Supercomputer, ACM Supercom-
puting Conference, 2002.

2. A.A. Chien and J.H. Kim, Planar-adaptive routing: Low-cost adaptive networks
for multiprocessors, Proc. of the 19th Int. Symp. on Computer Architecture, pp.
268-277, May 1992.

3. S.Chalasani and R.V. Boppana, Communication in multicomputers with noncon-
vex faults, IEEE Trans. on Computers, vol. 46, no. 5, pp. 616-622, May 1997.

4. W.J. Dally and H. Aoki, Deadlock-free adaptive routing in multicomputer networks
using virtual channels. IEEE Trans. on Parallel and Distributed Systems, vol. 4,
no 4. pp. 466-475, April 1993.

5. W. J. Dally et al., The Reliable Router: A Reliable and High-Performance Commu-
nication Substrate for Parallel Computers, Proc. Parallel Computer Routing and
Communication Workshop, 1994.

6. J. Duato, A theory of fault-tolerant routing in wormhole networks, Proc. of the
Int. Conf. on Parallel and Distributed Systems, pp. 600-607, Dec. 1994.

7. J. Duato, A Necessary and Sufficient Condition for Deadlock-Free Outgoing in
Cut-Through and Store-and-Forward Networks, Proc. of IEEE Trans. on Parallel
and Distributed Systems, vol. 7, no. 8, pp. 841-854, August 1996.

8. Earth Simulator Center, http://www.es.jamstec.go.jp/esc/eng/index.html.
9. G.J. Glass, and L.M. Ni, Fault-Tolerant Wormhole Routing in Meshes without

Virtual Channels, IEEE Trans. on Parallel and Distributed Systems, vol. 7, no. 6,
pp. 620-636, 1996.

10. C.T. Ho and L. Stockmeyer, A New Approach to Fault-Tolerant Wormhole Routing
for Mesh-Connected Parallel Computers, Proc. of 16th Int. Parallel and Distributed
Processing Symp., April 2002.

11. P. Kermani and L. Kleinrock, Virtual cut-through: A new computer communication
switching technique, Computer Networks, vol. 3, pp. 267-286, 1979.

12. D.H. Linder and J.C. Harden, An Adaptive and fault tolerant wormhole routing
strategy for k-ary n-cubes, IEEE Trans. Computers, vol. C-40 no. 1, pp. 2-12, 1991.

13. V. Puente et al., Adaptive Bubble Router: A Design to Balance Latency and
Throughput in Networks for Parallel Computers, Proc. of the 22nd Int. Conf.
on Parallel Processing, September 1999.

14. Y.J. Suh, B.V. Dao, J. Duato, and S.Yalamanchili, Software-based rerouting for
fault-tolerant pipelined communication, IEEE Trans. on Parallel and Distributed
Systems, vol. 11, no. 3, pp. 193-211, 2000.

15. L.G. Valiant, A Scheme for Fast Parallel Communication, SIAM Journal on Com-
puting. vol. 11, pp. 350-361, 1982.

 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 474–483, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Fast and Efficient Submesh Determination in
Faulty Tori

R. Pranav and Lawrence Jenkins

 Department of Electrical Engineering, Indian Institute of Science, Bangalore
{pranav, lawrn}@ee.iisc.ernet.in

Abstract. In a faulty torus/mesh, finding the maximal fault-free submesh is the
main problem of reconfiguration. Chen and Hu [1] proposed a distributed
method to determine the maximal fault-free submesh in a faulty torus. In this
paper, we show that it is sufficient to apply the distributed algorithm proposed
by Chen and Hu [1] to only few nodes of a torus. The time for determination of
the maximal fault free submesh/submeshes (MFSS) is considerably reduced, by
reduction in the number of messages needed for determination of MFSS. In ad-
dition, it also reduces the congestion in the network. We present an algorithm
to determine the smallest submesh containing all faulty nodes in a torus. The
proposed algorithm has a time complexity of O(n(m+k)) for a k-ary n-cube
with m faults. Intensive simulation study reveals that number of messages is
significantly reduced compared to Chen and Hu’s [1] method.

1 Introduction

In recent years, researchers have become increasingly interested in mesh, torus, and
hypercube based distributed systems. There are many commercial mesh, torus and
hypercube based architectures, such as Cray T3D[2], Intel Paragon XP/S[3],
nCUBE[4], Caltech Cosmic[5] Intel/DARPA Touchstone Delta[6] and the recent
IBM BlueGene/L [7], which aims at delivering target peak processing power of 360
teraflops. IBM Bluegene is a 3-dimensional torus with 64x32 32 nodes i.e. total of
65,536 processing elements.

Fault tolerance in such a huge system becomes one of the critical aspects of inter-
est, so as to maintain the high availability of the system. When the nodes/links in such
a system become faulty, there is a need to detect, diagnose and reconfigure the system
to a working state, and to recover from the errors. Reconfiguration is one of the main
tasks. There are two traditional ways of reconfiguring the system. One adds redundant
nodes/links, and the other uses the graceful degradation technique. Redundancy tech-
niques [8], [9], [10], [11] use spare nodes and spare links. Whenever some node/link
goes faulty, the system is reconfigured in such a way that it includes all fault-free
nodes/links. This technique is inefficient, because many fault-free nodes/links are not
used.

In the graceful degradation technique, faulty nodes/links are discarded, and the
rest of the fault free subsystem is used, with small performance degradation. The

Fast and Efficient Submesh Determination in Faulty Tori

475

main problem in reconfiguring is to identify the MFFS in the faulty torus. Many re-
searchers like Ozguner and Aykanat [12], Sridhar and Raghavendra [13], Latifi [14],
and Chen and Tzeng [15],[16] have studied reconfiguration by the graceful degrada-
tion technique in hypercubes, and Seong-Moo and Yong-Youn [17] have studied
reconfiguration by the graceful degradation technique in 2-dimensional meshes. All
the above techniques are either not scalable and/or suffer from high time complexity.
Chen and Hu [1] proposed a distributed algorithm (‘Algorithm A’) to determine the
MFFS, which is applied to all nodes to determine the MFFS locally, and then in the
next phase the information is passed, in a non-redundant way, to find the global
MFFS.

In this paper, we show that, to determine MFFS it is sufficient to apply ‘Algo-
rithm A’ to a few nodes, rather than applying it to all nodes of the torus. So, in the
second stage of information gathering, there will be fewer messages passed. As mes-
sage passing is the bottleneck in most of the distributed algorithms, the time required
for determining the MFFS is reduced. The reduction in the number of messages in the
network also reduces congestion.

The smallest submesh containing all faulty nodes is used to determine the nodes
to which ‘Algorithm A’ is to be applied. We present a Cyclic Binary String Based
(CBSB) algorithm to determine the smallest submesh containing all faulty nodes. The
CBSB algorithm has a time complexity of O(n(m+k)) for a k-ary n-cube with m
faulty nodes.

The reminder of the paper is divided into 6 sections. Section 2 and 3 explain the
notation and definitions used in this paper. In section 4, we brief the Chen and Hu [1]
method. The proposed strategy is delineated in section 5. Section 6 provides simula-
tion results, comparing the proposed strategy with that of Chen and Hu’s [1] method.
Conclusions are discussed in Section 7.

2 Notation

An n-dimensional torus is denoted by Tn(k
n-1

,k
n-2

,…,k
0
), where n is the number of

dimensions and ki is the number of nodes in the ith dimension, where ki>1. Each node
is identified by an n-dimensional vector address, <l

n-1
,l

n-2
,…,l

0
>, where 0 ≤ li<ki, for

0 ≤ i<n. Let li(x) denote the sub-label corresponding to dimension i, of node x. Node y
is the positive neighbor of node x along dimension j only if li(x) = li(y) for all i,
0 ≤ i<n, except for i = j, where li(y) = (li(x)+1) mod ki, and we say that the connection
from node x to node y is in the positive direction. Similarly, node y is the negative
neighbor of node x along dimension j only if li(x) = li(y) for all i, 0 ≤ i<n, except for
i = j, where li(y) = (li(x)-1) mod ki, and we say that the connection from node x to
node y is in the negative direction.

An n-dimensional mesh is an n-dimensional torus without wraparound connec-
tions. A corner node in an n-dimensional mesh is a node with exactly n neighbors.
Thus, an n-dimensional mesh has 2n corners. The corner, which has all n neighbors in
positive (negative) direction, in an n-dimensional mesh is defined as the base (end)
node of the mesh. A submesh in an n-dimensional torus specifying the base node

R. Pranav and L. Jenkins

476

<b
n-1

,b
n-2

,…,b
0
> and the end node <e

n-1
,e

n-2
,…,e

0
> is denoted by {<b

n-1
,b

n-2
, …,b

0
>:

<e
n-1

,e
n-2

,…,e
0
>}.

In the following, we apply set theory to represent submeshes in the torus. Let ‘.’
denote intersection and ‘+’ denote Union of two sets and Complement is denoted by

‘ ’. Let di(b:e) be an n-dimensional (or (n–1)-dimensional, if b = e) submesh in

an n-dimensional torus, consisting the set of nodes <l
n-1

,l
n-2

,…,l
0
> such that 0 ≤ lj<kj for

all j ≠ i and li is one of b, (b+1)mod ki, (b+2)mod ki, … , (e-1) mod ki and e. The

complement of di(b:e), denoted by e):(bdi , consists the set of nodes <l
n-1

,l
n-2

, …,l
0
>

such that 0 ≤ lj<kj for all j ≠ i and li can be one of (e+1)mod ki, (e+2)mod ki, …,
(b-2)mod ki and (b-1)mod ki, i.e. di ((e+1)mod ki : (b-1)mod ki). The complement of
union/intersection of submeshes can be simplified using simple DeMorgan’s laws.

Let ‘ ∏ ’ denote the intersection of set of submeshes and ‘ ’ denote the union of
set of submeshes. A submesh with the base node <b

n-1
,b

n-2
,…,b

0
> and the end node

<e
n-1

,e
n-2

,…,e
0
> is represented by ∏ −

=

1

0
):(

n

i iii ebd . Note that a submesh can be rep-

resented by a product term (minterm).

3 Definitions

Definitions used in this paper are given as follows:

Definition 1. Given a node X, the candidate-submesh in a torus with respect to node
X is the submesh whose base node is X and which contains all the torus nodes.

Definition 2. Given a node X, the antipodal-node of X in a torus is the farthest node
from X in the candidate-submesh with respect to X.

Definition 3. Given a node X, a reject-region in a faulty torus with respect to node X
is the smallest submesh which contains faulty node of the torus and the antipodal
node of X in the candidate-submesh with respect to node X.

Definition 4. A prime-submesh with a given node, say X, as the base node is a fault-
free submesh which involves X but is not contained entirely in any other fault-free
submesh involving X as the base node.

Note that the antipodal-node is the node which is the negative neighbor along all
dimensions of the given node. A reject-region is addressed simply by using the labels
of a faulty node and the antipodal node as the base and the end nodes respectively.
The prime-submesh is defined with respect to the given node, and prime-submeshes
with respect to different nodes could be of different sizes. The prime submesh is
MFFS with respect to the given node.

Definition 5. Let B be any submesh in the torus; let B be called a base-submesh. Then
antipodal-submesh B* of B is the submesh formed by the antipodal-nodes of all
nodes in B.

Fast and Efficient Submesh Determination in Faulty Tori

477

Since an antipodal-node is the node which is the negative neighbor of the given
node along all dimensions. For a base-submesh with the base node <b

n-1
, b

n-2
,…,b

0
>

and the end node <e
n-1

,e
n-2

,…,e
0
> is given by expression∏ −

=

1

0
):(

n

i iii ebd , and the

antipodal-submesh is given by ∏ −

=
−−1

0
)mod)1(:mod)1((

n

i iiiii kekbd in an

n-dimensional torus Tn(k
n-1

,k
n-2

,…,k
0
). Similarly, for a given antipodal–submesh we

can determine a base-submesh.

4 Chen and Hu’s Work

Chen and Hu[1] proposed a boolean expression based approach to determine the
MFFS in a torus consisting of faulty nodes and/or faulty links. They proposed a two-
phase approach. In the first phase, the distributed ‘Algorithm A’ which has a time
complexity of O(kn.m.(m+k)), is applied to all nodes of the torus (except the faulty
nodes). The ‘Algorithm A’ simplifies the complement of the union of reject-regions
expression from product-of-sum form to sum-of-product form. The MFFS with re-
spect to a given node (prime-submesh) are extracted from the simplified expression.
In the next phase the global MFFS is determined by passing messages between the
nodes in a non-redundant manner. It is assumed that the set of faulty nodes is uncov-
ered in a distributed manner by the fault-free nodes, following the diagnostic algo-
rithm introduced by Armstrong and Gray[18]. For further explanations refer [1].

5 Proposed Approach

In the proposed approach, we first show that it is sufficient to apply ‘Algorithm A’ of
Chen and Hu to a part of the torus, rather than to all the nodes of the submesh. This
reduces the number of messages passed and the time required to determine the MFFS.

Theorem 1. To determine MFFS, it is sufficient to apply ‘Algorithm A’ to the base-
submesh of any submesh containing all faulty nodes.

Proof. Let the base and the end nodes of the submesh containing the set of m (m>0)
faulty nodes, say S, be <b

n-1
,b

n-2
,…,b

0
> and <e

n-1
,e

n-2
,…,e

0
>, respectively, in an n-

dimensional torus Tn(k
n-1

,k
n-2

,…,k
0
) i.e. S =∏ −

=

1

0
):(

n

i iii ebd .

Let the base-submesh formed by S be

∏ −

=
++= 1

0
)mod)1(:mod)1((

n

i iiiii kekbdB Let X = { mXXX ,...,, 21 } be

the set of all m faulty nodes with labels < 1
0

1
2

1
1 ,...,, xxx nn −− >, < 2

0
2

2
2

1 ,...,, xxx nn −− > ,

… , < 1 2 0, ,...,m m m
n nx x x− − > respectively. Depending on number of faults and pattern of

fault distribution, there will be two cases.

R. Pranav and L. Jenkins

478

Case 1:- If B is null, then B contains all the nodes of the torus, so ‘Algorithm A’
should be applied to all the nodes of the torus (like in Chen and Hu’s method), to get
global MFFS.

Case2:- If B is not null.
Now, apply ‘Algorithm A’ to any node

>++=< −− 0011 mod)1(,...,mod)1(kykyY nn in B i.e.

∏ −

=
++= 1

0
)mod)1(:mod)1((

n

i iiiii kekbdB

1

0
)mod)1(:mod)1((

−

=
++= n

i iiiii kekbd

 =
1

0
):mod)2((

−

=
+n

i iiii bked

Since Y lies in B , the antipodal-node of node Y i.e. < 021 ,...,, yyy nn −− > lies in

1

0
)mod)1(:mod)1((

−

=
−+n

i iiiii kbked

)k 1)mod-(b :k 1)mod((ed...)k 1)mod-(b :

k 1)mod((ed)k 1)mod-(b :k 1)mod((ed

000002-n2-n

2-n2-n2-n1-n1-n1-n1-n1-n

+++
+++=

 = S .

Therefore, in the node < 021 ,...,, yyy nn −− >, there exists at least a dimension i

such that iy lies between ii k 1)mod(e + and ii k 1)mod-(b .

Let us consider a case such that in the node < 021 ,...,, yyy nn −− > there ex-

ists only one dimension i = p, 1p0 −≤≤ n such that iy lies between

ii k 1)mod(e + and ii k 1)mod-(b and for pi ≠ , iy lies between bi and ei and

the reject-region formed by faulty node jX , say ∏ −

=
= 1

0
):(

n

i i
j

ii
j

Y yxdR .

Now apply ‘Algorithm A’ to the node

>++

+++=<

−−

++−−

0011

1111

mod)1(,...,mod)1(

,mod)1(,mod)1(,...,mod)1(

kyky

kekykyE

pp

ppppnn

where < 0111 ,...,,,,..., yyeyy pppn −+− > is the antipodal-node of E, the reject-region

formed by a faulty node jX , say ∏ −

=
= 1

0
):(

n

i i
j

ii
j

E exdR . Since for any dimen-

sion i, and for any faulty node jX , j
ix lies between ib and ie , the node

< 0111 ,...,,,,..., yyeyy pppn −+− > lies in j
yR . Therefore j

ER ⊂ j
yR j∀ mj ≤≤1 ,

and the prime submesh found by applying ‘Algorithm A’ to node Y will be the subset
of the prime submeshes found by applying ‘Algorithm A’ to node E (A prime -
submesh does not contain any nodes inside reject-regions and a node outside all reject

Fast and Efficient Submesh Determination in Faulty Tori

479

regions is contained in at least one prime submesh[1]). Hence there is no need to
apply ‘Algorithm A’ to node Y.

Similarly, we can prove that there is no need to apply ‘Algorithm A’ to node Y,

for all nodes < 021 ,...,, yyy nn −− > such that there is more than one dimension along

which iy lies between ii k 1)mod(e + and ii k 1)mod-(b

According to the above theorem, it is sufficient to apply ‘Algorithm A’ to the
nodes of the base-submesh of a submesh containing all faulty nodes. Let us consider
the smallest submesh containing all faulty nodes. Then the corresponding base-
submesh will be the smallest one. This is because the number of nodes in the base
submesh of a submesh, say S, will be equal to the number of nodes in S. Therefore
the number of nodes to which the ‘Algorithm A’ is applied gets reduced, as compared
with Chen and Hu’s [1] method, and hence the number of messages passed will get
reduced, and that in turn reduces the time required to determine the MFFS. Message
passing is one of the bottlenecks of many distributed method of problem solving. The
reduction in the number of messages passed will reduce the major overhead. It will
also reduce the congestion in the network.

Now the problem is to find a smallest submesh containing all faulty nodes. In this
paper we propose CBSB Algorithm to find the smallest submesh containing all faulty
nodes. For an n-dimensional torus Tn(k

n-1
, k

n-2
,…,k

0
) with m faulty nodes, the CBSB

Algorithm finds n submeshes, where for each dimension j there is a submesh, which
optimizes only along dimension j. In other words each submesh is optimized along
one of the n different dimensions. To determine each of the n submeshes, we use the
concept of cyclic binary string. The intersection of the n submeshes will have all m
faulty nodes and will be optimized along all the n dimensions; it will be the smallest
submesh that contains all faulty nodes. The CBSB algorithm is as follows:

CBSB Algorithm
Input: Set of all m faulty nodes in a torus Tn (kn-1,…., k1, k0) where m>0
Output: Smallest submesh containing all m faulty nodes.
For each dimension i=0 to n-1 begin
Step1: For j=0 to ki-1
 If there is faulty node in submesh di(j:j) Flag[j]=1;
 Else Flag[j]=0;

// above step can performed like this: first initialize Flag[1…ki-1]=0;
// for each faulty node <Xn-1, Xn-2, … , X0> Flag[Xi]=1;
 Step2:Now the array Flag is a string containing 0s and 1s. Consider the string to be

a cyclic string of length ki-1. Find two indices to Flag <s,e> such that the
number of 0’s between Flag[s] and Flag[e] is minimum and all 1s lie be-
tween Flag[s] and Flag[e] (inclusive).

 Submesh [i]= di(s:e).
 end
 Minsubmesh = submesh[0] submesh[1] … submesh[n-1]
 return Minsubmesh

R. Pranav and L. Jenkins

480

The above algorithm has two major steps, both of which are repeated for n times.
During each iteration i, we find a submesh which is optimized along the dimension i.
The first step is initialization of Flag array (cyclic binary string), and as there are m
faults, this takes a time of O(m). The second step is to find the largest sequence of 0s
in the flag array (considering Flag to be cyclic sequence of 0s and 1s of length ki-1)
and to find the complement of this sequence. This step takes a time of O(ki). As these
two steps are repeated n times, the total time complexity of the algorithm is

).(
1

0

−

=
+ n

i ikmnO . For a k-ary n-cube, there are k nodes across each of the n di-

mensions. Therefore the CBSB algorithm has a time complexity of O(n(m+k)) for k-
ary n-cube.

It is assumed that the torus system has one host node, which is connected directly
to every node in the system, and which is in charge of reconfiguration. This host node
is similar to that assumed in Chen and Hu’s [1] method. All faulty nodes are diag-
nosed and determined at the host node using the techniques described in [18] or [19].
Then the host node applies the CBSB Algorithm to find the smallest submesh, say S,
containing all faulty nodes. From S, the base-submesh of S, say B, is calculated. The
host node broadcasts a message describing all faulty nodes and the submesh B. All
the healthy nodes which lie in B execute ‘Algorithm A’ and determine the local
MFFS. The base node of B executes ‘Algorithm A’ and sends a message describing
its local MFFS to all its neighbors in the positive direction which lie in B. Any
healthy node in B other than the base node of B executes ‘Algorithm A’ and waits for
the message from all the healthy neighbors in the negative direction that lie in B.
After getting all the messages, the node chooses the maximal submeshes among the
submeshes described in the messages and its local MFFS. Then the node sends a
message describing the chosen maximal submeshes to all the healthy neighbors in
positive direction that lie in B. In case the node is the end node of B or there is no
healthy neighbor in the positive direction that lies in B, the message is directly sent to
the host node. In a special case, if for any node there are no healthy neighbors in the
negative direction that lie in B, the node need not wait for any message, and therefore
it sends a message describing its local MFFS to all healthy neighbors that lie in B.
The host node may get more than one message, so it chooses the maximal submeshes
among the submeshes described in messages, which is the required global MFFS of
the torus.

To extend the method to faulty links, we use the method described in [1], for
finding the reject region formed by a faulty link. There are two nodes connecting
each link, so a preferred node [1] can be one of the two nodes connecting the faulty
link. As the preferred node is chosen based on a given node and is different from
one given node to another [1], any of the nodes connecting faulty link can be the
preferred node. Therefore, in the above method, S should consist all the faulty
nodes, and all the nodes connecting faulty links. Now base-submesh of S, (i.e. B) is
calculated and the rest of the process for determining MFFS is same as described
above.

Fast and Efficient Submesh Determination in Faulty Tori

481

6 Performance Study

In this section, we have compared the proposed method of determining MFFS with
that of Chen and Hu. In section 6.1 system models and performance parameters are
discussed. The simulation results are presented in section 6.2.

6.1 System Models and Performance Measures

The model simulated is a 3 dimensional torus T3(10,10,10) with 1000 nodes. We
conducted simulations for 100 different values of m (number of faulty nodes) starting
from 1 to 100 and generated 1000 random fault patterns for each m.

The time taken to determine MFFS in a faulty torus by these two distributed
methods depends on the number of nodes executing ‘Algorithm A’ and the number of
messages spread in the network. Therefore, for each fault pattern, the number of
nodes that execute ‘Algorithm A’ and number of messages that will be spread in the
network were measured. Then the average of 1000 values for each m is calculated. So
we use the average number of nodes participating in determination process and the
average number of messages used as the performance measures.

6.2 Simulation Results

Fig. 1 shows the graph of average number of nodes that participate (executes ‘Algo-
rithm A’) in MFFS determination Vs number of faults. In Chen and Hu’s [1] method,
‘Algorithm A’ is applied to all healthy (fault-free) nodes of the torus. Initially when
there is only one faulty node, the ‘Algorithm A’ is applied to 999 healthy nodes, as
depicted in the graph. As the number of faults increases, the number of healthy nodes
keeps decreasing. Therefore, there is a decreasing trend in the number of nodes to
which the ‘Algorithm A’ is applied.

In the proposed approach, ‘Algorithm A’ is applied to base-submesh (B) of the
smallest submesh containing all faulty nodes (S). Initially, when the number of faulty
nodes is one, the submesh S contains only one node, and therefore submesh B con-
tains only one node. Hence, only one node executes the ‘Algorithm A’. Initially as the
number of faults increases and occurs in a random fashion, the probability of scatter-
ing of faults also increases. This rapidly increases the number of nodes in S and B,
especially the healthy nodes. Hence, there is a fast increasing trend in the number of
nodes that participate in MFFS determination.

The size of S and B cannot exceed the size of the torus. As the number of faults
increases (for m=20 and onwards) the sizes of S and B starts getting saturated due to
the size restriction, leading to a slowly increasing trend in the number of nodes that
participate in MFFS determination. For m=60 and onwards, the sizes of S and B will
reach the limit (size of torus) in most of the fault patterns, and now the number of
nodes that participate in MFFS determination in proposed approach will be equal to
that of Chen and Hu’s method, so both the curves converges. This also indicates that
in the worst case the proposed method works as good as Chen and Hu’s method. As
the number of messages is proportional to the number of nodes that participate in the
submesh determination, a similar trend is seen in the Fig 2.

R. Pranav and L. Jenkins

482

These graphs clearly depict a significant difference in the number of messages
and nodes that participate in submesh determination between Chen and Hu’s [1] and
the proposed approach for low number of faults. As the time required in determining
the maximal submesh is proportional to the number of nodes participating in the de-
termination and the number of messages, it also decreases compared to Chen and
Hu’s [1] method. In the worst case, when number of faults is high, our scheme per-
forms as good as Chen and Hu’s method. But with high number of faults, the average
size of the fault-free submesh will be very small [1] and it is highly unrealistic to
work in such a condition. Therefore in a practical system the number of faults is
small. Hence in a practical system, where number of faults is less, our scheme outper-
forms Chen and Hu’s method.

Fig. 1. Average number of nodes Versus Fig. 2. Average number of messages Versus
Number of faults(m) Number of faults(m)

7 Conclusions

In this paper we have showed that “it is sufficient to apply ‘Algorithm A’, proposed
by Chen and Hu in [1] to only some part of the torus when there are few faulty ele-
ments”. It is also shown that the part of the network to which ‘Algorithm A’ is to be
applied is related to the smallest submesh containing all faulty nodes. In the proposed
method, the number of messages passed during determination of MFFS is reduced
(compared to Chen and Hu’s method). The reduction in the number of messages will
reduce the time taken for determination of MFFS and the congestion in the network.

This paper also presents an algorithm based on cyclic binary string to find a
smallest submesh containing all faulty nodes in faulty torus. The CBSB Algorithm
has a time complexity of O(n(m+k)) for a k-ary n-cube. The simulation results show
that proposed strategy outperforms that of Chen and Hu’s method.

This paper also extends the method to determine MFFS in the presence of faulty
links. The proposed approach to determine MFFS in a torus containing faulty nodes

Fast and Efficient Submesh Determination in Faulty Tori

483

and faulty links is fast and efficient method. This MFFS determination procedure
could be useful for systems designed to operate in a gracefully degraded manner after
faults occur.

References

1. H L Chen and S H Hu, “Submesh Determination in Faulty Tori and Meshes”, IEEE Trans.
Parallel and Distributed Systems, Vol. 12, no. 3, pp. 272-282, Mar. 2001.

2. R.E. Kessler and J.L. Schwarzmeier, “CRAY T3D: A New Dimension for Cray Research”,
Proc. 1993 Compcon Spring, pp. 176-182, 1993.

3. Intel Corporation, Paragon XP/S Product Overview, 1991.
4. NCUBE Corp., NCUBE/ten : An overview. Beaverton, Ore, Nov 1985.
5. C.L.Seitz, “The Cosmic Cube”, Comm, ACM, Vol 28, no. 1, pp 22-23 Jan 1985.
6. “A Touchstone DELTA System Description ”, Intel Corp. 1991.
7. The BlueGene/L Team, IBM and Lawrence Livermore National Laboratory, “An overview

of the BlueGene/L Supercomputer”, Proc. SuperComputing, Baltimore, Nov.16-22, 2002.
8. J. Bruck, R. Cypher, and C.-T. Ho, “Efficient Fault-Tolerant Mesh and Hypercube Archi-

tectures”, Proc.22nd Int'l Symp. Fault-Tolerant Computing, pp. 162-169, July 1992.
9. T.A. Varvarigou, V.P. Roychowdhury, and T. Kailath, “Reconfiguring Processor Arrays

Using Multiple-Track Models: The 3-Track-1-Spare-Approach”, IEEE Trans. Computers,
vol. 42, no. 11, pp. 1281-1293, Nov. 1993.

10. J. H. Kim and P. K. Rhee, “The Rule-Based Approach to Reconfiguration of 2-D Proces-
sor Arrays”, IEEE Trans. Computers, vol. 42, no.11, pp. 1403-1408, Nov. 1993.

11. A. Chandra and R. Melhem, “Reconfiguration in 3D Meshes”, Proc. 1994 Int'l Workshop
Defect and Fault Tolerance in VLSI Systems, pp. 194-202, 1994.

12. F. Ozguner and C. Aykanat, “A Reconfiguration Algorithm for Fault Tolerance in a Hy-
percube Multiprocessor”, Information Processing Letters, vol.29, pp.247-254, Nov 1988.

13. M.A. Sridar and C.S. Raghavendra, “On Finding Maximal Subcubes in Residual Hyper-
cubes”, Proc. Second IEEE Symp. Parallel and Distributed Processing, pp. 870-873, Dec.
1990.

14. S. Latifi, “Distributed Subcube Identification Algorithms for Reliable Hypercubes”, In-
formation Processing Letters, vol. 38, pp. 315-321, June 1991.

15. H.-L. Chen and N.-F. Tzeng, “Subcube Determination in Faulty Hypercubes”, IEEE Trans.
Computers, vol. 46, no. 8, pp. 871-879, Aug. 1997.

16. H.-L. Chen and N.-F. Tzeng, “A Boolean Expression-Based Approach for Maximum In-
complete Subcube Identification in Faulty Hypercubes,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 8, no.11 pp. 1171-1183, Nov. 1997.

17. Seong-Moo Yoo, Hee Young Youn, “Finding Maximal Submeshes in Faulty 2D Mesh in
the Presence of Failed Nodes”, Proc. Second Aizu International Symp. Parallel Algo-
rithms/ Architecture Synthesis, pps 97 –103, 17-21 March 1997.

18. J R Armstrong and F G Gray, “Fault Diagnosis in a Boolean n Cube Array of Microproc-
essors”, IEEE Trans. Computers, Vol. 30, no. 8, pp. 587-590, Aug. 1981.

19. Stefano Chessa and Piero maestrini, “Correct and Almost Complete Diagnosis of Proces-
sor Grids”, IEEE Trans. Computers, vol. 50, no. 10, pp. 1095-1102, Oct. 2001.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 484–493, 2004.
© Springer-Verlag Berlin Heidelberg 2004

High Performance Cycle Detection Scheme
for Multiprocessing Systems

Ju Gyun Kim

Department of Computer Science, Sookmyung Women's University, Seoul, Korea
jgkim@sookmyung.ac.kr

Abstract. This paper presents a non-blocking deadlock detection scheme with
immediate cycle detection in multiprocessing systems. It assumes an expedient
state and a special case where each type of resource has one unit and each re-
quest is limited to one resource unit at a time. Unlike the previous deadlock de-
tection schemes, this new method takes O(1) time for detecting a cycle and
O(n+m) time for blocking or handling resource release where n and m are the
number of processes and that of resources in the system. The deadlock detection
latency is thus minimized and is constant regardless of n and m. However, in a
multiprocessing system, the operating system can handle the blocking or release
in parallel on a separate processor, thus not interfering with user process execu-
tion. To some applications where deadlock is concerned, a predictable and zero-
latency deadlock detection scheme could be very useful.

1 Introduction

Researches on parallel, widely multiprocessing, systems have been carried out over
many years. However, relatively little interest has been devoted to algorithms for
deadlock problem even though its possibility of occurrence becomes larger. This pa-
per presents a non-blocking deadlock detection algorithm which can detect a cycle
immediately after its creation under multiprocessing systems.

If the system state is such that all satisfiable requests have been granted, there is a
simple sufficient condition for deadlock. This situation occurs if the resource alloca-
tors do not defer satisfiable requests but grant them immediately when possible; most
allocators follow this policy [2]. The resulting states are called expedient. If a system
state is expedient, then a knot in the corresponding reusable resource graph is a suffi-
cient condition for deadlock. Assume that a process may request only one unit at a
time; that is, at most, one request edge can be connected to any process node. Then,
for an expedient state, a knot becomes a necessary and a sufficient condition for dead-
lock [1,2,3,4]. An O(1) time knot detection scheme for this case has already been pro-
posed in [9,11].

Moreover, in many situations, resources can be limited to have only one unit. With
this additional restriction, existence of a cycle becomes a sufficient and necessary
condition for deadlock so we can implement a cycle detection scheme with simpler
and less resource waste way. This paper presents a revised version of cycle detection
schemes, already presented by author [8,9], in order to get an algorithmic consistency
and gives some generalities to the data structures used.

High Performance Cycle Detection Scheme for Multiprocessing Systems 485

In order to detect a cycle, almost all existing algorithms start the detection
procedure after an active process requests an unavailable resource. The process cannot
progress further until the system completes its deadlock inspection, and this is particu-
larly inefficient under multiprocessing environment.

Suppose that we can use an available processor for deadlock detection, then
running the detection process and user process in parallel is impossible under existing
algorithms. The user process must wait until it is informed of the result of the detec-
tion process, because one of two different procedures is required according to the de-
tection result; that is, process switching is sufficient when the process is merely
blocked, otherwise a proper deadlock recovery procedure must be run. The detection
process is idle while there are no such requests for detection. This means that the busy
periods of the two processes are not overlapped at all, so we can not achieve the en-
hanced efficiency of parallel computation, even if we can run the existing algorithms
under multiprocessing systems.

For another example of poor CPU usage, suppose that several cooperating proc-
esses, communicating with each other, run in parallel and one of them is blocked. If
we know immediately that this blocking leads to deadlock, the deadlocked and other
affected processes are rolled back from this point soon, and process switching may be
performed at the earliest possible time. But if we must spend O(n+m) time to know
that the blocking eventually leads to deadlock, other cooperating processes still run-
ning in this interval, but already affected before the blocking point, must be rolled
back together. So, the work performed during the interval, otherwise useful for in-
creasing the throughput under parallel processing environment, is wasted.

Thus, the nature of existing algorithms leads to loss of parallelism. They are in-
voked to find the existence of deadlock whenever a process is blocked after request-
ing an unavailable resource, and this requires O(n+m) time, where n and m are the
number of processes and resources in the system. If we could instead utilize the
O(n+m) time amounts to prepare for the next detection, we could use the prepared in-
formation to determine the existence of a cycle immediately after a process's request
action. The scheme proposed in this paper takes O(1) time to detect a cycle, and
O(n+m) time for handling the detection information - updating the data structures -
for the next detection.

For O(1) time cycle detection, proposed scheme makes several assumptions and
defines system state with tree structure. Section 2 reviews related works, and section 3
describes the system model, and section 4 presents algorithms and analysis. Conclud-
ing remarks are given in section 5.

2 Related Works

The schemes of Shoshani and Holt[4,5] are valuable to refer to them because they
present basic idea for the treatment of deadlock problems. Leibfried represented a sys-
tem state with an adjacency matrix and proposed a scheme which can detect deadlock
with repeated multiplications of the matrix [7], but it requires at least O(m3) time
complexity to find a knot.

Any algorithms based on so-called WFG(Wait-For-Graph) method make an ex-
haustive search through reachable paths in the graph to find the existence of cycle

486 J.G. Kim

[1,2,5,6], and have O(n+m) time complexity in its worst case [2,3,6]. Several draw-
backs common to such algorithms are easily seen. First, deadlock detection may take
longer as n and m increase. Second, the time required to detect deadlock may vary de-
pending on the situation, and thus becomes unpredictable. Third, we cannot expect
performance enhancement under multiprocessor systems because the algorithms have
not been designed originally for such systems. Reduced parallelism and unpredictable
deadlock detection time could complicate their implementation on some systems. Idea
in [10] proposed O(1) cycle detection but it is impossible to be extended to knot prob-
lem. As mentioned above, [8] also contains cycle detection but the data structures and
algorithms are inconsistently different from that of [11], and thus can not be extended
to knot detection.

Unlike the existing schemes, proposed scheme takes O(1) time for detecting dead-
lock, and O(n+m) time for updating data structures after detection or release. The
deadlock detection latency is thus minimized, and is constant, regardless of n and m.
Release operation takes longer with this scheme. However, in multiprocessor and dis-
tributed systems, the operating system can handle the release on the fly, running on a
separate processor, and thus does not interfere with user process execution. If the
process releasing the resource is a high priority job, then it may merely notify the re-
lease to the operating system but does not necessarily have to wait for the response
from the operating system. This can maximizes the possibility of parallelism and re-
source utilization.

3 System Model

As mentioned earlier, we make several simplifying assumptions about the system.
First, we assume that each resource has one unit. With this restriction, a cycle be-
comes a sufficient condition for deadlock. Single unit resources are not uncommon in
present systems; for example, the ENQ/DEQ macros of IBM OS/360 deal exclusively
with resources of this type [2]. Second, we assume that operating system does not de-
fer satisfiable requests but grant them immediately when possible. The resulting states
are called expedient. Finally, we assume that processes request only one unit of re-
source at a time. This assumption can be applicable because multiple requests can be
serialized without severely restricting the process's request behavior.

By these assumptions, We can find that every process node in WFG can have at
most one outgoing arc since we assumed single unit request. Also, every resource
node can have at most one outgoing arc, since we have restricted to serially reusable
resource and we assumed that each resource has one unit. Since WFG is bipartite, this
implies that every pair of vertices in our WFG is connected by only one edge, or not
connected at all. As for the incoming arc, both process and resource node can have
more than one incoming arcs directed to them. Therefore, with the proposed system,
the WFG becomes a collection of trees, when we ignore the direction of the edges.

In Fig. 1, we represent trees with root node at the top and all arcs directed upward,
leaving the arrowheads of the arc implicit. Two resources R1 and R2 have been allo-
cated to the process P1. The process P2 and P3 are blocked at resource R1. Two re-
sources R5 and R6 have been allocated to process P3. All the processes and resources
in Fig. 2 are connected, yet do not contain any cycle. Among the processes in Fig. 1,

High Performance Cycle Detection Scheme for Multiprocessing Systems 487

P1 is unique in that it does not have any request edge. Thus, P1 is the only active
process and all the other processes in Fig. 1 are in blocked states. We call P1 the root
of the tree. Each active process in WFG owns a tree, in the sense that it is the root of
respective tree. Resource nodes belonging to a tree have been allocated to some proc-
ess. The sons of a root node represent the resources currently allocated to the root
process. The sons of a resource node represent the processes blocked at its father re-
source node. In order to distinguish such trees in a WFG, we name each tree by the
process number of its respective root process. Thus the tree illustrated in Fig. 1 will be
identified by the process number of P1, number of its root process.

P

P3P2

R
1

R

R
5

R

P

P3P2

R
1

R
5

R

PPP

P3P3P3P2P2P2

R
1

R
1

R
1

RR

R
5

R
5

R
5

RRR

P

P3P2

R
1

R

R
5

R

PPP

P3P3P3P2P2P2

R
1

R
1

R
1

RRR

R
5

R
5

R
5

RRR

PPP

P3P3P3P2P2P2

R
1

R
1

R
1

R
5

R
5

R
5

RRR

PPPP

P3P3P3P3P2P2P2P2

R
1

R
1

R
1

R
1

RRR

R
5

R
5

R
5

R
5

RRRRRR

Fig. 1. An example of a tree from WFG. Its identity is equal to the root process number. Dot-
ted line means that a subgraph in the WFG forms a tree

Clearly, state of the system can be changed only by the root nodes because only an
active process can either request a new resource or release one of the resources it has
been using. In the following, we show how deadlock detection could be accomplished
in a fixed time regardless of the number of processes and the number of resources.

In the proposed system, the WFG consists of several disjoint trees and only the
root nodes of the trees could request a new resource. A root node could form a new
cycle only by requesting a resource node already belonging to the same tree it is in. In
other words, a process Pi requesting resource Rj becomes deadlocked, if and only if
Rj already belongs to the same tree rooted by Pi itself, thus creating a new cycle. Oth-
erwise, Pi will either get Rj immediately or be blocked but not deadlocked.

Therefore, in order to detect a cycle, checking to which tree Rj belongs is enough.
If Rj does not belong to any tree, Rj is free and can be immediately allocated. If Rj
belongs to the same tree as the requesting process Pi, then it is a deadlock state. Oth-
erwise, Pi will simply be blocked but not deadlocked (i.e., Rj and Pi currently belong
to different trees). Such detection process could be performed in O(1) time if we asso-
ciate each resource with the tree identifier it belongs to all the time.

488 J.G. Kim

4 Algorithms and Analysis

Request edges from a root to resources in Fig. 2 illustrate three possible scenarios for
requests. A request labeled (a) in Fig. 2 is a trivial case. Ra is available and can be al-
located to Pi immediately. In type (b) request, Rb is not available and Pi will have to
be blocked. But this request does not cause a cycle because Pi and Rb belong to differ-
ent trees i and j.

Pi Pi

(c)

PjRa

Rb

Pi

Rc

PiPiPi PiPiPi

(a) (b)(b) (c)

PjPjPjRaRa

RbRbRb

Pi

Rc

PiPiPi

RcRcRc

PiPiPi PiPiPi

(c)

PjPjPjRaRa

RbRbRb

Pi

Rc

PiPiPi

RcRcRc

PiPiPiPi PiPiPiPi

(a)(a) (b)(b)(b)(b) (c)

PjPjPjPjRaRa

RbRbRbRb

PiPiPi

RcRcRc

PiPiPiPi

RcRcRcRcRcRc

Fig. 2. Three possible scenarios of a process's request

When a process is blocked (but not deadlocked), the two trees are merged to be-
come a larger one. The tree i rooted by blocked process Pi is now part of the tree j
which contains Rb. That is, tree i originally rooted by Pi now becomes a subtree of tree
j rooted by Pj. In (c), a cycle is formed. A proper recovery operation is now required.

When a process releases a resource, three types of scenario are possible. In Fig. 3,
Pi is a root and is releasing a resource it has been using. In Fig. 3 (a), Pi releases a re-
source which is not wanted by any other processes (thus Rj is a leaf), The release is
trivial in this case - simply delete allocation edge. In Fig. 3 (b), releasing Rj causes
operating system to wake up Pk. Now Pk becomes a new root and all its descendents
which previously had tree number i must now change their tree number to a new tree
number k. In Fig. 3 (c), many processes are blocked at Rj. Suppose that Pk is chosen as
a receiver of Rj. As a result of this, Rj is allocated to Pk and now Pk becomes an active
process and roots a new tree. The tree rooted by Pk is now splitted from the tree rooted
by Pi. All the descendants under Rj must be departed from the tree i and change their
tree number to k while all the resource nodes of left subtree of Pi keep their tree num-
ber unchanged.

Data structures used in the proposed scheme are explained below.

 Matrix History(i,j) contains all status of block, allocation and root information.
where rows represent processes and columns represent resources, and History(i,j)=1,
i=1,...,n, j=1,...,m, means that resource, Rj, is allocated to process, Pi. One extra row is
appended for providing root information and also one extra column is appended for
providing blocking factor. For example, History(n+1,j) contains a root (process) num-

High Performance Cycle Detection Scheme for Multiprocessing Systems 489

ber of resource j and History(i,m+1) contains a resource number by which process i
has been blocked.

 Two set variables, child and dsdnt are used for readability and algorithm's purpose.

Pi

Rj

Pi

Rj

Pk

Rj

Pk Pm

(a) (b) (c)

Pi

Fig. 3. Three possible scenarios of a process's release

Following algorithms perform allocation and release operations. Algorithm split
called in release divides a tree into two smaller ones.

Algorithm Request(i, j)
// Root i requests a resource j //

1: begin
2: Key := History(n+1, j);
3: case
4: Key = null: // j is an available resource //

History(i, j) := 1;
History(n+1, j) := i;

5: Key = i : // Deadlocked! A proper recovery action
is needed //

6: Key • i : // Blocked //
7: History(i, m+1) := j;
8: for L = 1 to m do

begin
if History(n+1, L) = i then

9: History(n+1, L) := History(n+1, j);
// change root from i to j’s root //

endif
 end
 endfor

endcase
10:end

490 J.G. Kim

The state resulting from statement 4 is evidently not deadlocked as explained in
Fig. 2 (a). Statement 6, as explained in Fig. 2 (b), means that process i requests an un-
available resource j and then blocked. This case causes tree merging and requires
O(m) time complexity in order to prepare for the next detection but these operations
can be processed in the background, in parallel with other system activities, given an
extra processor.

Case of statement 5 is the condition for deadlock and requires O(1) time complex-
ity. This is a major contribution of the proposed scheme. An O(1) deadlock detection
is more important when several coordinating processes run in parallel. Immediate de-
cision of one process's state can allow other coordinating processes to continue, with-
out any delay or loss of work which might otherwise be needed in order to know the
result of deadlock inspection. Moreover, such immediate response make it possible to
get better resource utilization and suitable for realtime systems.

When a resource is released, deadlock can not occur. Statement 2 of algorithm
Split can be done by any of well known tree traversal algorithms and the complexity
is known to be equivalent to the number of edges in the tree. By assumption, A tree in
this paper can have n + m edges at most. Therefore, Release operation takes O(n+m)
time in the worst case and this also can be processed in background like merging in
Request operation.

Algorithm Release(i, j)

//Root i releases a resource j//
1: begin
2: for L = 1 to n do
 begin
 if History(L, m+1) = j then
3: child := History(L, m+1);

// child is a set variable and contains proc-
esses who has been blocked by j //

endif
end

 endfor
4: case
5: child = null: // Resource j is a leaf node //

History(i, j) := 0;
History(n+1, j) := null;

6: child = 1 : // Only one process, say process k, is
 blocked by j and it becomes to a new
 root by allocating resource j //

History(i, j) := 0;
History(k, j) := 1;
History(n+1, j) := k;
History(k, m+1) := null;
// Data adjustment for future O(1) cycle

detection //
call Split(i, j, k);

High Performance Cycle Detection Scheme for Multiprocessing Systems 491

7: otherwise : // Several processes have been blocked
by resource j. Let process k is now selected to become
a new root among them //

History(i, j) := 0;
History(k, j) := 1;
History(n+1, j) := k;
History(k, m+1) := null;
call Split(i, j, k);

 endcase
8: end

Algorithm Split(i,j,k) // Divide a tree into two
smaller ones //

1: begin
2: Find all descendants resource nodes from process k

and put them into dsdnt.
3: for all nodes in dsdnt do
 Set their (n+1)th row to k;

endfor
4: end

The proposed scheme requires O(n+m) time - same as existing schemes - to treat
the deadlock problem, but makes it possible to detect deadlock within a constant time.
In Fig. 4, B denotes a point of time at which a process is blocked. and D is a decision
point whether it is deadlocked or not. All the operations related to deadlock resolution
caused by event B are completed at time F. So, the time interval [B,F] is equivalent to
O(n+m). The time required for interval [B,D] of (a) and [D,F] of (b) are constant.
During the interval [D,F] of (a), data structure adjustment for next detection is proc-
essed. In (b), interval [B,D] is consumed by a graph search to find a cycle.

Fig. 4. Time comparison between proposed scheme and existing schemes

(a) Proposed scheme

(b) Existing schemes

492 J.G. Kim

Under multiprocessor systems, operations for release or blocking can be performed
on the fly, running on a separate processor, and thus maximizing the inherent parallel-
ism of the systems. More than one processor can be assigned for detection, if avail-
able. Non-blocking detection causes immediate response from the operating system,
thus minimizing the waste of resources, and is beneficial for realtime systems. Al-
though the proposed scheme is designed for multiprocessor systems, it is also advan-
tageous on single CPU systems.

5 Concluding Remarks

This paper presents a new deadlock detection scheme for a special case system where
each type of resource has one unit and each request is limited to one unit at a time. It
needs O(1) time for detecting deadlock and O(n+m) time for blocking a process or re-
leasing a resource. But the O(n+m) time operations can be performed in the back-
ground or can run on separate processor. The proposed scheme is non-blocking and
guarantees an immediate response on multiprocessor systems. Immediate detection
also allows us to use the proposed scheme for deadlock avoidance if a process that
causes deadlock is selected to be killed. Future work may include applying similar
methods to less restrictive systems.

Acknowledgements. This research was supported by the Sookmyung Women’s Uni-
versity Research Grants 2004.

References

1. A. Silberschatz, P. Galvin, Operating System Concepts, 4th Ed., Addison-Wesley, 1994.
2. L. Bic and A. C. Shaw, The Logical Design of Operating Systems, 2nd Ed., Prentice-Hall,

1988.
3. M. Maekawa, A. E. Oldehoeft and R. R. Oldehoeft, Operating Systems - Advanced con-

cepts, Benjamin-Cummings Pub., 1987.
4. R. C. Holt, "Some Deadlock Properties of Computer Systems", ACM Computing surveys,

Vol. 4, No. 3, Sep., 1972.
5. A. Shoshani and E. G. Coffman, "Prevention Detection and Recovery from System Dead-

lock", Proc. 4th annual Princeton Conf. on Information Sciences and System, Mar., 1970.
6. S. S. Isloor and T. A. Marsland, "The Deadlock Problem: An Overview", IEEE Computer,

Sep., 1980.
7. T. F. Leibfried Jr., "A Deadlock Detection and Recovery Algorithm Using the Formalism

of a Directed Graph Matrix", Operating System Review, Vol. 23, No. 2, Apr., 1989.
8. J. G. Kim and K. Koh, "An O(1) Time Deadlock Detection Scheme in Single Unit and

Single Request Multiprocessor System", IEEE TENCON'91, Delhi, India, Aug., 1991,
Vol. 2, pp. 219-223.

9. J. G. Kim, "A Non-blocking Deadlock Detection Scheme for Multiprocessor Systems",
Ph.D Thesis, SNU, SEOUL, Feb., 1992.

High Performance Cycle Detection Scheme for Multiprocessing Systems 493

10. Y. S. Ryu and K. Koh, "A Predictable Deadlock Detection Technique for a Single resource
and single Request System", Proc. of the 14th IASTED Int'l Conf. on Applied Informatics,
Innsbruck, Austria, Feb., 1996, pp. 35-38,

11. J. G. Kim, "An Algorithmic Approach on Deadlock Detection for Enhanced parallelism in
Multiprocessing Systems", Proc. of the 2nd Aizu int'l Symp. on Parallel Algo-
rithms/Architecture Synthesis, IEEE Computer Society Press PR07870, pp. 233-238,
Mar., 1997.

Improved Quality of Solutions for
Multiobjective Spanning Tree Problem Using

Distributed Evolutionary Algorithm

Rajeev Kumar, P. K. Singh, and P. P. Chakrabarti

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur,

Kharagpur, WB 721 302, India
{rkumar, pksingh, ppchak}@cse.iitkgp.ernet.in

Abstract. The problem of computing spanning trees along with specific con-
straints has been studied in many forms. Most of the problem instances are NP-
hard, and many approximation and stochastic algorithms which yield a single
solution, have been proposed. Essentially, such problems are multi-objective in
nature, and a major challenge to solving the problems is to capture possibly all
the (representative) equivalent and diverse solutions at convergence. In this paper,
we attempt to solve the generic multi-objective spanning tree (MOST) problem,
in a novel way, using an evolutionary algorithm (EA). We consider, without loss
of generality, edge-cost and diameter as the two objectives, and use a multiob-
jective evolutionary algorithm (MOEA) that produces diverse solutions without
needing a priori knowledge of the solution space. We employ a distributed ver-
sion of the algorithm and generate solutions from multiple tribes. We use this
approach for generating (near-) optimal spanning trees from benchmark data of
different sizes. Since no experimental results are available for MOST, we consider
two well known diameter-constrained spanning tree algorithms and modify them
to generate a Pareto-front for comparison. Interestingly, we observe that none of
the existing algorithms could provide good solutions in the entire range of the
Pareto-front.

1 Introduction

Computing a minimum spanning tree (MST) from a connected graph is a well-studied
problem and many fast algorithms and analytical analyses are available [1, 2, 3, 4, 5, 6, 7].
However, many real-life network optimization problems require the spanning tree to sat-
isfy additional constraints along with minimum edge-cost. For example, communication
network design problem for multicast routing of multimedia communication requires
constructing a minimal cost spanning/Steiner tree with given constraints on diameter.
VLSI circuit design problems aim at finding minimum cost spanning/Steiner trees given
delay bound constraints on source-sink connections. Analogously, there exists the prob-
lem of degree/diameter-constrained minimum cost networks in many other engineering
applications too (see [3] and the references therein).

Many such MST problem instances having a bound on the degree, a bound on the di-
ameter, capacitated trees or bounds for two parameters to be satisfied simultaneously are

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 494–503, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Improved Quality of Solutions for Multiobjective Spanning Tree Problem 495

listed in [3]. Finding spanning trees of sufficient generality and of minimal cost subject to
satisfaction of additional constraints is often NP-hard [3, 4]. Many such design problems
have been attempted and approximate solutions obtained using heuristics. For example,
the research groups of Deo et al. [5, 6, 7] and Ravi et al. [3, 4] have presented approxi-
mation algorithms by optimizing one criterion subject to a budget on the other. In recent
years, evolutionary algorithms (EAs) have emerged as powerful tools to approximate
solutions of such NP-hard problems. For example, Raidl & Julstorm [8, 9] and Knowles
& Corne [10, 11] attempted to solve diameter and degree constrained minimum span-
ning tree problems, respectively using EAs. All such approximation and evolutionary
algorithms yield a single optimized solution subject to satisfaction of the constraint(s).

We argue that such constrained MST problems are essentially multiobjective in na-
ture. A multiobjective optimizer yields a set of all representative equivalent and diverse
solutions rather a single solution; the set of all optimal solutions is called the Pareto-front.
Secondly, extending this constraint-optimization approach to multi-criteria problems (in-
volving two or more than two objectives/constraints) the techniques require improving
upon more than one constraints. Thirdly and more importantly, such approaches may
not yield all the representative optimal solutions. For example, most conventional ap-
proaches to solve network design problems start with a minimum spanning tree (MST),
and thus effectively minimize the cost. With some variations induced by ε-constraint
method, most other solutions obtained are located near the minimal-cost region of the
Pareto-front, and thus do not form the complete (approximated) Pareto-front.

In this work, we try to overcome the disadvantages of conventional techniques and
single objective EAs. We use multiobjective EA to obtain a (near-optimal) Pareto-front.
For a wide-ranging review, a critical analysis of evolutionary approaches to multiobjec-
tive optimization and many implementations of multiobjective EAs, see [12, 13]. These
implementations achieve diverse and equivalent solutions by some diversity preserving
mechanism but they do not talk about convergence. Any explicit diversity preserving
method needs prior knowledge of many parameters and the efficacy of such a mecha-
nism depends on successful fine-tuning of these parameters. In a recent study, Purshouse
& Fleming [14] extensively studied the effect of sharing, along with elitism and rank-
ing, and concluded that while sharing can be beneficial, it can also prove surprisingly
ineffective if the parameters are not carefully tuned.

Kumar & Rockett [15] proposed use of Rank-histograms for monitoring convergence
of Pareto-front while maintaining diversity without any explicit diversity preserving oper-
ator. Their algorithm is demonstrated to work for problems of unknown nature. Secondly,
assessing convergence does not need a priori knowledge for monitoring movement of
Pareto-front using rank-histograms. Some other recent studies have been done on com-
bining convergence with diversity. Laumanns et al. [16] proposed an ε-dominance for
getting an ε-approximate Pareto-front for problems whose optimal Pareto-set is known.

In this work, we use the Pareto Converging Genetic Algorithm (PCGA) [15] which
has been demonstrated to work effectively across complex problems and achieves di-
versity without needing a priori knowledge of the solution space. PCGA excludes any
explicit mechanism to preserve diversity and allows a natural selection process to main-
tain diversity. Thus multiple, equally good solutions to the problem, are provided. An-
other major challenge to solving unknown problems is how to ensure convergence. We

496 R. Kumar, P.K. Singh, and P.P. Chakrabarti

use a distributed version of PCGA and generate solutions using multiple tribes and merge
them to ensure convergence. PCGA assesses convergence to the Pareto-front which, by
definition, is unknown in most real search problems of multi-dimensionality, by use of
rank-histograms.

We consider, without loss of generality, edge-cost and tree-diameter as the two ob-
jectives to be minimized, though the framework presented here is generic enough to
include any number of objectives to be optimized. The rest of the paper is organized as
follows. In Section 2, we include few definitions and a brief review of the multiobjective
evolutionary algorithm (MOEA) along with the issues to be addressed for achieving
quality solutions along a Pareto-front in the context of a MOEA. We describe, in Section
3, the representation scheme for the spanning tree and its implementation using PCGA.
Then, we present results in Section 4 along with a comparison with other approaches.
Finally, we draw conclusions in Section 5.

2 Multiobjective Evolutionary Algorithms: A Review

EAs have emerged as powerful black-box optimization tools to approximate solutions
for NP-hard combinatorial optimization problems. In the multiobjective scenario, EAs
often find effectively a set of mutually competitive solutions without applying much
problem-specific information. However, achieving proper diversity in the solutions while
approaching convergence is a challenge in multiobjective optimization, especially for
unknown problems.

Mathematically, a general multiobjective optimization problem containing a number
of objectives to be maximized/minimized along with (optional) constraints for satisfac-
tion of achievable goal vectors can be written as:

Minimize/ Maximize Objective fm (X) , m = 1, 2, ..., M
subject to Constraint gk (X) ≤ ck, k = 1, 2, ..., K

where X = {xn : n = 1, 2, ..., N} is an N − tuple vector of variables
and F = {fm : m = 1, 2, ..., M} is an M − tuple vector of objectives

In a maximization problem of m objectives, an individual objective vector Fi is
partially less than another individual objective vector Fj (symbolically represented by
Fi ≺ Fj) iff:

(Fi ≺ Fj) = (∀m)(fmi ≤ fmj) ∧ (∃m)(fmi < fmj)

Then Fj is said to dominate Fi. If an individual is not dominated by any other
individual, it is said to be non-dominated. A relationship is termed as weakly-dominance
if, either both the individuals are equal or one is better than the other. The notion of
Pareto-optimality was introduced to assign equal probabilities of regeneration to all the
individuals in the population. We use the notion of Pareto-optimality if F = (f1,, fm)
is a vector-valued objective function.

Definition 1. Pareto Optimal Set : A set A ⊆ Y (where Y denotes the entire decision
space) is called a Pareto optimal set iff

Improved Quality of Solutions for Multiobjective Spanning Tree Problem 497

∀ a ∈A : there does not exist x ∈ Y : a ≺ x .

The primary goal of a multiobjective optimization algorithm is to attain the Pareto-
optimal set. However, in most practical cases it is not possible to generate the entire
Pareto-optimal set. This might be the case when the size of the set is exponentially large.
Thus, we confine our goal to attain an approximate set. This approximate set is usually
polynomial in size. Since in most cases the objective functions are not bijective, there
are a number of individuals in the decision space which may be mapped to the same
objective function.

Definition 2. Approximate Set : A set Ap ⊆ A (Pareto-optimal Set) is called an approx-
imate set if there is no indiviual in Ap which is weakly dominated by any other member
of Ap.

Another strategy that might be used to attain an approximate set is to try and obtain
an inferior Pareto front. Such a front may be inferior with respect to the distance from
the actual front in the decision space or the objective space. If the front differs from
the actual optimal front by a distance of ε in the objective space, then, the dominance
relation is called a (1 + ε)-dominance.

The major achievement of the Pareto rank-based research is that a multiobjective
vector is reduced to a scalar fitness without combining the objectives in any way. Further,
the use of fitness based on Pareto ranking permits non-dominated individuals to be
sampled at the same rate thus according equal preference to all non-dominated solutions
in evolving the next generation. The mapping from ranks to fitness values however is an
influential factor in selecting mates for reproduction.

Almost all the multiobjective evolutionary algorithms/implementations have ignored
the issue of convergence and are thus, unsuitable for solving unknown problems.Another
drawback of most of these algorithms/implementations is the explicit use of parameter-
ized sharing, mating restriction and/or some other diversity preserving operator. Apart
from its heuristic nature, the selection of the domain in which to perform sharing (variable
(genotype) or objective (phenotype)) is also debatable. Any explicit diversity preserving
mechanism method needs prior knowledge of many parameters and the efficacy of such
a mechanism depends on successful fine-tuning of these parameters. It is the experi-
ence of almost all researchers that proper tuning of sharing parameters is necessary for
effective performance, otherwise, the results can be ineffective if parameters are not
properly tuned [14]. In particular to MOST problem where we use a special encoding
[9], incorporation of such knowledge is not an easy task.

Many metrics have been proposed for quantitative evaluation of the quality of solu-
tions [12, 13]. Essentially, these metric are divided into two classes:

– Diversity metrics : Coverage and sampling of the obtained solutions across the front,
and

– Convergence metrics : Distance of the obtained solution-front from the (known)
optimal Pareto-front.

Some of these metrics (e.g., generational distance, volume of space covered, error ra-
tio measures of closeness of the Pareto-front to the true Pareto front) are only applicable

498 R. Kumar, P.K. Singh, and P.P. Chakrabarti

where the solution is known. Other metrics (e.g. ratio of non-dominated individuals, uni-
form distribution) quantify the Pareto-front and can only be used to assess diversity. The
MOST problem is an NP-hard problem, the actual Pareto-front is not known. Therefore,
we can not find the distance of the obtained solutions from the actual (which is unknown)
Pareto-front. In Section 4, we will show that we could obtain superior solutions using
our EA implementation than the solutions obtained from best-known heuristics for the
problem; therefore, distance metrics becomes ineffective for the MOST problem.

3 Design and Implementation

Evolutionary algorithm operators, namely, mutation and crossover imitate the process
of natural evolution, and are instrumental in exploring the search space. The efficiency
of the evolutionary search depends how a problem (in this case, a spanning tree) is
represented in a chromosome and the reproduction operators. There are many encoding
schemes to represent spanning trees – see [9] for a detailed review and comparison. For
example, one classic representation scheme is Prüfer encoding which is used by Zhou &
Gen [17]. Raidl & Julstorm [9] and Knowles & Corne [11] have pointed out that Prüfer
numbers have poor locality and heritability and are thus unsuitable for evolutionary
search. Deo et al. suggested use of other variants of Prüfer mappings [7]. Recently,
Raidl & Julstorm [9] proposed spanning trees to be represented directly as sets of the
edges and have shown locality, heritability and computational efficiency of the edge sets
for evolutionary search. In this work, we use edge-set scheme for representing spanning
trees to exploring the search space.

Initial Population: We generate initial population based on random generation of span-
ning trees; we do not choose the cheapest edge from the currently eligible list of edges
(as per Prim’s algorithm) rather we select a random edge from the eligible list. The other
variants of generating initial trees are based on One-Time-Tree Construction (OTTC)
[6] and Randomized Greedy Heuristics (RGH) [8] algorithms.

Fitness Evaluation: We use Pareto-rank based EA implementation. The Pareto-rank of
each individual is equal to one more than the number of individuals dominating it in
the multiobjective vector space. All the non-dominated individuals are assigned rank
one. The values of the two objectives to be minimized (cost and diameter) are used to
calculate rank of the individual. Based on the two objectives rank of the individual is
calculated. In this work, we calculate fitness of an individual by an inverse quadratic
function of the Pareto-rank.

Other Genetic Operator: We select crossover operation to provide strong habitability
such that the generated trees consist of the parental edges as far as possible. For generating
valid trees, we include non-parental edges into the offspring tree. The mutation operator
generates valid spanning trees. We use the Roulette wheel selection for selecting the
parents.

Ensuring Convergence: We compute Intra-Island Rank-histogram for each epoch of
the evolutionary evolution and monitor the movement of the Pareto-front. Since, this

Improved Quality of Solutions for Multiobjective Spanning Tree Problem 499

is a hard problem, it is likely that the improvements may get trapped in local minima.
To ensure a global (near-) optimal Pareto-front, we use a multi-tribal/island approach
and monitor the Pareto-front using Inter-Island Rank histogram. See [15] for details of
computation of Intra-/Inter- Rank histogram.

Algorithm: The PCGA algorithm [15] used in this work is a steady-state algorithm
and can be seen as an example of (μ + 2) – Evolutionary Strategy (ES) in terms of its
selection mechanism [12, 13]. In this algorithm, individuals are compared against the
total population set according to a tied Pareto-ranking scheme and the population is
selectively moved towards convergence by discarding the lowest ranked individuals in
each evolution. In doing so, we require no parameters such as size of the sub-population
in tournament selection or sharing/niching parameters. Initially, the whole population
of size N is ranked and fitness is assigned by interpolating from the best individual
(rank = 1) to the lowest (rank ≤ N) according to some simple monotonic function. A
pair of mates is randomly chosen biased in the sizes of the roulette wheel segments
and crossed-over and/or mutated to produce offspring. The offspring are inserted into
the population set according to their ranks against the whole population and the lowest
ranked two individuals are eliminated to restore the population size to N . The process
is iterated until a convergence criterion based on rank-histogram is achieved [15].

If two individuals have the same objective vector, we lower the rank of one of
the individual by one; this way, we are able to remove the duplicates from the set of
nondominated solutions without loss of generality. For a meaningful comparison of two
real numbers during ranking, we restrict the floating-point precision of the objective
values to a few units of precision. This algorithm does not explicitly use any diversity
preserving mechanism, however, lowering the rank of the individual having the identical
objective vector (with restricted units of precision) is analogous in some way to a sort of
sharing/niching mechanism (in objective space) which effectively controls the selection
pressure and thus partly contributes to diversity (For other factors that contribute to
diversity, see [15]).

4 Results

We tested generation of dual objective spanning tree using our MOEA framework and
selected benchmark data taken from Beasley’s OR library1. The OR-Library is a collec-
tion of test data sets for a variety of Operations Research (OR) problems. We considered
the Euclidean Steiner problem data which was used by previous researchers, e.g., Raidl-
SAC. We considered datasets of up to 250 nodes for this work, and few representative
results are included in rest of this Section.

For comparison, we also include results obtained from two well-known diameter con-
strained algorithms, namely, One-Time Tree Construction (OTTC) [6] and Randomized
Greedy Heuristics (RGH) [8] algorithms. Both the algorithms have been demonstrated
for Beasley’s OR data and few results included in their respective papers. Both algo-
rithms are single objective algorithms and generate a single tree subject to the diameter

1 http://mscmga.ms.ic.ac.uk/info.html

500 R. Kumar, P.K. Singh, and P.P. Chakrabarti

constraint. Our MOST algorithm simultaneously optimizes both the objectives and gen-
erates a (near-optimal) Pareto-front which comprises a set of solutions. Therefore, we
iteratively run both the OTTC and RGH algorithms by varying the value of the diameter
constraint and generate sets of solutions to form the respective Pareto-fronts, for com-
parison with the Pareto-front obtained from the proposed multiobjective evolutionary
algorithm.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

di
am

et
er

cost

Graph: 50 nodes, instance 1

OTTC
RGH

MOEA

Fig. 1. Pareto front generated from evolutionary algorithm for a 50 node data. Other fronts gener-
ated from OTTC and RGH algorithms are also shown in the plot

For randomized algorithms, evolutionary and RGH, we have repeated experiments
ten times and include here a single set of representative result obtained from the runs. We
have included results obtained from 50 and 100 node data in Figures 1 and 2, respectively.

It can be observed from Figures 1 and 2, that this is indeed difficult to find the
solutions in the higher range of diameter. In fact, RGH algorithm could not find any
solutions in this range of diameter; we generated multiple sets of solutions with multiple
runs of RGH algorithm with different initial values but none of the run could generate
any solution in this range of diameter. It can also be observed from Figures 1 and 2
that the solutions obtained form OTTC algorithm are good in lower and higher range
of diameter, however, the results obtained from RGH are good only in the lower range
of the diameter. Contrary to this, EA is able to locate solutions in the higher range of
the diameter with almost comparable quality of the solutions obtained by OTTC. The
solutions obtained by OTTC in the middle range are much sub-optimal and are inferior
to the solutions obtained by EA. In the upper-middle range of diameters, RGH could
not locate solutions at all, and the solutions located in this range by the OTTC are much
inferior to the solutions obtained by EA. Thus, the quality of solutions obtained by EA
is much superior in this range, and comparable in higher range to those of OTTC.

The solutions obtained by EA are further improved by running the algorithm multiple
times, and merging the obtained solutions to form a single Pareto-front. Results obtained
from three randomly initialized runs of evolutionary algorithm for 100 node data to form

Improved Quality of Solutions for Multiobjective Spanning Tree Problem 501

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

di
am

et
er

cost

Graph : 100 cities, instance 1

OTTC
RGH

MOEA
Init Population (random)

Fig. 2. Pareto front generated from evolutionary algorithm for a 100 node data. Initial population
is also shown. Other fronts from OTTC and RGH algorithms are also shown in the plot

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

di
am

et
er

cost

Graph : 100 cities, instance 1

OTTC
RGH

MOEA
Init Population (random)

Fig. 3. Improved Pareto front generated from three tribes of evolutionary algorithm for the 100
node data; improvement in the lower and higher ranges of diameters are clearly visible. Initial
population of one single tribe is shown. Other fronts from OTTC and RGH algorithms are also
shown in the plot

an improved Pareto-front are included in Figure 3. It can be seen from Figure 3 that the
solutions are improved in the lower and higher ranges of diameters. (Solutions obtained
from EA are marginally sub-optimal compared to RGH algorithm in very low-range of
diameter; this is obvious because EA is generic for any diameter values while RGH is
tuned to the specific values. If EA is run with such known values, EA is guaranteed to
give superior solutions.) This is possible because the solution points obtained from two
tribes of EAs were distinct and diverse in lower and higher ranges of diameter. This
is the clear advantage of using a distributed version of the evolutionary algorithm; the

502 R. Kumar, P.K. Singh, and P.P. Chakrabarti

results could still be improved with a few more tribes. Additionally, such a multi-tribal
approach is a test on convergence too.

These are interesting observations, and are partly contrary to those reported by Raidl
& Julstorm [8]. Raidl & Julstorm have shown that their technique works the best over
all the other such techniques including OTTC. We reiterate that their conclusions were
based on the experiments which they did for a particular value of the diameter and they
could not observe the results over the entire range of diameter. We are currently investi-
gating the empirical behavior shown by these three algorithms, and how this knowledge
can be used to further improve the solution-set.

5 Discussion and Conclusions

In this work, we demonstrated generating spanning trees subject to their satisfying the
twin objectives of minimum cost and diameter. The obtained solution is a set of (near-
optimal) spanning trees that are non-inferior with respect to each other. A network
designer having a range of network cost and diameter in mind, can examine several
optimal trees simultaneously and choose one based on these requirements and other
engineering considerations.

To the best of our knowledge, this is the first work which attempts obtaining the
complete Pareto front. Zhou & Gen [17] also obtained a set of solutions, they did not
experiment on any benchmark data and, therefore, could not compare the quality of
the solutions. It is shown by Knowles & Corne [11] that the front obtained by Zhou &
Gen [17], was sub-optimal. We attribute the sub-optimality due to their use of an EA
implementation which was unable to assess convergence. Knowles & Corne [11] used
a weighted sum approach and could get the comparable solutions but their approach is
sensitive to the selection of weight values.

The work presented in this paper presents a generic framework which can be used
to optimize any number of objectives simultaneously for spanning tree problems. The
simultaneous optimization of objectives approach has merits over the constrained-based
approaches, e.g., OTTC and RGH algorithms. It is shown that the constrained-based
approaches are unable to produce quality solutions over the entire range of the Pareto-
front. For example, the best known algorithm of diameter-constrained spanning tree is
RGH which is shown to be good for smaller values of diameters only, and is unable to
produce solutions in the higher range. Similarly, the other well-known OTTC algorithm
produces sub-optimal solutions in the middle range of the diameter. EA could obtain
superior solutions in the entire range of the objective-values. The solutions obtained by
EA may further be improved marginally by proper tuning of evolutionary operators for
the specific values of the objectives by introducing problem specific knowledge while
designing evolutionary operators; such type of improvement, is however, difficult with
an approximation algorithm.

References

1. Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NP-
Completeness. San Francisco, LA: Freeman (1979)

Improved Quality of Solutions for Multiobjective Spanning Tree Problem 503

2. Hochbaum, D.: ApproximationAlgorithms for NP-Hard Problems. Boston, MA: PWS (1997)
3. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Bicriteria

Network Design Problems. J. Algorithms 28 (1998) 142 – 171
4. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: ApproximationAlgorithms

for Degree-Constrained Minimum-Cost Network Design Problems. Algorithmica 31 (2001)
58 – 78

5. Boldon, N., Deo, N., Kumar, N.: Minimum-Weight Degree-Constrained Spanning Tree
Problem: Heuristics and Implementation on an SIMD Parallel Machine. Parallel Computing
22 (1996) 369 – 382

6. Deo, N.,Abdalla,A.: Computing a Diameter-Constrained Minimum SpanningTree in Parallel.
In: Proc. 4th Italian Conference on Algorithms and Complexity (CIAC 2000), LNCS 1767.
(2000) 17 – 31

7. Deo, N., Micikevicius, P.: Comparison of Prüfer-like Codes for Labeled Trees. In: Proc.
32nd South-Eastern Int. Conf. Combinatorics, Graph Theory and Computing. (2001)

8. Raidl, G.R., Julstrom, B.A.: Greedy Heuristics and an Evolutionary Algorithm for the
Bounded-Diameter Minimum Spanning Tree Problem. In: Proc. 18th ACM Symposium
on Applied Computing (SAC 2003). (2003) 747 – 752

9. Julstrom, B.A., Raidl, G.R.: Edge Sets: An Effective Evolutionary Coding of Spanning Trees.
IEEE Trans. Evolutionary Computation 7 (2003) 225 – 239

10. Knowles, J.D., Corne, D.W.: A New Evolutionary Approach to the Degree-Constrained
Minimum Spanning Tree Problem. IEEE Trans. Evolutionary Computation 4 (2000) 125 –
133

11. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjective
Minimum Spanning Tree Problems. In: Proc. 2001 Congress on Evolutionary Computation
(CEC-01). Volume 1. (2001) 544 – 551

12. Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Boston, MA: Kluwer (2002)

13. Deb, K.: Multiobjective Optimization Using EvolutionaryAlgorithms. Chichester, UK: Wiley
(2001)

14. Purshouse, R.C., Fleming, P.J.: Elitism, Sharing and Ranking Choices in Evolutionary Multi-
criterion Optimization. Research Report No. 815, Dept. Automatic Control & Systems En-
gineering, University of Sheffield (2002)

15. Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-front in Multiobjective Genetic
Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolu-
tionary Computation 10 (2002) 283 – 314

16. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in
Evolutionary Multiobjective Optimization. Evolutionary Computation 10 (2002) 263 – 282

17. Zohu, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree
Problem. European J. Operations Research 114 (1999) 141–152

Simple Deadlock-Free Dynamic Network
Reconfiguration

Olav Lysne1, José Miguel Montañana2, Timothy Mark Pinkston3,
José Duato2, Tor Skeie1, and José Flich2

1 Simula Research Laboratory Oslo, Norway
2 Technical Univ. of Valencia Valencia, Spain

3 University of Southern California Los Angeles, CA 90089-2562

Abstract. Dynamic reconfiguration of interconnection networks is de-
fined as the process of changing from one routing function to another
while the network remains up and running. The main challenge is in
avoiding deadlock anomalies while keeping restrictions on packet injec-
tion and forwarding minimal. Current approaches fall in one of two cat-
egories. Either they require the existence of extra network resources like
e.g. virtual channels, or their complexity is so high that their practical
applicability is limited. In this paper we describe a simple and power-
ful method for dynamic networks reconfiguration. It guarantees a fast
and deadlock-free transition from the old to the new routing function,
it works for any topology and between any pair of old and new routing
functions, and it guarantees in-order packet delivery when used between
deterministic routing functions.

1 Introduction

System availability and reliability are becoming increasingly important as sys-
tem size and demand increase. This is especially true for high-end servers (web,
database, video-on-demand servers, data centers, etc.), which are currently based
on clusters of PCs and/or highly parallel computers. In these systems, the net-
work interconnecting the processing nodes among them and to I/O devices plays
a very important role toward achieving high system availability.

Since the seminal work of Kermani and Kleinrock on virtual cut-through [8]
and later Dally and Seitz on wormhole switching [4, 5], we have seen an ever
increasing body of research on these switching techniques. These techniques are
in common use today in interprocessor communication (IPC) networks.

For a survey of interconnection networks we refer to [6].
In some situations the premises on which the routing algorithm and/or net-

work topology are defined may break, which affects the network’s dependability.
This may happen when the topology of the network changes, either involun-
tarily due to failing/faulty components or voluntarily due to hot removal or
addition of components. This normally requires the network routing algorithm
(a.k.a., routing function) to be reconfigured in order to (re)establish full net-
work connectivity among the attached nodes. In transitioning between the old

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 504–515, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Simple Deadlock-Free Dynamic Network Reconfiguration 505

and new routing functions during network reconfiguration, additional dependen-
cies among network resources may be introduced, causing what is referred to as
reconfiguration-induced deadlock.

Current techniques typically handle this situation through static reconfigu-
ration—meaning that application traffic is stopped and, usually, dropped from
the network during the reconfiguration process (see, for example, [13, 14]). While
this approach guarantees the prevention of reconfiguration-induced deadlock, it
can lead to unacceptable packet latencies and dropping frequencies for many
applications, particularly real-time and quality-of-service (QoS) applications [7].

With dynamic reconfiguration, the idea is to allow user traffic to continue
uninterruptedly during the time that the network is reconfigured, thus reducing
the number of packets that miss their real-time/QoS deadline. Recently, some
key efforts have been put toward addressing the issue of deadlock-free dynamic
reconfiguration within the context of link-level flow controlled interconnection
networks. In [2], a Partial Progressive Reconfiguration (PPR) technique is pro-
posed that allows arbitrary networks to migrate between two instantiations of
up*/down* routing. The effect of load and network size on PPR performance
is evaluated in [3]. Another approach is the NetRec scheme [11] which requires
every switch to maintain information about switches some number of hops away.
Yet another approach is the Double Scheme [12], where the idea is to use two
required sets of virtual channels in the network which act as two disjoint virtual
network layers during reconfiguration. The basic idea is first to drain one virtual
network layer and reconfigure it while the other is fully up and running, then to
drain and reconfigure the other virtual network layer while the first is up and
running, thus allowing “always on” packet delivery during reconfiguration. An
orthogonal approach which may be applicable on top of all of the above tech-
niques is described in [9], where it is shown that for up*/down* routing, only
parts of the network (i.e., the “skyline”) need to be reconfigured on a network
change. In [10] a methodology for developing dynamic network reconfiguration
processes between any pair of routing functions is described.

All the approaches mentioned above suffer from different shortcomings. PPR
[2] will only work between two routing functions that adhere to the up*/down*
scheme. NetRec [11] is specially tailored for rerouting messages around a faulty
node. It basically provides a protocol for generating a tree that connects all the
nodes that are neighbors to a fault, and drops packets to avoid deadlocks in
the reconfiguration phase. The Double Scheme is the most flexible of the above,
in that it can handle any topology and make a transition between any pair of
deadlock free routing functions. On the other hand it requires the presence of
two sets of virtual channels.

In this paper we present a simple and powerful method for dynamic network
reconfiguration. In contrast to the approaches mentioned above, our method is
able to handle any topology and any pair of routing functions, regardless of the
number of virtual channels available in the network. It is directly applicable when
the new routing function is available, and it does not require a new reconfigu-
ration method to be derived before it can be applied. Our technique guarantees

506 O. Lysne et al.

in-order delivery of packets during reconfiguration, and can for that reason off-
load much of the fault-handling burden from the higher-level protocols.

2 The Method

We assume familiarity with the standard notation and definitions of cut-through
switching. In particular we assume that the basic notions of deadlock freedom
in general, and channel dependency graphs in particular are known. The readers
that are unfamiliar with these notions are referred to [6].

Our focus is on the transition from one routing function to another. We
will denote these two routing functions Rold and Rnew respectively, with the
subscripts taking the obvious meaning. In what follows we simply assume that
each of these are deadlock free and has a cycle free channel dependency graph,
unless explicitly stated otherwise. Furthermore we assume that if Rold supplies
any faulty channels, the packets destined for these channels are dropped rather
than stalled, and that Rnew supplies channels such that the faulty components
are circumvented.

As we consider transitions from one routing function to another, channel
dependency graphs are not a sufficient tool to detect absence from deadlocks.
Even if the prevailing routing function at any given time supplies channels in
a deadlock free manner during reconfiguration, there may be configurations of
packets that are deadlocked. This is because a packet may have made previous
routing decisions based on old routing choices that are no longer allowed in
the current routing function, and by doing that it has ended up in a situation
where it keeps a channel dependency from a previous routing function alive. Such
dependencies are called ghost dependencies [10]. We therefore need a notion of
deadlocks that encompasses more information than just channel dependencies.
We use a simplified form of definition 10 in [15]:

Definition 1. A set of packets is deadlocked if every packet in the set must
wait for some other packet in the set to proceed before it can proceed itself.

We shall use the above definition to show that our reconfiguration method
will allow no deadlock to form.

In the following we describe the fundamentals of our simple reconfiguration
algorithm. In the description we shall for simplicity assume that there will only be
one single reconfiguration process active at a time, and that this reconfiguration
process will complete before another one is started.

Our method is based on two pillars. The first is that we let every packet be
routed either solely according to Rold or solely according to Rnew. The pack-
ets that we route solely according to Rold will be called old packets, and the
packets that are routed solely according to Rnew are called new packets. It is
very likely that a channel will be used by both old packets and new packets,
so channel dependencies can form from the interaction between old and new
packets.

Simple Deadlock-Free Dynamic Network Reconfiguration 507

The second pillar is the following lemma:

Lemma 1. Assume a transition from Rold to Rnew in which every packet is
routed solely according to Rold or solely according to Rnew. Any deadlocked set
of packets in such a transition will have to contain old packets waiting behind
new packets.

Proof. The proof is by contradiction. Assume a deadlocked set of packets in
which no old packets wait behind new packets.

Case 1: There are no old packets in the set. In that case the set must contain
only new packets that should be able to reach their destination using Rnew. This
implies that Rnew is not deadlock free, and we have contradiction.

Case 2: There are old packets in the set. Since we assume that no old packet
wait behind new packets, the old packets must all be waiting behind each other.
In that case there must exist a deadlocked set containing only old packets. This
implies that Rold is not deadlock free, and we have contradiction.

A consequence of the above lemma is that if we make sure that packets
routed according to Rold will never have to wait behind packets routed accord-
ing to Rnew, we will have achieved freedom from deadlock even if Rnew packets
wait behind Rold packets. This can be achieved by letting all channels transmit
a token that indicates that all packets injected before this token shall be routed
according to Rold, and all packets injected after this token shall be routed ac-
cording to Rnew. We let this token flood the network in the order of the channel-
dependency graph of Rold, and for each channel it traverses, it means the same
thing: all packets transmitted across the channel before this token shall be routed
according to Rold, and all packets after this token shall be routed according to
Rnew. Every packet routed according to Rnew will simply have to wait for the
token to have passed before it enters a channel. That way no packet routed ac-
cording to Rold will ever have to wait for a packet routed according to Rnew to
proceed, thus deadlock cannot form. A more formal description of one version
of the process follows:

1. Let each injection link send a token onto all of its channels indicating that no
packets that have been routed according to Rold will arrive on this channel.

2. Let each switch do the following:
– For each input channel do the following:

(a) Continue using Rold until a token has arrived at the head of the
queue1.

(b) When the token has made it to the head of the queue, change into
Rnew for this input channel.

(c) Thereafter forward packets only to those output channels that have
transmitted the token.

1 We make the usual assumption that a packet is routed only when it is at the head
of the input queue.

508 O. Lysne et al.

– For each output channel do the following:
(a) Wait until all input channels from which the output channel can

expect to receive traffic according to Rold have processed the token.
(b) Thereafter transmit a token on the output channel.

The following results can now be derived for this process:

Observation 1. All input channels on all switches use Rold until they process
the token and thereafter, use Rnew.

Lemma 2. This process ensures that all packets are routed either solely accord-
ing to Rold or solely according to Rnew.

Proof. Consider a packet that experiences routing according to both routing
functions. On its path from source to destination there will be two consecutive
switches, S1 and S2, where this packet is routed according to different routing
functions. There are two cases.

Case 1: The packet was first routed according to Rold in S1 and then routed
according to Rnew in S2. According to observation 1 this packet must have
arrived the switch S2 on an input channel that had already processed the token.
Furthermore in S1 it was routed according to Rold, so there it arrived on an
input channel before the token was processed on that input channel. Therefore
if S2 received the token before the packet, S1 must have sent the token out on
the output channel going to S2 before S1 had processed the token on one input
channel from which this output channel could expect to receive traffic according
to Rold. According to bullet points 2a and 2b for output channels in the process
description, this cannot happen.

Case 2: The packet was first routed according to Rnew in S1 and then routed
according to Rold in S2. According to observation 1 this packet must have arrived
S2 on an input link that had not yet processed the token. Furthermore, in S1 it
was routed according to Rnew, so there it arrived after the token was processed.
Therefore S1 must have forwarded packets from an input link that had processed
the token onto an output link where the token has not yet been transmitted.
According to the procedure for input channels in the process description, this
cannot happen.

Corollary 1. Each channel will first transmit only old packets, then the token
and then only new packets.

Proof. Assume a channel for which the corollary does not hold. Since the
method does not discriminate between channels that terminate in switches and
channels that terminate in compute nodes, we may without loss of generality
assume that this channel terminates in a switch2.

2 This means that if the corollary was not valid for a channel that terminates in a com-
pute node, one could easily generate a topology where the same channel terminated
in a switch instead.

Simple Deadlock-Free Dynamic Network Reconfiguration 509

This would either require a new packet to traverse the channel before the
token, or an old packet to traverse the channel after the token. In this case the
new packet would be routed according to Rold or the old packet would be routed
according to Rnew in the next switch. This contradicts Lemma 2.

Now we prove that the reconfiguration terminates. Termination requires that
all channels will eventually have transmitted the token, thus all input channels
in all switches will be using Rnew.

Lemma 3. The process terminates with all channels having transmitted the to-
ken if Rold has a cycle free dependency graph.

Proof. We first prove the lemma for the case where there are no data-packets in
the network. Observe that the tokens propagate through the network following
the channel dependency graph of Rold. Let o be an arbitrary output channel
attached to a switch. Whenever all input channels that have a dependency to o
according to Rold have the token at their queue head, the token is transmitted
on o. Since the dependency graph of Rold is acyclic, and there are no packets
occupying queue space, the lemma follows.

The only case we need to worry about is when the propagation of the tokens
are hindered by data packets. According to Corollary 1 the tokens can only be
waiting behind old packets, and new packets can only wait behind tokens or
other new packets. Since Rold is deadlock-free, all old packets will eventually
reach their destination or be dropped due to component failure. Therefore no
token can be indefinitely blocked, thus the lemma follows.

Lemma 4. If both Rold and Rnew are deterministic, in-order packet delivery is
maintained during the reconfiguration process.

Proof. This is a consequence of Corollary 1. Every channel entering a compute
node will first transmit old packets that clearly arrive in order, followed by the
token, and finally new packets, that will also arrive in order.

3 Simulation Experiments

In this section we will evaluate the proposed reconfiguration mechanism. First,
we will present the evaluation model, describing all the simulation parameters
and the networks we have used. Then, we will present the reconfiguration scenar-
ios we have used to evaluate the basic performance of the mechanism. Finally,
we will present the evaluation results.

3.1 Evaluation Model

In order to evaluate the mechanism, we have developed a detailed simulator
that allows us to model the network at the register transfer level. The simulator
models an IBA network, following the IBA specifications [1].

Packets are routed at each switch by accessing the forwarding table. This ta-
ble contains the output port to be used at the switch for each possible destination.

510 O. Lysne et al.

The routing time at each switch will be set to 100 ns. This time includes the
time to access the forwarding tables, the crossbar arbiter time, and the time to
set up the crossbar connections.

Switches can support up to 16 virtual lanes (VLs). VLs can be used to form
separate virtual networks. We will use a non-multiplexed crossbar on each switch.
This crossbar supplies separate ports for each VL. Buffers will be used both at
the input and the output side of the crossbar. Buffer size will be fixed in both
cases to 1 KB.

Links in InfiniBand are serial. In the simulator, the link injection rate will
be fixed to the 1X configuration [1]. 1X cables have a link speed of 2.5 Gbps.
Therefore, a bit can be injected every 0.4 ns. With 8/10 coding [1] a new byte can
be injected into the link every 4 ns. We also model the fly time (time required
by a bit to reach the opposite link side). We will model 20 m copper cables with
a propagation delay of 5 ns/m. Therefore, the fly time will be set to 100 ns.

The IBA specification defines a credit-based flow control scheme for each
virtual lane with independent buffer resources. A packet will be transmitted
over the link if there is enough buffer space (credits of 64 bytes) to store the
entire packet. IBA allows the definition of different MTU (Maximum Transfer
Unit) values for packets ranging from 256 to 4096 bytes. Additionally, the virtual
cut-through switching technique is used.

For each simulation run, we assume that the packet generation rate is con-
stant and the same for all the end-nodes. Except when specified, the number of
simulated packets is 160,000 and results will be collected from the last 80,000
packets (that is, a transient state of 80,000 packets and a permanent state of
80,000 packets).

The uniform traffic pattern will be used. With this pattern, each source sends
packets to all the destination with the same probability. Packet size will be fixed
to 58 bytes. This includes the IBA packet header (20 bytes), the packet payload
(32 bytes) and the IBA packet tail (6 bytes).

When using reconfiguration, two packet tokens will be used. The first token
will be the start-token and will be transmitted from a random switch. This token
will be sized in 1 byte and will be broadcasted to all the switches. The second
token will be the reconfiguration-token and will be sized in 8 bytes. In all the
cases, reconfiguration will be started in the middle of collecting results (in the
middle of the permanent state).

In all the presented results, we will plot the average network latency3 mea-
sured in nanoseconds versus the average accepted traffic4 measured in bytes per
nano-second per switch. Also, the evolution in time of the average packet latency
and the average latency from generation time 5 will be plotted.

3 Latency is the elapsed time between the injection of a packet until it is delivered at
the destination end-node.

4 Accepted traffic is the amount of information delivered by the network per time unit.
5 Latency from generation time is the elapsed time between the generation of a packet

at the source host until it is delivered at the destination end-node.

Simple Deadlock-Free Dynamic Network Reconfiguration 511

3.2 Evaluation Results

Different topologies and different combinations of routing algorithms (Rold and
Rnew) have been evaluated. Table 1 shows all the combinations we have analyzed.
Due to space limitations we will only display results for case 1 (4 × 4 Torus).
The results for all other cases were very similar.

Table 1. Reconfiguration scenarios. When we use terms like “upper left” and “center”
to denote switches in a torus, this is relative to a visual view of the torus when it is
laid out in two dimensions as a mesh with wraparound links

Rold Rnew

Case Topology Routing Root Routing Root
1 4 × 4 Torus UD upper left UD center
2 4 × 4 Mesh UD upper left UD bottom right
3 8 × 8 Mesh UD upper left UD bottom right
4 4 × 4 Mesh XY - UD upper left
5 4 × 4 Mesh XY - YX -

When using the up*/down* routing, the root switch must be selected. In
the case of the torus network, the root switch was the upper left switch of the
network for the Rold routing, and the center switch of the network for the Rnew.

Figure 1 shows the performance evaluation obtained in a 4× 4 torus network
when the reconfiguration is applied. Rnew and Rold use up*/down* (with dif-
ferent root switches). For every simulated point, the reconfiguration mechanism
is triggered and the average latency of packets is measured. The Figure also
shows the performance when the reconfiguration is not triggered (Rnew is used
all the time). As can be noticed, the reconfiguration process slightly affects the
performance of the network, and this is visible only at the saturation point.

However, these results should be put in context. Since the average latency of
packets is measured from the latency of each simulated packet, as the number of
simulated packets grows, the percentage of affected packets by reconfiguration
will decrease. Therefore low differences in terms of average latency will appear.
The results shown in Figure 1 were generated from simulation of 20,000 packets.
The reconfiguration process was launched after 1,000 packets had been received.
In order to measure stable states 20,000 packets were injected before collecting
results.

In order to better view the impact of the reconfiguration, Figure 1.b shows
the reconfiguration latency. That is, the time required by the mechanism to
reconfigure the entire network (from the sending of the first start-token up to
receiving the last reconfiguration-token). As can be noticed, the reconfiguration
latency keeps low and constant for most of the traffic injection rates. For most
of the traffic points, the reconfiguration latency is around 1,6 microseconds. The
network in the simulations usually gets 666 microseconds to deliver the 20,000
useful packets (with traffic injection near the saturation knee). Therefore, the
reconfiguration latency only affects to 0.25% of the simulated time.

512 O. Lysne et al.

However, near the saturation knee, the reconfiguration latency increases. At
saturation knee, the reconfiguration latency is 49 microseconds, representing 7%
of the total simulated time. The reason for this is that only when the network
is partly congested, the delivery of reconfiguration tokens will suffer as some old
packets will be waiting at some queues during a large amount of time due to
congestion. In the normal situation, the queues will not be full, and therefore,
the old packets will advance with no delay, so the reconfiguration packets will
also quickly advance and propagate. Beyond saturation knee, the reconfiguration
tokens also get congested and therefore the reconfiguration latency is excessive.

Figure 1.c shows the maximum packet latency for every simulated point. As
we can observe, the mechanism practically does not introduce any penalty to
packets as the latency for the packet with the maximum latency is practically
the same. Indeed, only slight differences appear near the congested knee, where
the maximum latency is slightly increased. This is mainly due to the congestion
encountered by reconfiguration tokens. Notice that if the network is congested,
the old packets will suffer long latencies regardless of the presence of new packets
in the network.

0

500

1000

1500

2000

2500

3000

0.01 0.02 0.03 0.04 0.05 0.06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

’Rold’
’Rold->Rnew’

(a)

0

10000

20000

30000

40000

50000

60000

0 0.01 0.02 0.03 0.04 0.05 0.06

R
ec

on
fi

gu
ra

tio
n

la
te

nc
y

(n
s)

Traffic (flits/ns/switch)

’Rold->Rnew’

(b)

0

20000

40000

60000

80000

100000

120000

0 0.01 0.02 0.03 0.04 0.05 0.06

M
ax

im
um

 p
ac

ke
t l

at
en

cy
 (

ns
)

Traffic (flits/ns/switch)

’Rold’
’Rold->Rnew’

(c)

Fig. 1. Impact of the reconfiguration method in a 4 × 4 torus network. Rold is
up*/down* (root switch is upper left) and Rnew is up*/down* (root switch is at the
center). (a) Network latency vs injected traffic, (b) reconfiguration latency, and (c)
maximum packet latency

In order to obtain a closer view to the impact of the reconfiguration method
on network performance, Figure 2 shows the evolution of packet latency at dif-
ferent traffic injection rates when the reconfiguration is triggered. The simulated
network is a 4× 4 torus network, Rold and Rnew use up*/down* (with different
root switches). In particular, the Figure shows the latency evolution in different
traffic loads: low load, medium load and close to saturation (the previous point
to saturation). The figure shows results for the average network latency and for
the average packet latency from generation time. With vertical lines, the start
and the finish of the reconfiguration process is shown.

As can be noticed, for low load (Figures 2.a and 2.d), the impact on network
latency and packet latency from generation time is not significant. There is no
variation in latency in the reconfiguration process. Even more, for medium traffic
loads (Figures 2.b and 2.e) the impact on network latency and packet latency

Simple Deadlock-Free Dynamic Network Reconfiguration 513

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3.2e+07 3.3e+07 3.4e+07

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Time (ns)

Start
Finish

Latency

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 6.8e+06 7.2e+06 7.6e+06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Time (ns)

Start
Finish

Latency

(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3.8e+06 4e+06 4.2e+06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Time (ns)

Start
Finish

Latency

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3.2e+07 3.3e+07 3.4e+07

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(n
s)

Time (ns)

Start
Finish

Latency

(d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 6.8e+06 7.2e+06 7.6e+06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(n
s)

Time (ns)

Start
Finish

Latency

(e)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3.8e+06 4e+06 4.2e+06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(n
s)

Time (ns)

Start
Finish

Latency

(f)

Fig. 2. Latency performance during simulation time for (a,d) low load, (b,e) medium
load, and (c,f) near saturation. (a, b, c) Average network latency. (d, e, f) Average
latency from generation time. 4 × 4 torus network. Rold is UD and Rnew is UD

from generation time is also negligible. The reason for this is that there are few
packets in the network, and therefore, the queues occupancy is also low, so, the
reconfiguration tokens can advance quickly throughout the network and switches
rapidly change from Rold to Rnew. Indeed, the Figures show average results for
every 100 packets delivered. In both cases, the reconfiguration process lasted
1.5 microseconds and 1.9 microseconds, respectively. In that time, less than 100
packets are delivered. Therefore, the impact is minimum for the traffic load.

However, for traffic near saturation of Rold (Figures 2.c and 2.f) a much
clearer impact on latency is observed. In this case, the reconfiguration process
lasted 5.5 microseconds. After the reconfiguration process, we can notice that
average network latency sharply increases from 1.5 microseconds to 5 microsec-
onds. Later, the average latency goes back and normalizes to 1.5 microseconds.
This temporal increase in latency is due to some introduced blocking of new
packets that must wait for reconfiguration-tokens. As the network is close to
saturation, queues start to fill and therefore, reconfiguration-tokens start to en-
counter some degree of blocking. However, the negative effect of reconfiguration
is low as the reconfiguration process is still fast.

Figure 3 shows the behavior in a congested scenario (beyond saturation) of
Rold. In this situation, the reconfiguration latency has been increased to 929
microseconds. As can be observed, for the average network latency (Figure 3.a)
there is a slight increase on latency in the start of the reconfiguration. However,
by the end of the reconfiguration, there is an extremely sharp increase of the
latency (from 5 microseconds up to 700 microseconds). The reconfiguration pro-
cess finishes when the last reconfiguration-token arrives to the last switch. In this

514 O. Lysne et al.

switch, there will be new packets blocked since the start of the reconfiguration
(as all the switches have compute nodes attached to them and all send packets
all the times). Therefore, once reconfiguration is finished, the most delayed new
packets will be unblocked and therefore they will reach their destinations, thus
extremely increasing latency. However, notice that this situation normalizes very
fast, as the number of theses packets is quite low.

0

100000

200000

300000

400000

500000

600000

700000

4e+06 4.4e+06 4.8e+06 5.2e+06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Time (cycles)

’Start’
’Finish’

’Latency’

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 4.2e+06 4.5e+06 4.8e+06 5.1e+06

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(n
s)

Time (ns)

Start
Finish

Latency

(b)

Fig. 3. Latency performance during simulation time for saturation. (a) Average net-
work latency. (b) Average latency from generation time. 4 × 4 torus network. Rold is
UD and Rnew is UD

4 Conclusion

In this paper we have described a simple procedure for dynamic and dead-
lock free reconfiguration between two routing functions. Our method works
for any topology and between any pair of routing functions. It guarantees in-
order delivery of packets during reconfiguration, as long as the old and the
new routing functions are deterministic. And it requires no additional virtual
channels.

Preliminary evaluation results have shown that the mechanism works effi-
ciently in different topologies and when using different routing algorithms (old
and new). The reconfiguration latency is roughly constant for low and medium
traffic loads and increases slightly for traffic loads near saturation. The peak
latency experienced by packets when reconfiguring is only noticeable for traffic
loads beyond saturation.

There are several interesting paths for further research that will be addressed
in further work. One is the development of simulation results for fault toler-
ance. Another is connected to the fact that this method is based on routing
tables being present in the switches. This means that adjustments need to be
made before the method can be applied to source routing. What adjustments
should be made, and the effect of such adjustments needs to be studied more
closely.

Simple Deadlock-Free Dynamic Network Reconfiguration 515

References

1. InfiniBand Trade Association. InfiniBand Architecture. Specification Volume 1.
Release 1.0a. Available at http://www.infinibandta.com, 2001.

2. R. Casado, A. Bermúdez, J. Duato, F. J. Quiles, and J. L. Sánchez. A protocol
for deadlock-free dynamic reconfiguration in high-speed local area networks. IEEE
Transactions on Parallel and Distributed Systems, 12(2):115–132, February 2001.

3. R. Casado, A. Bermúdez, F. J. Quiles, J. L. Sánchez, and J. Duato. Performance
evaluation of dynamic reconfiguration in high-speed local area networks. In Pro-
ceedings of the Sixth International Symposium on High-Performance Computer
Architecture, 2000.

4. W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing,
1:187–196, 1986.

5. W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Transactions on Computers, C-36(5):547–553,
1987.

6. José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers, 2003.

7. J. Fernández, J. Garćia, and J. Duato. A new approach to provide real-time services
on high-speed local area networks. In Proceedings of the 15th International Parallel
and Distributed Processing Symposium (IPDPS-01), pages 124–124, Los Alamitos,
CA, April 23–27 2001. IEEE Computer Society.

8. P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communica-
tion switching technique. Computer Networks, 3:267–286, 1979.

9. O. Lysne and J. Duato. Fast dynamic reconfiguration in irregular networks. In
Proceedings of the 2000’ International Conference of Parallel Processing, Toronto
(Canada), pages 449–458. IEEE Computer Society, 2000.

10. O. Lysne, T. M. Pinkston, and J. Duato. A methodology for developing dynamic
network reconfiguration processes. In 2003 International Conference on Parallel
Processing (ICPP’03), pages 77–86. IEEE, 2003.

11. N. Natchev, D. Avresky, and V. Shurbanov. Dynamic reconfiguration in high-
speed computer clusters. In Proceedings of the International Conference on Cluster
Computing, pages 380–387, Los Alamitos, 2001. IEEE Computer Society.

12. T. Pinkston, R. Pang, and J. Duato. Deadlock-free dynamic reconfiguration
schemes for increased network dependeability. IEEE Transactions on Parallel and
Distributed Systems, 14(8):780–794, August 2003.

13. Thomas L. Rodeheffer and Michael D. Schroeder. Automatic reconfiguration in
Autonet. In Proceedings of 13th ACM Symposium on Operating Systems Principles,
pages 183–197. Association for Computing Machinery SIGOPS, October 1991.

14. Dan Teodosiu, Joel Baxter, Kinshuk Govil, John Chapin, Mendel Rosenblum, and
Mark Horowitz. Hardware fault containment in scalable shared-memory multipro-
cessors. In Proceedings of the 24th Annual International Symposium on Computer
Architecture (ISCA-97), volume 25,2 of Computer Architecture News, pages 73–84,
New York, 1997. ACM Press.

15. S. Warnakulasuriya and T. M. Pinkston. A formal model of message blocking and
deadlock resolution in interconnection networks. IEEE Transactions on Parallel
and Distributed Systems, 11(3):212–229, 2000.

Lock-Free Parallel Algorithms: An Experimental Study

Guojing Cong and David Bader�

Department of Electrical and Computer Engineering,
University of New Mexico, Albuquerque, NM 87131 USA

{cong, dbader}@ece.unm.edu

Abstract. Lock-free shared data structures in the setting of distributed comput-
ing have received a fair amount of attention. Major motivations of lock-free data
structures include increasing fault tolerance of a (possibly heterogeneous) sys-
tem and alleviating the problems associated with critical sections such as priority
inversion and deadlock. For parallel computers with tightly-coupled processors
and shared memory, these issues are no longer major concerns. While many of
the results are applicable especially when the model used is shared memory multi-
processors, no prior studies have considered improving the performance of a par-
allel implementation by way of lock-free programming. As a matter of fact, often
times in practice lock-free data structures in a distributed setting do not perform
as well as those that use locks. As the data structures and algorithms for parallel
computing are often drastically different from those in distributed computing, it
is possible that lock-free programs perform better. In this paper we compare the
similarity and difference of lock-free programming in both distributed and par-
allel computing environments and explore the possibility of adapting lock-free
programming to parallel computing to improve performance. Lock-free program-
ming also provides a new way of simulating PRAM and asynchronous PRAM
algorithms on current parallel machines.

Keywords: Lock-free Data Structures, Parallel Algorithms, Shared Memory, High-
Performance Algorithm Engineering.

1 Introduction

Mutual exclusion locks are widely used for interprocess synchronization due to their
simple programming abstractions. However, they have an inherent weakness in a (pos-
sibly heterogeneous and faulty) distributed computing environment, that is, the crash-
ing or delay of a process in a critical section can cause deadlock or serious performance
degradation of the system [18, 28]. Lock-free data structures (sometimes called con-
current objects) were proposed to allow concurrent accesses of parallel processes (or
threads) while avoiding the problems of locks.

� This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR ACI-00-81404,
DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO 03-
31654; and DARPA Contract NBCH30390004.

L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 516–527, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

Lock-Free Parallel Algorithms: An Experimental Study 517

1.1 Previous Results

Lock-free synchronization was first introduced by Lamport in [25] to solve the concur-
rent readers and writers problem. Early work on lock-free data structures focused on
theoretical issues of the synchronization protocols, e.g., the power of various atomic
primitives and impossibility results [3, 7, 11, 12, 13, 16], by considering the simple con-
sensus problem where n processes with independent inputs communicate through a set
of shared variables and eventually agree on a common value. Herlihy [20] unified much
of the earlier theoretic results by introducing the notion of consensus number of an
object and defining a hierarchy on the concurrent objects according to their consensus
numbers. Consensus number measures the relative power of an object to reach dis-
tributed consensus, and is the maximum number of processes for which the object can
solve the consensus problem. It is impossible to construct lock-free implementations
of many simple and useful data types using any combination of atomic read, write,
test&set, fetch&add and memory-to-register swap because these primitives have con-
sensus numbers either one or two. On the other hand, compare&swap and load-linked,
store-conditional have consensus numbers of infinity, and hence are universal meaning
that they can be used to solve the consensus problem of any number of processes. Lock-
free algorithms and protocols have been proposed for many of the commonly used data
structures, e.g., linked lists [37], queues [21, 26, 35], set [27], union-find sets [2], heaps
[6], and binary search trees [14, 36]. There are also efforts to improve the performance
of lock-free protocols [1, 6].

While lock-free data structures and algorithms are highly resilient to failures, un-
fortunately, they seem to come at a cost of degraded performance. Herlihy et al. stud-
ied practical issues and architectural support of implementing lock-free data structures
[19, 18], and their experiments with small priority queues show that lock-free imple-
mentations do not perform as well as lock-based implementations. LaMarca [24] devel-
oped an analytical model based on architectural observations to predict the performance
of lock-free synchronization protocols. His analysis and experimental results show that
the benefits of guaranteed progress come at the cost of decreased performance. Shavit
and Touitou [32] studied lock-free data structures through software transactional mem-
ory, and their experimental results also show that on a simulated parallel machine lock-
free implementations are inferior to standard lock-based implementations.

1.2 Asynchronous Parallel Computation

Cole and Zajichek [9] first introduced lock-free protocols into parallel computing when
they proposed asynchronous PRAM (APRAM) as a more realistic parallel model than
PRAM because APRAM acknowledges the cost of global synchronization. Their goal
was to design APRAM algorithms with fault-resilience that perform better than straight-
forward simulations of PRAM algorithms on APRAM by inserting barriers. A parallel
connected components algorithm without global synchronization was presented as an
example. It turned out, however, according to the research of lock-free data structures in
distributed computing, that it is impossible to implement many lock-free data structures
on APRAM with only atomic register read/write [3, 20]. Attiya et al. [4] proved a lower
bound of logn time complexity of any lock-free algorithm on a computational model
that is essentially APRAM that achieves approximate agreement among n processes in

518 G. Cong and D. Bader

contrast to constant time of non-lock-free algorithms. This suggests an Ω(logn) gap
between lock-free and non-lock-free computation models.

Currently lock-free data structures and protocols are still mainly used for fault-
tolerance and seem to be inferior in performance to lock-based implementations. In this
paper we consider adapting lock-free protocols to parallel computations where multi-
ple processors are tightly-coupled with shared memory. We present novel applications
of lock-free protocols where the performance of the lock-free algorithms beat not only
lock-based implementations but also the best previous parallel implementations. The
rest of the paper is organized as follows: section 2 discusses the potential advantages
of using lock-free protocols for parallel computations; section 3 presents two lock-free
algorithms as case studies; and section 4 is our conclusion.

2 Application of Lock-Free Protocols to Parallel Computations

Fault-tolerance typically is not a primary issue for parallel computing (as it is for dis-
tributed computing) especially when dedicated parallel computers with homogeneous
processors are employed. Instead we are primarily concerned with performance when
solving large instances. We propose novel applications of lock-free protocols to parallel
algorithms that handle large inputs and show that lock-free implementations can have
superior performance.

A parallel algorithm often divides into phases and in each phase certain operations
are applied to the input with each processor working on portions of the data structure.
For irregular problems there usually are overlaps among the portions of data structures
partitioned onto different processors. Locks provide a mechanism for ensuring mutu-
ally exclusive access to critical sections by multiple working processors. Fine-grained
locking on the data structure using system mutex locks can bring large memory over-
head. What is worse is that many of the locks are never acquired by more than one
processor. Most of the time each processor is working on distinct elements of the data
structure due to the large problem size and relatively small number of processors. Yet
still extra work of locking and unlocking is performed for each operation applied to the
data structure, which results in a large execution overhead.

The access pattern of parallel processors to the shared data structures makes lock-
free protocols via atomic machine operations an elegant solution to the problem. When
there is work partition overlap among processors, usually it suffices that the overlap is
taken care of by one processor. If other processors can detect that the overlap portion is
already taken care of, they no longer need to apply the operations and can abort. Atomic
operations can be used to implement this “test-and-work” operation. As the contention
among processors is low, the overhead of using atomic operations is expected to be
small. Note that this is very different from the access patterns to the shared data struc-
tures in distributed computing, for example, two producers attempting to put more work
into the shared queues. Both producers must complete their operations, and when there
is conflict they will retry until success.

In some recent experimental studies on symmetric multiprocessors (SMPs) [14, 36]
the design and implementation of lock-free data structures involves mutual-exclusions
and are not strictly lock-free in the sense that a crash inside the critical region prevents

Lock-Free Parallel Algorithms: An Experimental Study 519

application progress. Mutual-exclusion is achieved using inline atomic operations and
is transparent to users because it is hidden in the implementation of the data structures.
Both Fraser [14] and Valois [36] show that for many search structures (binary tree, skip
list, red-black tree) well-implemented algorithms using atomic primitives can match
or surpass the performance of lock-based designs in many situations. However, their
implementations comprise the guarantee of progress in case of failed processes. “Lock-
free” here means free of full-fledged system mutex locks and are actually block-free
using spinlocks. Spinlocks do make sense in the homogeneous parallel computing en-
vironment with dedicated parallel computers where no process is particularly slower
than others and the program is computation intensive. It is a better choice to busy-wait
than to block when waiting to enter the critical section. In this paper we also study the
application of busy-wait spinlocks to parallel algorithms. We refer interested readers to
[30, 35] for examples of block-free data structures.

3 Lock-Free Parallel Algorithms

In this section we present parallel algorithms that are either mutual-exclusion free or
block-free to demonstrate the usage of lock-free protocols. Section 3.1 considers the
problem of resolving work partition conflicts for irregular problems using a lock-free
parallel spanning tree algorithm as an example. Section 3.2 presents an experimental
study of a block-free minimum spanning tree (MST) algorithm. As both algorithms take
graphs as input, before we present the algorithms, here we describe the the collection
of graph generators and the parallel machine we used.

We ran our shared-memory implementations on the Sun Enterprise 4500, a uniform-
memory-access shared memory parallel machine with 14 UltraSPARC II processors and
14 GB of memory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and
4 Mbytes of external (L2) cache. The clock speed of each processor is 400 MHz.

Our graph generators include several employed in previous experimental studies of
parallel graph algorithms for related problems. For instance, mesh topologies are used
in the connected component studies of [15, 17, 22, 23], the random graphs are used by
[8, 15, 17, 22], and the geometric graphs are used by [8, 15, 17, 22, 23].

– Meshes. Mesh-based graphs are commonly used in physics-based simulations and
computer vision. The vertices of the graph are placed on a 2D or 3D mesh, with
each vertex connected to its neighbors. 2DC is a complete 2D mesh; 2D60 is a 2D
mesh with the probability of 60% for each edge to be present; and 3D40 is a 3D
mesh with the probability of 40% for each edge to be present.

– Random Graph. A random graph of n vertices and m edges is created by ran-
domly adding m unique edges to the vertex set. Several software packages generate
random graphs this way, including LEDA [29].

– Geometric Graphs. Each vertex has a fixed degree k. Geometric graphs are gen-
erated by randomly placing n vertices in a unit square and connecting each vertex
with its nearest k neighbors. [31] use these in their empirical study of sequential
MST algorithms. AD3 ([23]) is a geometric graph with k = 3.

For MST, uniformly random weights are associated with the edges.

520 G. Cong and D. Bader

3.1 Lock-Free Protocols in Parallel Spanning Tree

We consider the application of lock-free protocols to the Shiloach-Vishkin parallel
spanning tree algorithm [33, 34]. This algorithm is representative of several connectiv-
ity algorithms that adapt the graft-and-shortcut approach, and is implemented in prior
experimental studies. For graph G = (V,E) with |V | = n and |E| = m, the algorithm
achieves complexities of O(logn) time and O((m+n) logn) work under the arbitrary
CRCW PRAM model.

The algorithm takes an edge list as input and starts with n isolated vertices and m
processors. Each processor Pi (1≤ i≤ m) inspects edge ei = (vi1 ,vi2) and tries to graft
vertex vi1 to vi2 under the constraint that vi1 < vi2 . Grafting creates k ≥ 1 connected
components in the graph, and each of the k components is then shortcutted to to a sin-
gle supervertex. Grafting and shortcutting are iteratively applied to the reduced graphs
G′ = (V ′,E ′) (where V ′ is the set of supervertices and E ′ is the set of edges among
supervertices) until only one supervertex is left. For a certain vertex v with multiple
adjacent edges, there can be multiple processors attempting to graft v to other smaller
vertices. Yet only one grafting is allowed, and we label the corresponding edge that
causes the grafting as a spanning tree edge. This is a partition conflict problem.

Two-phase election can be used to resolve the conflicts. The strategy is to run a race
among processors, where each processor that attempts to work on a vertex v writes its
id into a tag associated with v. After all the processors are done, each processor checks
the tag to see whether it is the winning processor. If so, the processor continues with
its operation, otherwise it aborts. Two-phase election works on platforms that provide
write atomicity. A global barrier synchronization among processors is used instead of
a possibly large number of fine-grained locks. The disadvantage is that two runs are
involved.

A natural solution to the work partition problem is to use lock-free atomic instruc-
tions. When a processor attempts to graft vertex v, it invokes the atomic compare&swap
operation to check whether v has been worked on. If not, the atomic nature of the opera-
tion also ensures that other processors will not work on v again. The detailed description
of the algorithm and an inline assembly function for compare&swap can be found in
[10].

We compare the performance of the lock-free Shiloach-Vishkin spanning tree im-
plementation with four other implementations that differ only in how the conflicts are
resolved. In Table 1 we describe the four implementations.

Table 1. Five implementations of Shiloach-Vishkin’s parallel spanning tree algorithm

Implementation Description
span-2phase conflicts are resolved by two-phase election
span-lock conflicts are resolved using system mutex locks
span-lockfree no mutual exclusion, races are prevented by atomic updates
span-spinlock mutual exclusion by spinlocks using atomic operations
span-race no mutual exclusion, no attempt to prevent races

Lock-Free Parallel Algorithms: An Experimental Study 521

Among the four implementations, span-race is not a correct implementation and
does not guarantee correct results. It is included as a baseline to show how much over-
head is involved with using lock-free protocols and spinlocks.

Experimental Results. In Fig. 1 we see span-lock does not scale with the number
of the processors, and is consistently the approach with the worst performance. span-
2phase, span-lockfree, and span-spinlock scale well with the number of processors,
and the execution time of span-lockfree and span-spinlock is roughly half of that of
span-2phase. It is interesting to note that span-lockfree, span-spinlock and span-race
are almost as fast as each other for various inputs, which suggests similar overhead for
spinlocks and lock-free protocols, and the overhead is negligible.

Fig. 1. The performance of the spanning tree implementations. The vertical bars from left to right
are span-lock, span-2phase, span-lockfree, span-spinlock, and span-race, respectively

3.2 Block-Free Parallel Algorithms

For parallel programs that handle large inputs on current SMPs, spinlocks are a better
choice than the blocking system mutex locks. Spinlocks are simpler, take less memory
and do not involve the kernel. Due to the large inputs and relatively smaller number

522 G. Cong and D. Bader

of processors available, most of the time each processor is working on distinct data
elements, and the contention over a certain lock or data element is very low. Even in
case of contention, as the expected time that a processor spends in the critical section is
short, it is much cheaper to busy wait for a few cycles than to block. In the previous ex-
perimental study with the spanning tree algorithm, we have already seen that spinlock
is a good candidate for mutual exclusion. As an example we next present a parallel min-
imum spanning tree (MST) algorithm using spinlocks for synchronization that achieves
a more drastic performance improvement.

Parallel Borůvka’s Algorithm and Previous Experimental Studies. Given an undi-
rected connected graph G with n vertices and m edges, the minimum spanning tree
(MST) problem finds a spanning tree with the minimum sum of edge weights. In
our previous work [5], we studied the performance of different variations of parallel
Borůvka’s algorithm. Borůvka’s algorithm is comprised of Borůvka iterations that are
used in many parallel MST algorithms. A Borůvka iteration is characterized by three
steps: find-min, connected-components and compact-graph. In find-min, for each vertex
v the incident edge with the smallest weight is labeled to be in the MST; connect-
components identifies connected components of the induced graph with the labeled
MST edges; compact-graph compacts each connected component into a single super-
vertex, removes self-loops and multiple edges, and re-labels the vertices for consistency.

Here we summarize each of the Borůvka algorithms. The major difference among
them is the input data structure and the implementation of compact-graph. Bor-ALM
takes an adjacency list as input and compacts the graph using two parallel sample sorts
plus sequential merge sort; Bor-FAL takes our flexible adjacency list as input and runs
parallel sample sort on the vertices to compact the graph. For most inputs, Bor-FAL
is the fastest implementation. In the compact-graph step, Bor-FAL merges each con-
nected components into a single supervertex that gets the adjacency list of all the ver-
tices in the component. Bor-FAL does not attempt to remove self-loops and multiple
edges, and avoids runs of extensive sortings. Self-loops and multiple edges are filtered
out in the find-min step instead. Bor-FAL greatly reduces the number of shared mem-
ory writes at the relatively small cost of an increased number of reads, and proves to be
efficient as predicted on current SMPs.

A New Implementation. Now we present an implementation with spinlocks (denoted
as Bor-spinlock) that further reduces the number of memory writes. In fact the input
edge list is not modified at all in Bor-spinlock, and the compact-graph step is com-
pletely eliminated. The main idea is that instead of compacting connected components,
for each vertex there is now an associated label supervertex showing to which super-
vertex it belongs. In each iteration all the vertices are partitioned among the processors.
For each vertex v of its assigned partition, processor p finds the adjacent edge e with
the smallest weight. If we compact connected components, e would belong to the su-
pervertex v′ of v in the new graph. Essentially processor p finds the adjacent edge with
smallest weight for v′. As we do not compact graphs, the adjacent edges for v′ are scat-
tered among the adjacent edges of all vertices that share the same supervertex v′, and
different processors may work on these edges simultaneously. Now the problem is that
these processors need to synchronize properly in order to find the edge with the mini-

Lock-Free Parallel Algorithms: An Experimental Study 523

mum weight. Again this is an example of the irregular work-partition problem. Fig. 2
illustrates the specific problem for the MST case.

32 41

65

1 2 1

3 4

2

4

3
1’ 2’

1 2 3

2 1 21

5 6

4

Fig. 2. Example of the race condition between two processors when Borůvka’s algorithm is used
to solve the MST problem

On the top in Fig. 2 is an input graph with six vertices. Suppose we have two proces-
sors P1 and P2. Vertices 1, 2, and 3, are partitioned on to processor P1 and vertices 4, 5,
and 6 are partitioned on to processor P2. It takes two iterations for Borůvka’s algorithm
to find the MST. In the first iteration, the find-min step of Bor-spinlock labels < 1,5 >,
< 5,3 >, < 2,6 > and < 6,4 > to be in the MST. connected-components finds vertices
1, 3, and 5, in one component, and vertices 2, 4, and 6, in another component. The MST
edges and components are shown in the middle of Fig. 2. Vertices connected by dashed
lines are in one component, and vertices connected by solid lines are in the other com-
ponent. At this time, vertices 1, 3, and 5, belong to supervertex 1′, and vertices 2, 4, and
6, belong to supervertex 2′. In the second iteration, processor P1 again inspects vertices
1, 2, and 3, and processor P2 inspects vertices 4, 5, and 6. Previous MST edges < 1,5 >,
< 5,3 >, < 2,6 > and < 6,4 > are found to be edges inside supervertices and are ig-
nored. On the bottom in Fig. 2 are the two supervertices with two edges between them.
Edges < 1,2 > and < 3,4 > are found by P1 to be the edges between supervertices 1′
and 2′, edge < 3,4 > is found by P2 to be the edge between the two supervertices. For
supervertex 2′, P1 tries to label < 1,2 > as the MST edge while P2 tries to label < 3,4 >.
This is a race condition between the two processors, and locks are used in Bor-spinlock
to ensure correctness. The formal description of the algorithm is given in [10].

We compare the performance of Bor-spinlock with the best previous parallel im-
plementations. The results are shown in Fig. 3. Bor-FAL is the fastest implementation
for sparse random graphs, Bor-ALM is the fastest implementation for meshes. From

524 G. Cong and D. Bader

Fig. 3. Comparison of the performance of Bor-spinlock against the previous implementations.
The horizontal line in each graph shows the execution time of the best sequential implementation

our results we see that with 12 processors Bor-spinlock beats both Bor-FAL and Bor-
ALM, and performance of Bor-spinlock scales well with the number of processors. In
Fig. 3, performance of Bor-lock is also plotted. Bor-lock is the same as Bor-spinlock
except that system mutex locks are used. Bor-lock does not scale with the number of
processors. The performance of the best sequential algorithms among the three candi-
dates, Kruskal, Prim, and Borůvka, is plotted as a horizontal line for each input graph.

Lock-Free Parallel Algorithms: An Experimental Study 525

For all the input graphs shown in Fig. 3, Bor-spinlock tends to perform better than the
previous best implementations when more processors are used. Note that a maximum
speedup of 9.9 for 2D60 with 1M vertices is achieved with Bor-spinlock at 12 proces-
sors. Fig. 3 demonstrates the potential advantage of spinlock-based implementations for
large and irregular problems. Aside from good performance, Bor-spinlock is also the
simplest approach as it does not involve sorting required by the other approaches.

4 Conclusions

In this paper we present novel applications of lock-free and block-free protocols to par-
allel algorithms and show that these protocols can greatly improve the performance of
parallel algorithms for large, irregular problems. As there is currently no direct support
for invoking atomic instructions from most programming languages, our results suggest
it necessary that there be orchestrated support for high performance algorithms from
the hardware architecture, operating system, and programming languages. Two graph
algorithms are discussed in this paper. In our future work, we will consider applying
lock-free and block-free protocols to other types of algorithms, for example, parallel
branch-and-bound.

References

1. J. Allemany and E.W. Felton. Performance issues in non-blocking synchronization on
shared-memory multiprocessors. In Proc. 11th ACM Symposium on Principles of Distributed
Computing, pages 125–134, Aug 1992.

2. R.J. Anderson and H. Woll. Wait-free parallel algorithms for the union-find problem. In
Proc. 23rd Annual ACM Symposium on Theory of Computing, pages 370 – 380, May 1991.

3. J. Aspnes and M. P. Herlihy. Wait-free data structures in the asynchronous PRAM model. In
Proc. 2nd Ann. Symp. Parallel Algorithms and Architectures (SPAA-90), pages 340–349, Jul
1990.

4. H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? J. ACM, 41(4):725–763,
1994.

5. D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the minimum
spanning forest of sparse graphs. In Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS 2004), page to appear, Santa Fe, New Mexico, April 2004.

6. G. Barnes. Wait free algorithms for heaps. Technical Report TR-94-12-07, University of
Washington, 1994.

7. B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous hardware. In
Proc. 6th ACM Symposium on Principles of Distributed Computing, pages 86–97, Vancou-
ver, British Columbia, Canada, 1987.

8. S. Chung and A. Condon. Parallel implementation of Borůvka’s minimum spanning tree
algorithm. In Proc. 10th Int’l Parallel Processing Symp. (IPPS’96), pages 302–315, April
1996.

9. R. Cole and O. Zajicek. The APRAM : incorporating asynchrony into the PRAM model. In
Proc. 1st Ann. Symp. Parallel Algorithms and Architectures (SPAA-89), pages 169–178, Jun
1989.

10. G. Cong and D.A. Bader. Lock-free parallel algorithms: an experimental study. Technical
report, Electrical and Computer Engineering Dept., University of Mexico, 2004.

526 G. Cong and D. Bader

11. C. Dwork, D. Dwork, and L. Stockmeyer. On the minimal synchronism needed for dis-
tributed consensus. J. ACM, 34(1):77–97, 1987.

12. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.
ACM, 35(2):288–323, 1988.

13. M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed commit with one
faulty process. J. ACM, 32(2):374–382, 1985.

14. K.A. Fraser. Practical lock-freedom. PhD thesis, King’s College, University of Cambridge,
Sep 2003.

15. S. Goddard, S. Kumar, and J.F. Prins. Connected components algorithms for mesh-connected
parallel computers. In S. N. Bhatt, editor, Parallel Algorithms: 3rd DIMACS Implementation
Challenge October 17-19, 1994, volume 30 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 43–58. American Mathematical Society, 1997.

16. A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. The
NYU ultracomputer — designing a MIMD, shared-memory parallel machine. IEEE Trans.
Computers, C-32(2):175–189, 1984.

17. J. Greiner. A comparison of data-parallel algorithms for connected components. In Proc. 6th
Ann. Symp. Parallel Algorithms and Architectures (SPAA-94), pages 16–25, Cape May, NJ,
June 1994.

18. M. Herlihy and J.E.B. Moss. Transactional memory: Architectural support for lock-free data
structures. In Proc. 20th Int’l Symposium in Computer Architecture, pages 289–300, May
1993.

19. M.P. Herlihy. A methodology for implementing highly concurrent data objects. In Proc.
2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
197–206, Mar 1990.

20. M.P. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

21. M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In Proc. 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages 13 – 26, Jan 1987.

22. T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for finding
connected components in graphs. In S. N. Bhatt, editor, Parallel Algorithms: 3rd DIMACS
Implementation Challenge October 17-19, 1994, volume 30 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 23–41. American Mathematical So-
ciety, 1997.

23. A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and K. Yelick. Connected components on
distributed memory machines. In S. N. Bhatt, editor, Parallel Algorithms: 3rd DIMACS
Implementation Challenge October 17-19, 1994, volume 30 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 1–21. American Mathematical Soci-
ety, 1997.

24. A. LaMarca. A performance evaluation of lock-free synchronization protocols. In Proc.
13th Annual ACM Symposium on Principles of Distributed Computing, pages 130 – 140,
Aug 1994.

25. L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811,
1977.

26. L. Lamport. Specifying concurrent program modules. ACM Transactions on Programming
Languages and Systems, 5(2):190–222, 1983.

27. V. Lanin and D. Shaha. Concurrent set manipulation without locking. In Proc. 7th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 211 – 220,
Mar 1988.

28. H. Massalin and C. Pu. Threads and input/output in the synthesis kernel. In Proc. 12th ACM
Symposium on Operating Systems Principles, pages 191–201, Dec 1989.

Lock-Free Parallel Algorithms: An Experimental Study 527

29. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

30. M.M. Michael and M.L. Scott. Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared memory multiprocessors. Journal of Parallel and Distributed
Computing, 51(1):1–26, 1998.

31. B.M.E. Moret and H.D. Shapiro. An empirical assessment of algorithms for constructing
a minimal spanning tree. In DIMACS Monographs in Discrete Mathematics and Theoreti-
cal Computer Science: Computational Support for Discrete Mathematics 15, pages 99–117.
American Mathematical Society, 1994.

32. N. Shavit and D. Touitou. Software transactional memory. In Proc. 14th annual ACM
Symposium on Principles of Distributed Computing, pages 204–213, Aug 1995.

33. Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. J. Algs., 3(1):57–
67, 1982.

34. R.E. Tarjan and J. Van Leeuwen. Worst-case analysis of set union algorithms. J. ACM,
31(2):245–281, 1984.

35. P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent FIFO queue for
shared memory multiprocessor systems. In Proc. 13th Ann. Symp. Parallel Algorithms and
Architectures (SPAA-01), pages 134–143, Sep 2001.

36. J. Valois. Lock-free data structures. PhD thesis, Rensselaer Polytechnic Institute, May 1995.
37. J.D. Valois. Lock-free linked lists using compare-and-swap. In Proc. 14th Annual ACM

Symposium on Principles of Distributed Computing, pages 214 – 222, Aug 1995.

Author Index

Aggarwal, Aneesh 319
Antonopoulos, Christos D. 286
Arvind 1
Asaduzzaman, Shah 242

Bader, David A. 297, 516
Barai, S.V. 200
Baumgartner, Gerald 386
Bender, Carl A. 156
Bheemarjuna Reddy, T. 81
Blackmore, Robert 156
Borrill, Julian 176

Canright, Geoff 222
Carter, Jonathan 176
Carter, Larry 363
Chakrabarti, Anirban 375
Chakrabarti, P. P. 494
Chand, Narottam 410
Chandra, Namas 211
Chandra, Usha 211
Chaudhary, Piyush 156
Chen, Chunxi 353
Chen, Hao 232
Choi, Byeong-Doo 333
Chu, Kuo-Chung 60
Cong, Guojing 516
Cortes, Toni 399

Das, Gautam K. 420
Das, Sandip 420
Desprez, Frédéric 4
Deutsch, Andreas 222
Dheepak, R.A. 375
Dobber, Menno 342
Duato, José 462, 504

Ferrante, Jeanne 363
Ferreira, Ronaldo A. 252
Flich, José 462, 504

Ganguly, Niloy 222
Gilbert, John R. 144
Gildea, Kevin 156

Girkar, Milind 133
Gómez, M.E. 462
Gopinath, K. 262
Goscinski, Jason 156
Govindaraju, Rama K. 156
Grama, Ananth 252, 450
Grice, Don 156
Gupta, Rohit 8

Han, Zongfen 232
Herring, Jay 156
Hidrobo, Francisco 399
Hochschild, Peter 156
Houston, John 156
Hwang, Min-Che 333

Jadia, Pawan 40
Jagannathan, Suresh 252
Jayashree, S. 19
Jenkins, Lawrence 474
Jiang, Hong 166
Jin, Hai 232
Joshi, Ramesh 410
Jouppi, Norman P.

Karandikar, Abhay 50
Kim, Chulho 156
Kim, Ju Gyun 484
Kim, Seon Wook 430
Ko, Sung-Jea 333
Kolhe, Jyoti 211
Koole, Ger 342
Krishnamoorthy, Sriram 386
Kumar, Mukesh
Kumar, Rajeev 309, 494

LakshmiPriya, M.V. 71
Lam, Chi-Chung 386
Lee, Kyung-Hoon 333
Lin, Frank Yeong-Sung 60
Lin, Suzhen 101
Liu, Weiguo 91
López, P. 462
Lysne, Olav 462, 504

l

5

o

30

530 Author Index

Madduri, Kamesh 297
Mahajan, Shruti 50
Mahawar, Hemant 450
Maheswaran, Muthucumaru 242
Mani Chandy, K. 3
Manimaran, G. 101
Manoj, B.S. 19, 81
Martin, Steven 156
Mathuria, Anish 40
Misra, Manoj 410
Montañana, José Miguel 504
Mudge, Trevor 6

Nam, Ju-Hun 333
Nam, Kyung-Hoon Lee 333
Namilae, Sirish 211
Nandy, Sagnik 363
Nandy, Subhas C. 420
Narayan, Ganesh 262
Nieplocha, Jarek 386
Nikolopoulos, Dimitrios S. 286
Nordbotten, N.A. 462

Oliker, Leonid 176

Panda, Dhabaleswar K. 440
Pande, Santosh 274
Papadimitriou, Christos 7
Papatheodorou, Theodore S. 286
Parashar, Manish 189
Park, Inho 430
Park, Kyung 430
Parthasarathi, Ranjani 71
Pinkston, Timothy Mark 504
Pranav, R. 474

Renard, 123
Robert, Yves 123

Robles, A. 462
Roy, Rajarshi

Sadayappan, P. 386
Sarin, Vivek 450
Schmidt, Bertil 91, 353
Sengupta, Shubhashis 375
Shah, Viral 144
Sharma, Navin K.
Sharmila, R. 71
Shi, Weidong 274
Singh, Manish 50
Singh, P. K. 494
Singh, Sanjay 200
Siva Ram Murthy, C. 19, 81
Skeie, Tor 462, 504
Somani, Arun K. 8
Srinivasan, Ashok 211
Sriram, S. 81
Subramani, K. 111
Sumanth, J.V. 166
Sun, Jianhua 232
Sural, Shamik
Swanson, David R. 166

Tian, Xinmin 133
Turuk, Ashok K. 309

van der Mei, Rob 342
Vivien, Frédéric 123

Wu, Jiesheng 440

Yellajyosula, Kiran 111
Yu, Weikuan 440

Zhang, Li 189
Zhang, Tao 274

Hélène

30

30

30

	Frontmatter
	Keynote Addresses
	Rethinking Computer Architecture Research
	Event Servers for Crisis Management
	DIET: Building Problem Solving Environments for the Grid
	The Future Evolution of High-Performance Microprocessors
	Low Power Robust Computing
	Networks and Games

	Plenary Session - Best Papers
	An Incentive Driven Lookup Protocol for Chord-Based Peer-to-Peer (P2P) Networks
	A Novel Battery Aware MAC Protocol for Ad Hoc Wireless Networks

	Session I -Wireless Network Management
	Dynamic Topology Construction in Bluetooth Scatternets
	Efficient Secure Aggregation in Sensor Networks
	Optimal Access Control for an Integrated Voice/Data CDMA System
	Adaptive Load Balancing of Cellular CDMA Systems Considering Non-uniform Traffic Distributions
	An Active Framework for a WLAN Access Point Using Intel's IXP1200 Network Processor
	MuSeQoR: Multi-path Failure-Tolerant Security-Aware QoS Routing in Ad~Hoc Wireless Networks

	Session II - Compilers and Runtime Systems
	A Tunable Coarse-Grained Parallel Algorithm for Irregular Dynamic Programming Applications
	A Feedback-Based Adaptive Algorithm for Combined Scheduling with Fault-Tolerance in Real-Time Systems
	A Shared Memory Dispatching Approach for Partially Clairvoyant Schedulers
	Data Redistribution Algorithms for Homogeneous and Heterogeneous Processor Rings
	Effect of Optimizations on Performance of OpenMP Programs
	Sparse Matrices in {\sc Matlab}*P: Design and Implementation

	Session III - High-Performance Scientific Applications
	Architecture and Early Performance of the New IBM HPS Fabric and Adapter
	Scheduling Many-Body Short Range MD Simulations on a Cluster of Workstations and Custom VLSI Hardware
	Performance Characteristics of a Cosmology Package on Leading HPC Architectures
	A Dynamic Geometry-Based Shared Space Interaction Framework for Parallel Scientific Applications
	Earthquake Engineering Problems in Parallel Neuro Environment
	Parallel Simulation of Carbon Nanotube Based Composites

	Session IV - Peer-to-Peer and Storage Systems
	Design of a Robust Search Algorithm for P2P Networks
	Efficient Immunization Algorithm for Peer-to-Peer Networks
	Leveraging Public Resource Pools to Improve the Service Compliances of Computing Utilities
	Plethora: An Efficient Wide-Area Storage System
	{\itshape i}SAN -- An Intelligent Storage Area Network Architecture

	Session V - High-Performance Processors and Routers
	Static Techniques to Improve Power Efficiency of Branch Predictors
	Realistic Workload Scheduling Policies for Taming the Memory Bandwidth Bottleneck of SMPs
	A Parallel State Assignment Algorithm for Finite State Machines
	A Novel Scheme to Reduce Burst-Loss and Provide QoS in Optical Burst Switching Networks
	Single FU Bypass Networks for High Clock Rate Superscalar Processors
	DSP Implementation of Real-Time JPEG2000 Encoder Using Overlapped Block Transferring and Pipelined Processing

	Session VI - Grids and Storage Systems
	Dynamic Load Balancing for a Grid Application
	Load Balancing for Hierarchical Grid Computing: A Case Study
	A-FAST: Autonomous Flow Approach to Scheduling Tasks
	Integration of Scheduling and Replication in Data Grids
	Efficient Layout Transformation for Disk-Based Multidimensional Arrays
	Autonomic Storage System Based on Automatic Learning

	Session VII - Energy-Aware and High-Performance Networking
	Broadcast Based Cache Invalidation and Prefetching in Mobile Environment
	Efficient Algorithm for Energy Efficient Broadcasting in Linear Radio Networks
	Characterization of OpenMP Applications on the InfiniBand-Based Distributed Virtual Shared Memory System
	Fast and Scalable Startup of MPI Programs in InfiniBand Clusters
	Parallel Performance of Hierarchical Multipole Algorithms for Inductance Extraction

	Session VIII - Distributed Algorithms
	A New Adaptive Fault-Tolerant Routing Methodology for Direct Networks
	Fast and Efficient Submesh Determination in Faulty Tori
	High Performance Cycle Detection Scheme for Multiprocessing Systems
	Improved Quality of Solutions for Multiobjective Spanning Tree Problem Using Distributed Evolutionary Algorithm
	Simple Deadlock-Free Dynamic Network Reconfiguration
	Lock-Free Parallel Algorithms: An Experimental Study

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

